summaryrefslogtreecommitdiff
path: root/drivers/dahdi/wctdm24xxp/xhfc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/dahdi/wctdm24xxp/xhfc.c')
-rw-r--r--drivers/dahdi/wctdm24xxp/xhfc.c2756
1 files changed, 2756 insertions, 0 deletions
diff --git a/drivers/dahdi/wctdm24xxp/xhfc.c b/drivers/dahdi/wctdm24xxp/xhfc.c
new file mode 100644
index 0000000..500cdf7
--- /dev/null
+++ b/drivers/dahdi/wctdm24xxp/xhfc.c
@@ -0,0 +1,2756 @@
+/*
+ * B400M Quad-BRI module Driver
+ * Written by Andrew Kohlsmith <akohlsmith@mixdown.ca>
+ *
+ * Copyright (C) 2010 Digium, Inc.
+ * All rights reserved.
+ *
+ */
+
+/*
+ * See http://www.asterisk.org for more information about
+ * the Asterisk project. Please do not directly contact
+ * any of the maintainers of this project for assistance;
+ * the project provides a web site, mailing lists and IRC
+ * channels for your use.
+ *
+ * This program is free software, distributed under the terms of
+ * the GNU General Public License Version 2 as published by the
+ * Free Software Foundation. See the LICENSE file included with
+ * this program for more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/pci.h>
+#include <linux/ppp_defs.h>
+#include <linux/delay.h>
+
+#define FAST_HDLC_NEED_TABLES
+#include <dahdi/kernel.h>
+#include <dahdi/fasthdlc.h>
+
+#include "wctdm24xxp.h"
+#include "xhfc.h"
+
+#define HFC_NR_FIFOS 16
+#define HFC_ZMIN 0x00 /* from datasheet */
+#define HFC_ZMAX 0x7f
+#define HFC_FMIN 0x00
+#define HFC_FMAX 0x07
+
+/*
+ * yuck. Any reg which is not mandated read/write or read-only is write-only.
+ * Also, there are dozens of registers with the same address. Additionally,
+ * there are array registers (A_) which have an index register These A_
+ * registers require an index register to be written to indicate WHICH in the
+ * array you want.
+ */
+
+#define R_CIRM 0x00 /* WO */
+#define R_CTRL 0x01 /* WO */
+#define R_CLK_CFG 0x02 /* WO */
+#define A_Z1 0x04 /* RO */
+#define A_Z2 0x06 /* RO */
+#define R_RAM_ADDR 0x08 /* WO */
+#define R_RAM_CTRL 0x09 /* WO */
+#define R_FIRST_FIFO 0x0b /* WO */
+#define R_FIFO_THRES 0x0c /* WO */
+#define A_F1 0x0c /* RO */
+#define R_FIFO_MD 0x0d /* WO */
+#define A_F2 0x0d /* RO */
+#define A_INC_RES_FIFO 0x0e /* WO */
+#define A_FIFO_STA 0x0e /* RO */
+#define R_FSM_IDX 0x0f /* WO */
+#define R_FIFO 0x0f /* WO */
+
+#define R_SLOT 0x10 /* WO */
+#define R_IRQ_OVIEW 0x10 /* RO */
+#define R_MISC_IRQMSK 0x11 /* WO */
+#define R_MISC_IRQ 0x11 /* RO */
+#define R_SU_IRQMSK 0x12 /* WO */
+#define R_SU_IRQ 0x12 /* RO */
+#define R_IRQ_CTRL 0x13 /* WO */
+#define R_AF0_OVIEW 0x13 /* RO */
+#define R_PCM_MD0 0x14 /* WO */
+#define A_USAGE 0x14 /* RO */
+#define R_MSS0 0x15 /* WO */
+#define R_MSS1 0x15 /* WO */
+#define R_PCM_MD1 0x15 /* WO */
+#define R_PCM_MD2 0x15 /* WO */
+#define R_SH0H 0x15 /* WO */
+#define R_SH1H 0x15 /* WO */
+#define R_SH0L 0x15 /* WO */
+#define R_SH1L 0x15 /* WO */
+#define R_SL_SEL0 0x15 /* WO */
+#define R_SL_SEL1 0x15 /* WO */
+#define R_SL_SEL7 0x15 /* WO */
+#define R_RAM_USE 0x15 /* RO */
+#define R_SU_SEL 0x16 /* WO */
+#define R_CHIP_ID 0x16 /* RO */
+#define R_SU_SYNC 0x17 /* WO */
+#define R_BERT_STA 0x17 /* RO */
+#define R_F0_CNTL 0x18 /* RO */
+#define R_F0_CNTH 0x19 /* RO */
+#define R_TI_WD 0x1a /* WO */
+#define R_BERT_ECL 0x1a /* RO */
+#define R_BERT_WD_MD 0x1b /* WO */
+#define R_BERT_ECH 0x1b /* RO */
+#define R_STATUS 0x1c /* RO */
+#define R_SL_MAX 0x1d /* RO */
+#define R_PWM_CFG 0x1e /* WO */
+#define R_CHIP_RV 0x1f /* RO */
+
+#define R_FIFO_BL0_IRQ 0x20 /* RO */
+#define R_FIFO_BL1_IRQ 0x21 /* RO */
+#define R_FIFO_BL2_IRQ 0x22 /* RO */
+#define R_FIFO_BL3_IRQ 0x23 /* RO */
+#define R_FILL_BL0 0x24 /* RO */
+#define R_FILL_BL1 0x25 /* RO */
+#define R_FILL_BL2 0x26 /* RO */
+#define R_FILL_BL3 0x27 /* RO */
+#define R_CI_TX 0x28 /* WO */
+#define R_CI_RX 0x28 /* RO */
+#define R_CGI_CFG0 0x29 /* WO */
+#define R_CGI_STA 0x29 /* RO */
+#define R_CGI_CFG1 0x2a /* WO */
+#define R_MON_RX 0x2a /* RO */
+#define R_MON_TX 0x2b /* WO */
+
+#define A_SU_WR_STA 0x30 /* WO */
+#define A_SU_RD_STA 0x30 /* RO */
+#define A_SU_CTRL0 0x31 /* WO */
+#define A_SU_DLYL 0x31 /* RO */
+#define A_SU_CTRL1 0x32 /* WO */
+#define A_SU_DLYH 0x32 /* RO */
+#define A_SU_CTRL2 0x33 /* WO */
+#define A_MS_TX 0x34 /* WO */
+#define A_MS_RX 0x34 /* RO */
+#define A_ST_CTRL3 0x35 /* WO */
+#define A_UP_CTRL3 0x35 /* WO */
+#define A_SU_STA 0x35 /* RO */
+#define A_MS_DF 0x36 /* WO */
+#define A_SU_CLK_DLY 0x37 /* WO */
+#define R_PWM0 0x38 /* WO */
+#define R_PWM1 0x39 /* WO */
+#define A_B1_TX 0x3c /* WO */
+#define A_B1_RX 0x3c /* RO */
+#define A_B2_TX 0x3d /* WO */
+#define A_B2_RX 0x3d /* RO */
+#define A_D_TX 0x3e /* WO */
+#define A_D_RX 0x3e /* RO */
+#define A_BAC_S_TX 0x3f /* WO */
+#define A_E_RX 0x3f /* RO */
+
+#define R_GPIO_OUT1 0x40 /* WO */
+#define R_GPIO_IN1 0x40 /* RO */
+#define R_GPIO_OUT3 0x41 /* WO */
+#define R_GPIO_IN3 0x41 /* RO */
+#define R_GPIO_EN1 0x42 /* WO */
+#define R_GPIO_EN3 0x43 /* WO */
+#define R_GPIO_SEL_BL 0x44 /* WO */
+#define R_GPIO_OUT2 0x45 /* WO */
+#define R_GPIO_IN2 0x45 /* RO */
+#define R_PWM_MD 0x46 /* WO */
+#define R_GPIO_EN2 0x47 /* WO */
+#define R_GPIO_OUT0 0x48 /* WO */
+#define R_GPIO_IN0 0x48 /* RO */
+#define R_GPIO_EN0 0x4a /* WO */
+#define R_GPIO_SEL 0x4c /* WO */
+
+#define R_PLL_CTRL 0x50 /* WO */
+#define R_PLL_STA 0x50 /* RO */
+#define R_PLL_P 0x51 /* RW */
+#define R_PLL_N 0x52 /* RW */
+#define R_PLL_S 0x53 /* RW */
+
+#define A_FIFO_DATA 0x80 /* RW */
+#define A_FIFO_DATA_NOINC 0x84 /* RW */
+
+#define R_INT_DATA 0x88 /* RO */
+
+#define R_RAM_DATA 0xc0 /* RW */
+
+#define A_SL_CFG 0xd0 /* RW */
+#define A_CH_MSK 0xf4 /* RW */
+#define A_CON_HDLC 0xfa /* RW */
+#define A_SUBCH_CFG 0xfb /* RW */
+#define A_CHANNEL 0xfc /* RW */
+#define A_FIFO_SEQ 0xfd /* RW */
+#define A_FIFO_CTRL 0xff /* RW */
+
+/* R_CIRM bits */
+#define V_CLK_OFF (1 << 0) /* 1=internal clocks disabled */
+#define V_WAIT_PROC (1 << 1) /* 1=additional /WAIT after write access */
+#define V_WAIT_REG (1 << 2) /* 1=additional /WAIT for internal BUSY phase */
+#define V_SRES (1 << 3) /* soft reset (group 0) */
+#define V_HFC_RES (1 << 4) /* HFC reset (group 1) */
+#define V_PCM_RES (1 << 5) /* PCM reset (group 2) */
+#define V_SU_RES (1 << 6) /* S/T reset (group 3) */
+#define XHFC_FULL_RESET (V_SRES | V_HFC_RES | V_PCM_RES | V_SU_RES)
+
+/* R_STATUS bits */
+#define V_BUSY (1 << 0) /* 1=HFC busy, limited register access */
+#define V_PROC (1 << 1) /* 1=HFC in processing phase */
+#define V_LOST_STA (1 << 3) /* 1=frames have been lost */
+#define V_PCM_INIT (1 << 4) /* 1=PCM init in progress */
+#define V_WAK_STA (1 << 5) /* state of WAKEUP pin wien V_WAK_EN=1 */
+#define V_MISC_IRQSTA (1 << 6) /* 1=misc interrupt has occurred */
+#define V_FR_IRQSTA (1 << 7) /* 1=fifo interrupt has occured */
+#define XHFC_INTS (V_MISC_IRQSTA | V_FR_IRQSTA)
+
+/* R_FIFO_BLx_IRQ bits */
+#define V_FIFOx_TX_IRQ (1 << 0) /* FIFO TX interrupt occurred */
+#define V_FIFOx_RX_IRQ (1 << 1) /* FIFO RX interrupt occurred */
+#define FIFOx_TXRX_IRQ (V_FIFOx_TX_IRQ | V_FIFOx_RX_IRQ)
+
+/* R_FILL_BLx bits */
+#define V_FILL_FIFOx_TX (1 << 0) /* TX FIFO reached V_THRES_TX level */
+#define V_FILL_FIFOx_RX (1 << 1) /* RX FIFO reached V_THRES_RX level */
+#define FILL_FIFOx_TXRX (V_FILL_FIFOx_TX | V_FILL_FIFOx_RX)
+
+/* R_MISC_IRQ / R_MISC_IRQMSK bits */
+#define V_SLP_IRQ (1 << 0) /* frame sync pulse flips */
+#define V_TI_IRQ (1 << 1) /* timer elapsed */
+#define V_PROC_IRQ (1 << 2) /* processing/non-processing transition */
+#define V_CI_IRQ (1 << 4) /* indication bits changed */
+#define V_WAK_IRQ (1 << 5) /* WAKEUP pin */
+#define V_MON_TX_IRQ (1 << 6) /* monitor byte can be written */
+#define V_MON_RX_IRQ (1 << 7) /* monitor byte received */
+
+/* R_SU_IRQ/R_SU_IRQMSK bits */
+#define V_SU0_IRQ (1 << 0) /* interrupt/mask port 1 */
+#define V_SU1_IRQ (1 << 1) /* interrupt/mask port 2 */
+#define V_SU2_IRQ (1 << 2) /* interrupt/mask port 3 */
+#define V_SU3_IRQ (1 << 3) /* interrupt/mask port 4 */
+
+/* R_IRQ_CTRL bits */
+#define V_FIFO_IRQ_EN (1 << 0) /* enable any unmasked FIFO IRQs */
+#define V_GLOB_IRQ_EN (1 << 3) /* enable any unmasked IRQs */
+#define V_IRQ_POL (1 << 4) /* 1=IRQ active high */
+
+/* R_BERT_WD_MD bits */
+#define V_BERT_ERR (1 << 3) /* 1=generate an error bit in BERT stream */
+#define V_AUTO_WD_RES (1 << 5) /* 1=automatically kick the watchdog */
+#define V_WD_RES (1 << 7) /* 1=kick the watchdog (bit auto clears) */
+
+/* R_TI_WD bits */
+#define V_EV_TS_SHIFT (0)
+#define V_EV_TS_MASK (0x0f)
+#define V_WD_TS_SHIFT (4)
+#define V_WD_TS_MASK (0xf0)
+
+/* A_FIFO_CTRL bits */
+#define V_FIFO_IRQMSK (1 << 0) /* 1=FIFO can generate interrupts */
+#define V_BERT_EN (1 << 1) /* 1=BERT data replaces FIFO data */
+#define V_MIX_IRQ (1 << 2) /* IRQ when 0=end of frame only, 1=also when Z1==Z2 */
+#define V_FR_ABO (1 << 3) /* 1=generate frame abort/frame abort detected */
+#define V_NO_CRC (1 << 4) /* 1=do not send CRC at end of frame */
+#define V_NO_REP (1 << 5) /* 1=frame deleted after d-chan contention */
+
+/* R_CLK_CFG bits */
+#define V_CLK_PLL (1 << 0) /* Sysclk select 0=OSC_IN, 1=PLL output */
+#define V_CLKO_HI (1 << 1) /* CLKOUT selection 0=PLL/8, 1=PLL */
+#define V_CLKO_PLL (1 << 2) /* CLKOUT source 0=divider or PLL input, 1=PLL output */
+#define V_PCM_CLK (1 << 5) /* 1=PCM clk = OSC, 0 = PCM clk is 2x OSC */
+#define V_CLKO_OFF (1 << 6) /* CLKOUT enable 0=enabled */
+#define V_CLK_F1 (1 << 7) /* PLL input pin 0=OSC_IN, 1=F1_1 */
+
+/* R_PCM_MD0 bits */
+#define V_PCM_MD (1 << 0) /* 1=PCM master */
+#define V_C4_POL (1 << 1) /* 1=F0IO sampled on rising edge of C4IO */
+#define V_F0_NEG (1 << 2) /* 1=negative polarity of F0IO */
+#define V_F0_LEN (1 << 3) /* 1=F0IO active for 2 C4IO clocks */
+#define V_PCM_IDX_SEL0 (0x0 << 4) /* reg15 = R_SL_SEL0 */
+#define V_PCM_IDX_SEL1 (0x1 << 4) /* reg15 = R_SL_SEL1 */
+#define V_PCM_IDX_SEL7 (0x7 << 4) /* reg15 = R_SL_SEL7 */
+#define V_PCM_IDX_MSS0 (0x8 << 4) /* reg15 = R_MSS0 */
+#define V_PCM_IDX_MD1 (0x9 << 4) /* reg15 = R_PCM_MD1 */
+#define V_PCM_IDX_MD2 (0xa << 4) /* reg15 = R_PCM_MD2 */
+#define V_PCM_IDX_MSS1 (0xb << 4) /* reg15 = R_MSS1 */
+#define V_PCM_IDX_SH0L (0xc << 4) /* reg15 = R_SH0L */
+#define V_PCM_IDX_SH0H (0xd << 4) /* reg15 = R_SH0H */
+#define V_PCM_IDX_SH1L (0xe << 4) /* reg15 = R_SH1L */
+#define V_PCM_IDX_SH1H (0xf << 4) /* reg15 = R_SH1H */
+#define V_PCM_IDX_MASK (0xf0)
+
+/* R_PCM_MD1 bits */
+#define V_PLL_ADJ_00 (0x0 << 2) /* adj 4 times by 0.5 system clk cycles */
+#define V_PLL_ADJ_01 (0x1 << 2) /* adj 3 times by 0.5 system clk cycles */
+#define V_PLL_ADJ_10 (0x2 << 2) /* adj 2 times by 0.5 system clk cycles */
+#define V_PLL_ADJ_11 (0x3 << 2) /* adj 1 time by 0.5 system clk cycles */
+#define V_PCM_DR_2048 (0x0 << 4) /* 2.048Mbps, 32 timeslots */
+#define V_PCM_DR_4096 (0x1 << 4) /* 4.096Mbps, 64 timeslots */
+#define V_PCM_DR_8192 (0x2 << 4) /* 8.192Mbps, 128 timeslots */
+#define V_PCM_DR_075 (0x3 << 4) /* 0.75Mbps, 12 timeslots */
+#define V_PCM_LOOP (1 << 6) /* 1=internal loopback */
+#define V_PCM_SMPL (1 << 7) /* 0=sample at middle of bit cell, 1=sample at 3/4 point */
+#define V_PLL_ADJ_MASK (0x3 << 2)
+#define V_PCM_DR_MASK (0x3 << 4)
+
+/* R_PCM_MD2 bits */
+#define V_SYNC_OUT1 (1 << 1) /* SYNC_O source 0=SYNC_I or FSX_RX, 1=512kHz from PLL or multiframe */
+#define V_SYNC_SRC (1 << 2) /* 0=line interface, 1=SYNC_I */
+#define V_SYNC_OUT2 (1 << 3) /* SYNC_O source 0=rx sync or FSC_RX 1=SYNC_I or received superframe */
+#define V_C2O_EN (1 << 4) /* C2IO output enable (when V_C2I_EN=0) */
+#define V_C2I_EN (1 << 5) /* PCM controller clock source 0=C4IO, 1=C2IO */
+#define V_PLL_ICR (1 << 6) /* 0=reduce PCM frame time, 1=increase */
+#define V_PLL_MAN (1 << 7) /* 0=auto, 1=manual */
+
+/* A_SL_CFG bits */
+#define V_CH_SDIR (1 << 0) /* 1=HFC channel receives data from PCM TS */
+#define V_ROUT_TX_DIS (0x0 << 6) /* disabled, output disabled */
+#define V_ROUT_TX_LOOP (0x1 << 6) /* internally looped, output disabled */
+#define V_ROUT_TX_STIO1 (0x2 << 6) /* output data to STIO1 */
+#define V_ROUT_TX_STIO2 (0x3 << 6) /* output data to STIO2 */
+#define V_ROUT_RX_DIS (0x0 << 6) /* disabled, input data ignored */
+#define V_ROUT_RX_LOOP (0x1 << 6) /* internally looped, input data ignored */
+#define V_ROUT_RX_STIO2 (0x2 << 6) /* channel data comes from STIO1 */
+#define V_ROUT_RX_STIO1 (0x3 << 6) /* channel data comes from STIO2 */
+#define V_CH_SNUM_SHIFT (1)
+#define V_CH_SNUM_MASK (31 << 1)
+
+/* A_CON_HDLC bits */
+#define V_IFF (1 << 0) /* Inter-Frame Fill: 0=0x7e, 1=0xff */
+#define V_HDLC_TRP (1 << 1) /* 0=HDLC mode, 1=transparent */
+#define V_TRP_DISABLED (0x0 << 2) /* FIFO disabled, no interrupt */
+#define V_TRP_IRQ_64 (0x1 << 2) /* FIFO enabled, int @ 8 bytes */
+#define V_TRP_IRQ_128 (0x2 << 2) /* FIFO enabled, int @ 16 bytes */
+#define V_TRP_IRQ_256 (0x3 << 2) /* FIFO enabled, int @ 32 bytes */
+#define V_TRP_IRQ_512 (0x4 << 2) /* FIFO enabled, int @ 64 bytes */
+#define V_TRP_IRQ_1024 (0x5 << 2) /* FIFO enabled, int @ 128 bytes */
+#define V_TRP_NO_IRQ (0x7 << 2) /* FIFO enabled, no interrupt */
+#define V_HDLC_IRQ (0x3 << 2) /* HDLC: FIFO enabled, interrupt at end of frame or when FIFO > 16 byte boundary (Mixed IRQ) */
+#define V_DATA_FLOW_000 (0x0 << 5) /* see A_CON_HDLC reg description in datasheet */
+#define V_DATA_FLOW_001 (0x1 << 5) /* see A_CON_HDLC reg description in datasheet */
+#define V_DATA_FLOW_010 (0x2 << 5) /* see A_CON_HDLC reg description in datasheet */
+#define V_DATA_FLOW_011 (0x3 << 5) /* see A_CON_HDLC reg description in datasheet */
+#define V_DATA_FLOW_100 (0x4 << 5) /* see A_CON_HDLC reg description in datasheet */
+#define V_DATA_FLOW_101 (0x5 << 5) /* see A_CON_HDLC reg description in datasheet */
+#define V_DATA_FLOW_110 (0x6 << 5) /* see A_CON_HDLC reg description in datasheet */
+#define V_DATA_FLOW_111 (0x7 << 5) /* see A_CON_HDLC reg description in datasheet */
+
+/* R_FIFO bits */
+#define V_FIFO_DIR (1 << 0) /* 1=RX FIFO data */
+#define V_REV (1 << 7) /* 1=MSB first */
+#define V_FIFO_NUM_SHIFT (1)
+#define V_FIFO_NUM_MASK (0x3e)
+
+/* A_CHANNEL bits */
+#define V_CH_FDIR (1 << 0) /* 1=HFC chan for RX data */
+#define V_CH_FNUM_SHIFT (1)
+#define V_CH_FNUM_MASK (0x3e)
+
+/* R_SLOT bits */
+#define V_SL_DIR (1 << 0) /* 1=timeslot will RX PCM data from bus */
+#define V_SL_NUM_SHIFT (1)
+#define V_SL_NUM_MASK (0xfe)
+
+/* A_INC_RES_FIFO bits */
+#define V_INC_F (1 << 0) /* 1=increment FIFO F-counter (bit auto-clears) */
+#define V_RES_FIFO (1 << 1) /* 1=reset FIFO (bit auto-clears) */
+#define V_RES_LOST (1 << 2) /* 1=reset LOST error (bit auto-clears) */
+#define V_RES_FIFO_ERR (1 << 3) /* 1=reset FIFO error (bit auto-clears), check V_ABO_DONE before setting */
+
+/* R_FIFO_MD bits */
+#define V_FIFO_MD_00 (0x0 << 0) /* 16 FIFOs, 64 bytes TX/RX, 128 TX or RX if V_UNIDIR_RX */
+#define V_FIFO_MD_01 (0x1 << 0) /* 8 FIFOs, 128 bytes TX/RX, 256 TX or RX if V_UNIDIR_RX */
+#define V_FIFO_MD_10 (0x2 << 0) /* 4 FIFOs, 256 bytes TX/RX, invalid mode with V_UNIDIR_RX */
+#define V_DF_MD_SM (0x0 << 2) /* simple data flow mode */
+#define V_DF_MD_CSM (0x1 << 2) /* channel select mode */
+#define V_DF_MD_FSM (0x3 << 2) /* FIFO sequence mode */
+#define V_UNIDIR_MD (1 << 4) /* 1=unidirectional FIFO mode */
+#define V_UNIDIR_RX (1 << 5) /* 1=unidirection FIFO is RX */
+
+/* A_SUBCH_CFG bits */
+#define V_BIT_CNT_8BIT (0) /* process 8 bits */
+#define V_BIT_CNT_1BIT (1) /* process 1 bit */
+#define V_BIT_CNT_2BIT (2) /* process 2 bits */
+#define V_BIT_CNT_3BIT (3) /* process 3 bits */
+#define V_BIT_CNT_4BIT (4) /* process 4 bits */
+#define V_BIT_CNT_5BIT (5) /* process 5 bits */
+#define V_BIT_CNT_6BIT (6) /* process 6 bits */
+#define V_BIT_CNT_7BIT (7) /* process 7 bits */
+#define V_LOOP_FIFO (1 << 6) /* loop FIFO data */
+#define V_INV_DATA (1 << 7) /* invert FIFO data */
+#define V_START_BIT_SHIFT (3)
+#define V_START_BIT_MASK (0x38)
+
+/* R_SU_SYNC bits */
+#define V_SYNC_SEL_PORT0 (0x0 << 0) /* sync to TE port 0 */
+#define V_SYNC_SEL_PORT1 (0x1 << 0) /* sync to TE port 1 */
+#define V_SYNC_SEL_PORT2 (0x2 << 0) /* sync to TE port 2 */
+#define V_SYNC_SEL_PORT3 (0x3 << 0) /* sync to TE port 3 */
+#define V_SYNC_SEL_SYNCI (0x4 << 0) /* sync to SYNC_I */
+#define V_MAN_SYNC (1 << 3) /* 1=manual sync mode */
+#define V_AUTO_SYNCI (1 << 4) /* 1=SYNC_I used if FSC_RX not found */
+#define V_D_MERGE_TX (1 << 5) /* 1=all 4 dchan taken from one byte in TX */
+#define V_E_MERGE_RX (1 << 6) /* 1=all 4 echan combined in RX direction */
+#define V_D_MERGE_RX (1 << 7) /* 1=all 4 dchan combined in RX direction */
+#define V_SYNC_SEL_MASK (0x03)
+
+/* A_SU_WR_STA bits */
+#define V_SU_SET_STA_MASK (0x0f)
+#define V_SU_LD_STA (1 << 4) /* 1=force SU_SET_STA mode, must be manually cleared 6us later */
+#define V_SU_ACT_NOP (0x0 << 5) /* NOP */
+#define V_SU_ACT_DEACTIVATE (0x2 << 5) /* start deactivation. auto-clears */
+#define V_SU_ACT_ACTIVATE (0x3 << 5) /* start activation. auto-clears. */
+#define V_SET_G2_G3 (1 << 7) /* 1=auto G2->G3 in NT mode. auto-clears after transition. */
+
+/* A_SU_RD_STA */
+#define V_SU_STA_MASK (0x0f)
+#define V_SU_FR_SYNC (1 << 4) /* 1=synchronized */
+#define V_SU_T2_EXP (1 << 5) /* 1=T2 expired (NT only) */
+#define V_SU_INFO0 (1 << 6) /* 1=INFO0 */
+#define V_G2_G3 (1 << 7) /* 1=allows G2->G3 (NT only, auto-clears) */
+
+/* A_SU_CLK_DLY bits */
+#define V_SU_DLY_MASK (0x0f)
+#define V_SU_SMPL_MASK (0xf0)
+#define V_SU_SMPL_SHIFT (4)
+
+/* A_SU_CTRL0 bits */
+#define V_B1_TX_EN (1 << 0) /* 1=B1-channel transmit */
+#define V_B2_TX_EN (1 << 1) /* 1=B2-channel transmit */
+#define V_SU_MD (1 << 2) /* 0=TE, 1=NT */
+#define V_ST_D_LPRIO (1 << 3) /* D-Chan priority 0=high, 1=low */
+#define V_ST_SQ_EN (1 << 4) /* S/Q bits transmit (1=enabled) */
+#define V_SU_TST_SIG (1 << 5) /* 1=transmit test signal */
+#define V_ST_PU_CTRL (1 << 6) /* 1=enable end of pulse control */
+#define V_SU_STOP (1 << 7) /* 1=power down */
+
+/* A_SU_CTRL1 bits */
+#define V_G2_G3_EN (1 << 0) /* 1=G2->G3 allowed without V_SET_G2_G3 */
+#define V_D_RES (1 << 2) /* 1=D-chan reset */
+#define V_ST_E_IGNO (1 << 3) /* TE:1=ignore Echan, NT:should always be 1. */
+#define V_ST_E_LO (1 << 4) /* NT only: 1=force Echan low */
+#define V_BAC_D (1 << 6) /* 1=BAC bit controls Dchan TX */
+#define V_B12_SWAP (1 << 7) /* 1=swap B1/B2 */
+
+/* A_SU_CTRL2 bits */
+#define V_B1_RX_EN (1 << 0) /* 1=enable B1 RX */
+#define V_B2_RX_EN (1 << 1) /* 1=enable B2 RX */
+#define V_MS_SSYNC2 (1 << 2) /* 0 normally, see datasheet */
+#define V_BAC_S_SEL (1 << 3) /* see datasheet */
+#define V_SU_SYNC_NT (1 << 4) /* 0=sync pulses generated only in TE, 1=in TE and NT */
+#define V_SU_2KHZ (1 << 5) /* 0=96kHz test tone, 1=2kHz */
+#define V_SU_TRI (1 << 6) /* 1=tristate output buffer */
+#define V_SU_EXCHG (1 << 7) /* 1=invert output drivers */
+
+/* R_IRQ_OVIEW bits */
+#define V_FIFO_BL0_IRQ (1 << 0) /* FIFO 0-3 IRQ */
+#define V_FIFO_BL1_IRQ (1 << 1) /* FIFO 4-7 IRQ */
+#define V_FIFO_BL2_IRQ (1 << 2) /* FIFO 8-11 IRQ */
+#define V_FIFO_BL3_IRQ (1 << 3) /* FIFO 12-15 IRQ */
+#define V_MISC_IRQ (1 << 4) /* R_MISC_IRQ changed */
+#define V_STUP_IRQ (1 << 5) /* R_SU_IRQ changed */
+#define V_FIFO_BLx_IRQ (V_FIFO_BL0_IRQ | V_FIFO_BL1_IRQ | V_FIFO_BL2_IRQ | V_FIFO_BL3_IRQ)
+
+/* R_FIRST_FIFO bits */
+#define V_FIRST_FIFO_NUM_SHIFT (1)
+
+/* A_FIFO_SEQ bits */
+#define V_NEXT_FIFO_NUM_SHIFT (1)
+#define V_SEQ_END (1 << 6)
+
+#if (DAHDI_CHUNKSIZE != 8)
+#error Sorry, the b400m does not support chunksize != 8
+#endif
+
+/* general debug messages */
+#define DEBUG_GENERAL (1 << 0)
+/* emit DTMF detector messages */
+#define DEBUG_DTMF (1 << 1)
+/* emit register read/write, but only if the kernel's DEBUG is defined */
+#define DEBUG_REGS (1 << 2)
+/* emit file operation messages */
+#define DEBUG_FOPS (1 << 3)
+#define DEBUG_ECHOCAN (1 << 4)
+/* S/T state machine */
+#define DEBUG_ST_STATE (1 << 5)
+/* HDLC controller */
+#define DEBUG_HDLC (1 << 6)
+/* alarm changes */
+#define DEBUG_ALARM (1 << 7)
+/* Timing related changes */
+#define DEBUG_TIMING (1 << 8)
+
+#define DBG (bri_debug & DEBUG_GENERAL)
+#define DBG_DTMF (bri_debug & DEBUG_DTMF)
+#define DBG_REGS (bri_debug & DEBUG_REGS)
+#define DBG_FOPS (bri_debug & DEBUG_FOPS)
+#define DBG_EC (bri_debug & DEBUG_ECHOCAN)
+#define DBG_ST (bri_debug & DEBUG_ST_STATE)
+#define DBG_HDLC (bri_debug & DEBUG_HDLC)
+#define DBG_ALARM (bri_debug & DEBUG_ALARM)
+#define DBG_TIMING (bri_debug & DEBUG_TIMING)
+
+#define DBG_SPANFILTER ((1 << bspan->port) & bri_spanfilter)
+
+/* #define HARDHDLC_RX */
+
+/* Any static variables not initialized by default should be set
+ * to 0 automatically */
+int bri_debug;
+int bri_spanfilter = 9;
+int bri_teignorered = 1;
+int bri_alarmdebounce;
+int bri_persistentlayer1;
+int timingcable;
+
+static int synccard = -1;
+static int syncspan = -1;
+
+static const int TIMER_3_MS = 30000;
+
+#define b4_info(b4, format, arg...) \
+ dev_info(&(b4)->wc->vb.pdev->dev , format , ## arg)
+
+/* if defined, swaps ports 2 and 3 on the B400M module */
+#define SWAP_PORTS
+
+#define XHFC_T1 0
+#define XHFC_T2 1
+#define XHFC_T3 2
+/* T4 - Special timer, used for debug purposes for monitoring of L1 state during activation attempt. */
+#define XHFC_T4 3
+
+#define B400M_CHANNELS_PER_SPAN 3 /* 2 B-channels and 1 D-Channel for each BRI span */
+#define B400M_HDLC_BUF_LEN 128 /* arbitrary, just the max # of byts we will send to DAHDI per call */
+
+#define get_F(f1, f2, flen) { \
+ f1 = hfc_readcounter8(b4, A_F1); \
+ f2 = hfc_readcounter8(b4, A_F2); \
+ flen = f1 - f2; \
+ \
+ if (flen < 0) \
+ flen += (HFC_FMAX - HFC_FMIN) + 1; \
+ }
+
+#define get_Z(z1, z2, zlen) { \
+ z1 = hfc_readcounter8(b4, A_Z1); \
+ z2 = hfc_readcounter8(b4, A_Z2); \
+ zlen = z1 - z2; \
+ \
+ if (zlen < 0) \
+ zlen += (HFC_ZMAX - HFC_ZMIN) + 1; \
+ }
+
+struct b400m_span {
+ struct b400m *parent;
+ unsigned int port; /* which S/T port this span belongs to */
+
+ int oldstate; /* old state machine state */
+ int newalarm; /* alarm to send to DAHDI once alarm timer expires */
+ unsigned long alarmtimer;
+
+ unsigned int te_mode:1; /* 1=TE, 0=NT */
+ unsigned int term_on:1; /* 1= 390 ohm termination enable, 0 = disabled */
+ unsigned long hfc_timers[B400M_CHANNELS_PER_SPAN+1]; /* T1, T2, T3 */
+ int hfc_timer_on[B400M_CHANNELS_PER_SPAN+1]; /* 1=timer active */
+ int fifos[B400M_CHANNELS_PER_SPAN]; /* B1, B2, D <--> host fifo numbers */
+
+ /* HDLC controller fields */
+ struct dahdi_span *span; /* pointer to the actual dahdi_span */
+ struct dahdi_chan *sigchan; /* pointer to the signalling channel for this span */
+ int sigactive; /* nonzero means we're in the middle of sending an HDLC frame */
+ atomic_t hdlc_pending; /* hdlc_hard_xmit() increments, hdlc_tx_frame() decrements */
+ unsigned int frames_out;
+ unsigned int frames_in;
+
+ struct fasthdlc_state rxhdlc;
+ int infcs;
+ int f_sz;
+};
+
+/* This structure exists one per module */
+struct b400m {
+ char name[10];
+ int position; /* module position in carrier board */
+ int b400m_no; /* 0-based B400M number in system */
+
+ struct wctdm *wc; /* parent structure */
+
+ spinlock_t reglock; /* lock for all register accesses */
+
+ unsigned long ticks;
+
+ unsigned long fifo_en_rxint; /* each bit is the RX int enable for that FIFO */
+ unsigned long fifo_en_txint; /* each bit is the TX int enable for that FIFO */
+ unsigned char fifo_irqstatus; /* top-half ORs in new interrupts, bottom-half ANDs them out */
+
+ int setsyncspan; /* Span reported from HFC for sync on this card */
+ int reportedsyncspan; /* Span reported from HFC for sync on this card */
+
+ unsigned int running:1; /* interrupts are enabled */
+ unsigned int shutdown:1; /* 1=bottom half doesn't process anything, just returns */
+ unsigned int inited:1; /* FIXME: temporary */
+ unsigned int misc_irq_mask:1; /* 1= interrupt is valid */
+
+ struct b400m_span spans[4]; /* Individual spans */
+
+ struct workqueue_struct *xhfc_ws;
+ struct work_struct xhfc_wq;
+
+ unsigned char irq_oview; /* copy of r_irq_oview */
+ unsigned char fifo_fill; /* copy of R_FILL_BL0 */
+
+ struct semaphore regsem; /* lock for low-level register accesses */
+ struct semaphore fifosem; /* lock for fifo accesses */
+
+ unsigned char lastreg; /* last XHFC register accessed (used to speed up multiple address "hits" */
+};
+
+static void hfc_start_st(struct b400m_span *s);
+static void hfc_stop_st(struct b400m_span *s);
+
+void b400m_set_dahdi_span(struct b400m *b4, int spanno,
+ struct dahdi_span *span)
+{
+ span->pvt = &b4->spans[spanno];
+ b4->spans[spanno].span = span;
+}
+
+static inline void flush_hw(void)
+{
+}
+
+static int xhfc_getreg(struct wctdm *wc, int card,
+ int addr, u8 *lastreg)
+{
+ int x;
+
+ if (*lastreg != (unsigned char)addr) {
+ wctdm_setreg(wc, card, 0x60, addr);
+ *lastreg = (unsigned char)addr;
+ }
+ x = wctdm_getreg(wc, card, 0x80);
+ return x;
+}
+
+static int xhfc_setreg(struct wctdm *wc, int card, int addr,
+ int val, u8 *lastreg)
+{
+ if (*lastreg != (unsigned char)addr) {
+ wctdm_setreg(wc, card, 0x60, addr);
+ *lastreg = (unsigned char)addr;
+ }
+ return wctdm_setreg(wc, card, 0x00, val);
+}
+
+static int b400m_getreg(struct b400m *b4, int addr)
+{
+ int x;
+
+ if (down_trylock(&b4->regsem)) {
+ if (down_interruptible(&b4->regsem)) {
+ b4_info(b4, "b400m_getreg(0x%02x) interrupted\n",
+ addr);
+ return -1;
+ }
+ }
+
+ x = xhfc_getreg(b4->wc, b4->position, addr, &b4->lastreg);
+ up(&b4->regsem);
+
+ return x;
+}
+
+static int b400m_setreg(struct b400m *b4, const int addr, const int val)
+{
+ int x;
+
+ if (down_trylock(&b4->regsem)) {
+ if (down_interruptible(&b4->regsem)) {
+ b4_info(b4, "b400m_setreg(0x%02x -> 0x%02x) "
+ "interrupted\n", val, addr);
+ return -1;
+ }
+ }
+
+ x = xhfc_setreg(b4->wc, b4->position, addr, val, &b4->lastreg);
+ up(&b4->regsem);
+
+ return x;
+}
+
+
+/*
+ * A lot of the registers in the XHFC are indexed.
+ * this function sets the index, and then writes to the indexed register.
+ */
+static void b400m_setreg_ra(struct b400m *b4, u8 r, u8 rd, u8 a, u8 ad)
+{
+ if (down_trylock(&b4->regsem)) {
+ if (down_interruptible(&b4->regsem)) {
+ b4_info(b4, "b400m_setreg_ra(0x%02x -> 0x%02x) "
+ "interrupted\n", a, ad);
+ return;
+ }
+ }
+
+ xhfc_setreg(b4->wc, b4->position, r, rd, &b4->lastreg);
+ xhfc_setreg(b4->wc, b4->position, a, ad, &b4->lastreg);
+ up(&b4->regsem);
+}
+
+static u8 b400m_getreg_ra(struct b400m *b4, u8 r, u8 rd, u8 a)
+{
+ unsigned char res;
+ if (down_trylock(&b4->regsem)) {
+ if (down_interruptible(&b4->regsem)) {
+ b4_info(b4, "b400m_getreg_ra(0x%02x) interrupted\n",
+ a);
+ return -1;
+ }
+ }
+
+ xhfc_setreg(b4->wc, b4->position, r, rd, &b4->lastreg);
+ res = xhfc_getreg(b4->wc, b4->position, a, &b4->lastreg);
+ up(&b4->regsem);
+ return res;
+}
+
+
+/*
+ * XHFC-4S GPIO routines
+ *
+ * the xhfc doesn't use its gpio for anything. :-)
+ */
+
+/*
+ * initialize XHFC GPIO.
+ * GPIO 0-7 are output, low (unconnected, or used for their primary function).
+ */
+static void hfc_gpio_init(struct b400m *b4)
+{
+ /* GPIO0..3,7 are GPIO, 4,5,6 primary function */
+ b400m_setreg(b4, R_GPIO_SEL, 0x8f);
+ /* GPIO0..7 drivers set low */
+ b400m_setreg(b4, R_GPIO_OUT0, 0x00);
+ /* GPIO0..7 drivers enabled */
+ b400m_setreg(b4, R_GPIO_EN0, 0xff);
+ /* all other GPIO set to primary function */
+ b400m_setreg(b4, R_GPIO_SEL_BL, 0x00);
+
+}
+
+
+/* performs a register write and then waits for the HFC "busy" bit to clear
+ * NOTE: doesn't actually read status, since busy bit is 1us typically, and
+ * we're much, much slower than that. */
+static void hfc_setreg_waitbusy(struct b400m *b4, const unsigned int reg,
+ const unsigned int val)
+{
+ b400m_setreg(b4, reg, val);
+}
+
+/*
+ * reads an 8-bit register over over and over until the same value is read
+ * twice, then returns that value.
+ */
+static unsigned char hfc_readcounter8(struct b400m *b4, const unsigned int reg)
+{
+ unsigned char r1, r2;
+ unsigned long maxwait = 1048576;
+
+ do {
+ r1 = b400m_getreg(b4, reg);
+ r2 = b400m_getreg(b4, reg);
+ } while ((r1 != r2) && maxwait--);
+
+ if (!maxwait) {
+ if (printk_ratelimit()) {
+ dev_warn(&b4->wc->vb.pdev->dev,
+ "hfc_readcounter8(reg 0x%02x) timed out " \
+ "waiting for data to settle!\n", reg);
+ }
+ }
+
+ return r1;
+}
+
+/* performs a soft-reset of the HFC-4S. */
+static void hfc_reset(struct b400m *b4)
+{
+ unsigned long start;
+ int TIMEOUT = HZ; /* 1s */
+
+ /* Set the FIFOs to 8 128 bytes FIFOs, bidirectional, and set up the
+ * flow controller for channel select mode. */
+ /* Note, this reg has to be set *before* the SW reset */
+ b400m_setreg(b4, R_FIFO_MD, V_FIFO_MD_01 | V_DF_MD_FSM);
+
+ msleep(1); /* wait a bit for clock to settle */
+/* reset everything, wait 100ms, then allow the XHFC to come out of reset */
+ b400m_setreg(b4, R_CIRM, V_SRES);
+ flush_hw();
+
+ wait_just_a_bit(HZ/10);
+
+ b400m_setreg(b4, R_CIRM, 0x00);
+ flush_hw();
+
+ /* wait for XHFC to come out of reset. */
+ start = jiffies;
+ while (b400m_getreg(b4, R_STATUS) & (V_BUSY | V_PCM_INIT)) {
+ if (time_after(jiffies, start + TIMEOUT)) {
+ b4_info(b4, "hfc_reset() Module won't come out of "
+ "reset... continuing.\n");
+ break;
+ }
+ };
+
+ /* Disable the output clock pin, and also the PLL (it's not needed) */
+ b400m_setreg(b4, R_CTRL, 0x00);
+}
+
+static void hfc_enable_fifo_irqs(struct b400m *b4)
+{
+ b400m_setreg(b4, R_IRQ_CTRL, V_FIFO_IRQ_EN | V_GLOB_IRQ_EN);
+ flush_hw();
+}
+
+static void hfc_enable_interrupts(struct b400m *b4)
+{
+ b4->running = 1;
+
+ /* mask all misc interrupts */
+ b4->misc_irq_mask = 0x01;
+ b400m_setreg(b4, R_MISC_IRQMSK, b4->misc_irq_mask);
+
+/* clear any pending interrupts */
+ b400m_getreg(b4, R_STATUS);
+ b400m_getreg(b4, R_MISC_IRQ);
+ b400m_getreg(b4, R_FIFO_BL0_IRQ);
+ b400m_getreg(b4, R_FIFO_BL1_IRQ);
+ b400m_getreg(b4, R_FIFO_BL2_IRQ);
+ b400m_getreg(b4, R_FIFO_BL3_IRQ);
+
+ hfc_enable_fifo_irqs(b4);
+}
+
+static inline void hfc_reset_fifo(struct b400m *b4)
+{
+ hfc_setreg_waitbusy(b4, A_INC_RES_FIFO,
+ V_RES_FIFO | V_RES_LOST | V_RES_FIFO_ERR);
+}
+
+static void hfc_setup_fifo(struct b400m *b4, int fifo)
+{
+ if (fifo < 4) {
+ /* TX */
+ hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
+ b400m_setreg(b4, A_CON_HDLC,
+ V_HDLC_IRQ | V_DATA_FLOW_000 | V_IFF);
+ hfc_reset_fifo(b4);
+
+ /* RX */
+ hfc_setreg_waitbusy(b4, R_FIFO,
+ (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
+ b400m_setreg(b4, A_CON_HDLC,
+ V_HDLC_IRQ | V_DATA_FLOW_000 | V_IFF);
+ hfc_reset_fifo(b4);
+ } else {
+ /* TX */
+ hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
+ b400m_setreg(b4, A_CON_HDLC,
+ V_HDLC_TRP | V_TRP_NO_IRQ | V_DATA_FLOW_110);
+ hfc_reset_fifo(b4);
+
+ /* RX */
+ hfc_setreg_waitbusy(b4, R_FIFO,
+ (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
+ b400m_setreg(b4, A_CON_HDLC,
+ V_HDLC_TRP | V_TRP_NO_IRQ | V_DATA_FLOW_110);
+ hfc_reset_fifo(b4);
+ }
+}
+
+static void hfc_setup_pcm(struct b400m *b4, int port)
+{
+ int physport;
+ int offset;
+ int hfc_chan;
+ int ts;
+#ifdef HARDHDLC_RX
+ const int MAX_OFFSET = 2;
+#else
+ const int MAX_OFFSET = 3;
+#endif
+
+#ifdef SWAP_PORTS
+ /* swap the middle ports */
+ physport = (1 == port) ? 2 : (2 == port) ? 1 : port;
+#else
+ physport = port;
+#endif
+
+ for (offset = 0; offset < MAX_OFFSET; offset++) {
+ hfc_chan = (port * 4) + offset;
+ ts = (physport * 3) + offset;
+ ts += (b4->b400m_no * 12);
+ b400m_setreg(b4, R_SLOT, (ts << V_SL_NUM_SHIFT));
+ b400m_setreg(b4, A_SL_CFG,
+ (hfc_chan << V_CH_SNUM_SHIFT) |
+ V_ROUT_TX_STIO2);
+
+ if (offset < 2) {
+ b400m_setreg(b4, R_SLOT,
+ (ts << V_SL_NUM_SHIFT) |
+ V_SL_DIR);
+ b400m_setreg(b4, A_SL_CFG,
+ (hfc_chan << V_CH_SNUM_SHIFT) |
+ V_ROUT_RX_STIO1 | V_CH_SDIR);
+ }
+ }
+}
+
+#ifdef SWAP_PORTS
+#ifdef HARDHDLC_RX
+static const int fifos[24] = {0, 0, 2, 2, 1, 1, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6,
+ 5, 5, 5, 5, 7, 7, 7, 7 };
+#else
+static const int fifos[24] = {0, 4, 2, 6, 1, 5, 3, 7, 4, 4, 4, 4, 6, 6, 6, 6,
+ 5, 5, 5, 5, 7, 7, 7, 7 };
+#endif
+static const int hfc_chans[12] = {2, 10, 6, 14, 0, 1, 8, 9, 4, 5, 12, 13 };
+#else
+#ifdef HARDHDLC_RX
+static const int fifos[24] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5,
+ 6, 6, 6, 6, 7, 7, 7, 7 };
+#else
+static const int fifos[24] = {0, 4, 1, 5, 2, 6, 3, 7, 4, 4, 4, 4, 5, 5, 5, 5,
+ 6, 6, 6, 6, 7, 7, 7, 7 };
+#endif
+static const int hfc_chans[12] = { 2, 6, 10, 14, 0, 1, 4, 5, 8, 9, 12, 13 };
+#endif
+
+static void hfc_setup_fifo_arrays(struct b400m *b4, int fifo)
+{
+ int val;
+ if (!fifo) {
+ val = (fifos[fifo] << V_FIRST_FIFO_NUM_SHIFT) | (fifo & 1);
+ b400m_setreg(b4, R_FIRST_FIFO, val);
+ } else {
+#ifdef HARDHDLC_RX
+ val = (fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) | (fifo & 1);
+#else
+ val = (fifo < 8) ? (fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) :
+ (fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) |
+ (fifo&1);
+#endif
+ b400m_setreg(b4, A_FIFO_SEQ, val);
+ }
+
+ b400m_setreg(b4, R_FSM_IDX, fifo);
+ val = (fifo < 8) ? (hfc_chans[fifo>>1] << V_CH_FNUM_SHIFT) :
+ (hfc_chans[fifo>>1] << V_CH_FNUM_SHIFT) |
+ (fifo & 1);
+
+ b400m_setreg(b4, A_CHANNEL, val);
+ b400m_setreg(b4, A_SUBCH_CFG, 0x02);
+}
+
+static void hfc_setup_fsm(struct b400m *b4)
+{
+ int chan, fifo, port, offset;
+#ifdef SWAP_PORTS
+ const int chan_to_fifo[12] = { 4, 4, 0, 6, 6, 2, 5, 5, 1, 7, 7, 3 };
+#else
+ const int chan_to_fifo[12] = { 4, 4, 0, 5, 5, 1, 6, 6, 2, 7, 7, 3 };
+#endif
+
+ for (port = 0; port < 4; port++) {
+ for (offset = 0; offset < 3; offset++) {
+ b4->spans[port].fifos[offset] =
+ chan_to_fifo[(port * 3) + offset];
+ }
+ }
+
+ for (chan = 0; chan < ARRAY_SIZE(fifos); chan++)
+ hfc_setup_fifo_arrays(b4, chan);
+
+ b400m_setreg(b4, A_FIFO_SEQ, V_SEQ_END);
+
+ for (fifo = 0; fifo < 8; fifo++)
+ hfc_setup_fifo(b4, fifo);
+
+ for (port = 0; port < 4; port++)
+ hfc_setup_pcm(b4, port);
+}
+
+/* takes a read/write fifo pair and optionally resets it, optionally enabling
+ * the rx/tx interrupt */
+static void hfc_reset_fifo_pair(struct b400m *b4, int fifo,
+ int reset, int force_no_irq)
+{
+ unsigned char b;
+
+ if (down_interruptible(&b4->fifosem)) {
+ b4_info(b4, "Unable to retrieve fifo sem\n");
+ return;
+ }
+ b = (!force_no_irq && b4->fifo_en_txint & (1 << fifo)) ?
+ V_FIFO_IRQMSK : 0;
+ hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
+
+ if (fifo < 4)
+ b |= V_MIX_IRQ;
+
+ b400m_setreg(b4, A_FIFO_CTRL, b);
+
+ if (reset)
+ hfc_reset_fifo(b4);
+
+ b = (!force_no_irq && b4->fifo_en_rxint & (1 << fifo)) ?
+ V_FIFO_IRQMSK : 0;
+ hfc_setreg_waitbusy(b4, R_FIFO,
+ (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
+
+ if (fifo < 4)
+ b |= V_MIX_IRQ;
+
+ b400m_setreg(b4, A_FIFO_CTRL, b);
+
+ if (reset)
+ hfc_reset_fifo(b4);
+
+ up(&b4->fifosem);
+}
+
+static void xhfc_set_sync_src(struct b400m *b4, int port)
+{
+ int b;
+
+ /* -2 means we need to go back and try again later */
+ if (port == -2)
+ return;
+
+ if (port == b4->setsyncspan)
+ return;
+ else
+ b4->setsyncspan = port;
+
+ b4_info(b4, "xhfc_set_sync_src - modpos %d: setting sync to "
+ "be port %d\n", b4->position, port);
+
+ if (port == -1) /* automatic */
+ b = 0;
+ else {
+#ifdef SWAP_PORTS
+ port = (1 == port) ? 2 : (2 == port) ? 1 : port;
+#endif
+ b = (port & V_SYNC_SEL_MASK) | V_MAN_SYNC;
+ }
+
+ b400m_setreg(b4, R_SU_SYNC, b);
+}
+
+static void wctdm_change_card_sync_src(struct wctdm *wc, int newsrc, int master)
+{
+ int newctlreg;
+
+ newctlreg = wc->ctlreg;
+
+ if (master)
+ newctlreg |= (1 << 5);
+ else
+ newctlreg &= ~(1 << 5);
+
+ newctlreg &= 0xfc;
+
+ newctlreg |= newsrc;
+
+ if (DBG_TIMING) {
+ dev_info(&wc->vb.pdev->dev,
+ "Final ctlreg before swap: %02x\n", newctlreg);
+ }
+
+ wc->ctlreg = newctlreg;
+ wc->oldsync = newsrc;
+
+ msleep(10);
+}
+
+static void wctdm_change_system_sync_src(int oldsync, int oldspan,
+ int newsync, int newspan)
+{
+ struct wctdm *wc;
+ struct wctdm *oldsyncwc = NULL, *newsyncwc = NULL;
+ int newspot;
+ int i;
+ int max_latency = 0;
+
+ if (oldsync > -1)
+ oldsyncwc = ifaces[oldsync];
+
+ if (newsync > -1)
+ newsyncwc = ifaces[newsync];
+
+ if (newsync == -1) {
+ BUG_ON(!ifaces[0]);
+
+ newsyncwc = ifaces[0];
+ newsync = 0;
+ }
+
+ newspot = (-1 == newspan) ? 0 : 2 | (newspan >> 2);
+
+ if ((oldsync == newsync) && (oldspan == newspan)) {
+ dev_info(&newsyncwc->vb.pdev->dev,
+ "No need for timing change. All is same\n");
+ return;
+ }
+
+ /* First we set all sources to local timing */
+ for (i = 0; i < WC_MAX_IFACES; i++) {
+ wc = ifaces[i];
+ if ((wc != oldsyncwc) && wc) {
+ wctdm_change_card_sync_src(wc, 0, 0);
+ if (voicebus_current_latency(&wc->vb) > max_latency)
+ max_latency = voicebus_current_latency(&wc->vb);
+ }
+ }
+ msleep(max_latency << 1);
+
+ /* Set the old sync source to local timing, not driving timing */
+ if (oldsyncwc) {
+ wctdm_change_card_sync_src(oldsyncwc, 0, 0);
+ msleep(voicebus_current_latency(&oldsyncwc->vb) << 1);
+ }
+
+ dev_info(&newsyncwc->vb.pdev->dev,
+ "Setting new card %d now to be timing master\n", newsync);
+ /* Finally, set the new sync source to broadcast master timing */
+ wctdm_change_card_sync_src(newsyncwc, newspot, 1);
+ msleep(voicebus_current_latency(&newsyncwc->vb) << 1);
+
+ /* Last we double verify and set all the remaining cards to be timing
+ * slaves */
+ for (i = 0; (i < WC_MAX_IFACES) && ifaces[i]; i++) {
+ wc = ifaces[i];
+ if (i == newsync)
+ continue;
+
+ dev_info(&wc->vb.pdev->dev,
+ "Setting card %d to be timing slave\n", i);
+ wctdm_change_card_sync_src(wc, 1, 0);
+ }
+ msleep(max_latency << 1);
+ synccard = newsync;
+ syncspan = newspan;
+}
+
+static int xhfc_find_sync_with_timingcable(struct b400m *b4)
+{
+ struct wctdm *wc = b4->wc;
+ int i, j, osrc, src = -1;
+ int lowestprio = 10000;
+ int lowestcard = -1;
+
+ if (down_trylock(&ifacelock)) {
+ set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
+ return -2;
+ }
+
+ for (j = 0; j < WC_MAX_IFACES && ifaces[j]; j++) {
+ if (!ifaces[j]->initialized) {
+ set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
+ osrc = -2;
+ goto out;
+ } else {
+ for (i = 0; i < (MAX_SPANS - 1); i++) {
+ struct wctdm_span *wspan = ifaces[j]->spans[i];
+ if (wspan &&
+ wspan->timing_priority &&
+ !wspan->span.alarms &&
+ (wspan->timing_priority <
+ lowestprio)) {
+ src = i;
+ lowestprio = wspan->timing_priority;
+ lowestcard = j;
+ }
+ }
+ }
+ }
+
+ if (lowestcard != synccard) {
+ b4_info(b4, "Found new timing master, card "
+ "%d. Old is card %d\n", lowestcard, synccard);
+ } else if (src != syncspan) {
+ b4_info(b4, "Timing change, but only from %d to %d on "
+ "card %d\n", syncspan, src, lowestcard);
+ }
+
+ wctdm_change_system_sync_src(synccard, syncspan,
+ lowestcard, src);
+
+ osrc = -1;
+
+ if (wc == ifaces[lowestcard]) {
+ if (src < (b4->position + 4) && (src >= b4->position))
+ osrc = src - b4->position;
+ }
+
+out:
+ up(&ifacelock);
+
+ return osrc;
+}
+
+static int xhfc_find_sync_without_timingcable(struct b400m *b4)
+{
+ struct wctdm *wc = b4->wc;
+ int i, osrc, src = -1;
+ int lowestprio = 10000;
+ int newctlregmux;
+
+ if (down_trylock(&wc->syncsem)) {
+ set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
+ return -2;
+ }
+
+ /* Find lowest slave timing priority on digital spans */
+ for (i = 0; i < (MAX_SPANS - 1); i++) {
+ struct wctdm_span *const wspan = wc->spans[i];
+ if (wspan && wspan->timing_priority &&
+ !wspan->span.alarms &&
+ (wspan->timing_priority < lowestprio)) {
+ src = i;
+ lowestprio = wspan->timing_priority;
+ }
+ }
+
+ if (src < 0) {
+ if (DBG_TIMING)
+ b4_info(b4, "Picked analog span\n");
+ osrc = src;
+ goto check_card_timing;
+ } else {
+ if (DBG_TIMING) {
+ b4_info(b4, "Picked span offset %d to be timing "
+ "source\n", src);
+ }
+ }
+
+ osrc = ((src < (b4->position + 4)) && (src >= b4->position)) ?
+ src - b4->position : -1;
+
+ if (DBG_TIMING) {
+ b4_info(b4, "For b4->position %d timing is %d\n",
+ b4->position, osrc);
+ }
+
+check_card_timing:
+
+ if (src != -1)
+ newctlregmux = 2 | (src >> 2);
+ else
+ newctlregmux = 0;
+
+ if ((newctlregmux & 3) != (wc->ctlreg & 3)) {
+ if (DBG_TIMING) {
+ b4_info(b4, "!!!Need to change timing "
+ "on baseboard to spot %d!!!\n",
+ src >> 2);
+ }
+
+ wctdm_change_card_sync_src(wc, newctlregmux, 0);
+ } else {
+ if (DBG_TIMING) {
+ dev_info(&b4->wc->vb.pdev->dev, "!!!No need to change timing " \
+ "on baseboard to spot %d, already there!!!\n",
+ src >> 2);
+
+ }
+ }
+
+
+ up(&wc->syncsem);
+
+ return osrc;
+}
+
+/*
+ * Finds the highest-priority sync span that is not in alarm and returns it.
+ * Note: the span #s in b4->spans[].sync are 1-based, and this returns a
+ * 0-based span, or -1 if no spans are found.
+ */
+static inline int xhfc_find_sync(struct b400m *b4)
+{
+ if (timingcable)
+ return xhfc_find_sync_with_timingcable(b4);
+ else
+ return xhfc_find_sync_without_timingcable(b4);
+}
+
+/*
+ * allocates memory and pretty-prints a given S/T state engine state to it.
+ * calling routine is responsible for freeing the pointer returned! Performs
+ * no hardware access whatsoever, but does use GFP_KERNEL so do not call from
+ * IRQ context. if full == 1, prints a "full" dump; otherwise just prints
+ * current state.
+ */
+static char *hfc_decode_st_state(struct b400m *b4, struct b400m_span *span,
+ unsigned char state, int full)
+{
+ int nt, sta;
+ char s[128], *str;
+ const char *ststr[2][16] = { /* TE, NT */
+ { "RESET", "?", "SENSING", "DEACT.",
+ "AWAIT.SIG", "IDENT.INPUT", "SYNCD", "ACTIVATED",
+ "LOSTFRAMING", "?", "?", "?",
+ "?", "?", "?", "?" },
+ { "RESET", "DEACT.", "PEND.ACT", "ACTIVE",
+ "PEND.DEACT", "?", "?", "?",
+ "?", "?", "?", "?",
+ "?", "?", "?", "?" }
+ };
+
+ str = kmalloc(256, GFP_KERNEL);
+ if (!str) {
+ dev_warn(&b4->wc->vb.pdev->dev,
+ "could not allocate mem for ST state decode " \
+ "string!\n");
+ return NULL;
+ }
+
+ nt = (span->te_mode == 0);
+ sta = (state & V_SU_STA_MASK);
+
+ sprintf(str, "P%d: %s state %c%d (%s)", span->port + 1,
+ (nt ? "NT" : "TE"), (nt ? 'G' : 'F'), sta,
+ ststr[nt][sta]);
+
+ if (full) {
+ sprintf(s, " SYNC: %s, RX INFO0: %s",
+ ((state & V_SU_FR_SYNC) ? "yes" : "no"),
+ ((state & V_SU_INFO0) ? "yes" : "no"));
+ strcat(str, s);
+
+ if (nt) {
+ sprintf(s, ", T2 %s, auto G2->G3: %s",
+ ((state & V_SU_T2_EXP) ? "expired" : "OK"),
+ ((state & V_G2_G3) ? "yes" : "no"));
+ strcat(str, s);
+ }
+ }
+
+ return str;
+}
+
+/*
+ * sets an S/T port state machine to a given state. if 'auto' is nonzero,
+ * will put the state machine back in auto mode after setting the state.
+ */
+static void hfc_handle_state(struct b400m_span *s);
+static void hfc_force_st_state(struct b400m *b4, struct b400m_span *s,
+ int state, int resume_auto)
+{
+ b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA,
+ state | V_SU_LD_STA);
+
+ if (resume_auto)
+ b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, state);
+
+ if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
+ char *x;
+
+ x = hfc_decode_st_state(b4, s, state, 1);
+ b4_info(b4, "forced port %d to state %d (auto: %d), "
+ "new decode: %s\n", s->port + 1, state,
+ resume_auto, x);
+ kfree(x);
+ }
+
+ /* make sure that we activate any timers/etc needed by this state
+ * change */
+ hfc_handle_state(s);
+}
+
+/* figures out what to do when an S/T port's timer expires. */
+static void hfc_timer_expire(struct b400m_span *s, int t_no)
+{
+ struct b400m *b4 = s->parent;
+
+ if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
+ b4_info(b4, "%lu: hfc_timer_expire, Port %d T%d "
+ "expired (value=%lu ena=%d)\n", b4->ticks,
+ s->port + 1, t_no + 1, s->hfc_timers[t_no],
+ s->hfc_timer_on[t_no]);
+ }
+ /*
+ * there are three timers associated with every HFC S/T port.
+ *
+ * T1 is used by the NT state machine, and is the maximum time the NT
+ * side should wait for G3 (active) state.
+ *
+ * T2 is not actually used in the driver, it is handled by the HFC-4S
+ * internally.
+ *
+ * T3 is used by the TE state machine; it is the maximum time the TE
+ * side should wait for the INFO4 (activated) signal.
+ */
+
+ /* First, disable the expired timer; hfc_force_st_state() may activate
+ * it again. */
+ s->hfc_timer_on[t_no] = 0;
+
+ switch (t_no) {
+ case XHFC_T1: /* switch to G4 (pending deact.), resume auto mode */
+ hfc_force_st_state(b4, s, 4, 1);
+ break;
+ case XHFC_T2: /* switch to G1 (deactivated), resume auto mode */
+ hfc_force_st_state(b4, s, 1, 1);
+ break;
+ case XHFC_T3: /* switch to F3 (deactivated), resume auto mode */
+ hfc_stop_st(s);
+ if (bri_persistentlayer1)
+ hfc_start_st(s);
+ break;
+ case XHFC_T4: /* switch to F3 (deactivated), resume auto mode */
+ hfc_handle_state(s);
+ s->hfc_timers[XHFC_T4] = b4->ticks + 1000;
+ s->hfc_timer_on[XHFC_T4] = 1;
+ break;
+ default:
+ if (printk_ratelimit()) {
+ dev_warn(&b4->wc->vb.pdev->dev,
+ "hfc_timer_expire found an unknown expired "
+ "timer (%d)??\n", t_no);
+ }
+ }
+}
+
+/*
+ * Run through the active timers on a card and deal with any expiries.
+ * Also see if the alarm debounce time has expired and if it has, tell DAHDI.
+ */
+static void hfc_update_st_timers(struct b400m *b4)
+{
+ int i, j;
+ struct b400m_span *s;
+
+ for (i = 0; i < 4; i++) {
+ s = &b4->spans[i];
+
+ for (j = XHFC_T1; j <= XHFC_T4; j++) {
+
+ /* we don't really do timer2, it is expired by the
+ * state change handler */
+ if (j == XHFC_T2)
+ continue;
+
+ if (s->hfc_timer_on[j] &&
+ time_after_eq(b4->ticks, s->hfc_timers[j]))
+ hfc_timer_expire(s, j);
+ }
+
+ if (s->span && s->newalarm != s->span->alarms &&
+ time_after_eq(b4->ticks, s->alarmtimer)) {
+ s->span->alarms = s->newalarm;
+ if ((!s->newalarm && bri_teignorered) || (!bri_teignorered))
+ dahdi_alarm_notify(s->span);
+
+ if (DBG_ALARM) {
+ dev_info(&b4->wc->vb.pdev->dev, "span %d: alarm " \
+ "%d debounced\n", i + 1,
+ s->newalarm);
+ }
+ set_bit(WCTDM_CHECK_TIMING, &b4->wc->checkflag);
+ }
+ }
+
+ if (test_and_clear_bit(WCTDM_CHECK_TIMING, &b4->wc->checkflag))
+ xhfc_set_sync_src(b4, xhfc_find_sync(b4));
+}
+
+/* this is the driver-level state machine for an S/T port */
+static void hfc_handle_state(struct b400m_span *s)
+{
+ struct b400m *b4;
+ unsigned char state, sta;
+ int nt, newsync, oldalarm;
+ unsigned long oldtimer;
+
+ b4 = s->parent;
+ nt = !s->te_mode;
+
+ state = b400m_getreg_ra(b4, R_SU_SEL, s->port, A_SU_RD_STA);
+ sta = (state & V_SU_STA_MASK);
+
+ if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
+ char *x;
+
+ x = hfc_decode_st_state(b4, s, state, 1);
+ b4_info(b4, "port %d A_SU_RD_STA old=0x%02x "
+ "now=0x%02x, decoded: %s\n", s->port + 1,
+ s->oldstate, state, x);
+ kfree(x);
+ }
+
+ oldalarm = s->newalarm;
+ oldtimer = s->alarmtimer;
+
+ if (nt) {
+ switch (sta) {
+ default: /* Invalid NT state */
+ case 0x0: /* NT state G0: Reset */
+ case 0x1: /* NT state G1: Deactivated */
+ case 0x4: /* NT state G4: Pending Deactivation */
+ s->newalarm = DAHDI_ALARM_RED;
+ break;
+ case 0x2: /* NT state G2: Pending Activation */
+ s->newalarm = DAHDI_ALARM_YELLOW;
+ break;
+ case 0x3: /* NT state G3: Active */
+ s->hfc_timer_on[XHFC_T1] = 0;
+ s->newalarm = 0;
+ break;
+ }
+ } else {
+ switch (sta) {
+ default: /* Invalid TE state */
+ case 0x0: /* TE state F0: Reset */
+ case 0x2: /* TE state F2: Sensing */
+ case 0x3: /* TE state F3: Deactivated */
+ case 0x4: /* TE state F4: Awaiting Signal */
+ case 0x8: /* TE state F8: Lost Framing */
+ s->newalarm = DAHDI_ALARM_RED;
+ break;
+ case 0x5: /* TE state F5: Identifying Input */
+ case 0x6: /* TE state F6: Synchronized */
+ s->newalarm = DAHDI_ALARM_YELLOW;
+ break;
+ case 0x7: /* TE state F7: Activated */
+ s->hfc_timer_on[XHFC_T3] = 0;
+ s->hfc_timer_on[XHFC_T4] = 0;
+ s->newalarm = 0;
+ break;
+ }
+ }
+
+ s->alarmtimer = b4->ticks + bri_alarmdebounce;
+ s->oldstate = state;
+
+ if (DBG_ALARM) {
+ b4_info(b4, "span %d: old alarm %d expires %ld, "
+ "new alarm %d expires %ld\n", s->port + 1, oldalarm,
+ oldtimer, s->newalarm, s->alarmtimer);
+ }
+
+ /* we only care about T2 expiry in G4. */
+ if (nt && (sta == 4) && (state & V_SU_T2_EXP)) {
+ if (s->hfc_timer_on[XHFC_T2])
+ hfc_timer_expire(s, XHFC_T2); /* handle T2 expiry */
+ }
+
+ /* If we're in F3 and receiving INFO0, start T3 and jump to F4 */
+ if (!nt && (sta == 3) && (state & V_SU_INFO0)) {
+ if (bri_persistentlayer1) {
+ s->hfc_timers[XHFC_T3] = b4->ticks + TIMER_3_MS;
+ s->hfc_timer_on[XHFC_T3] = 1;
+ if (DBG_ST) {
+ b4_info(b4, "port %d: receiving "
+ "INFO0 in state 3, setting T3 and "
+ "jumping to F4\n", s->port + 1);
+ }
+ hfc_start_st(s);
+ }
+ }
+
+ /* read in R_BERT_STA to determine where our current sync source is */
+ newsync = b400m_getreg(b4, R_BERT_STA) & 0x07;
+ if (newsync != b4->reportedsyncspan) {
+ if (DBG_TIMING) {
+ if (newsync == 5) {
+ b4_info(b4, "new card sync source: SYNC_I\n");
+ } else {
+ b4_info(b4, "Card position %d: new "
+ "sync source: port %d\n",
+ b4->position, newsync);
+ }
+ }
+
+ b4->reportedsyncspan = newsync;
+ }
+}
+
+static void hfc_stop_all_timers(struct b400m_span *s)
+{
+ s->hfc_timer_on[XHFC_T4] = 0;
+ s->hfc_timer_on[XHFC_T3] = 0;
+ s->hfc_timer_on[XHFC_T2] = 0;
+ s->hfc_timer_on[XHFC_T1] = 0;
+}
+
+static void hfc_stop_st(struct b400m_span *s)
+{
+ struct b400m *b4 = s->parent;
+
+ hfc_stop_all_timers(s);
+
+ b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_ACT_DEACTIVATE);
+}
+
+/*
+ * resets an S/T interface to a given NT/TE mode
+ */
+static void hfc_reset_st(struct b400m_span *s)
+{
+ int b;
+ struct b400m *b4;
+
+ b4 = s->parent;
+
+ hfc_stop_st(s);
+
+ /* force state G0/F0 (reset), then force state 1/2
+ * (deactivated/sensing) */
+ b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_LD_STA);
+ flush_hw(); /* make sure write hit hardware */
+
+ s->span->alarms = DAHDI_ALARM_RED;
+ s->newalarm = DAHDI_ALARM_RED;
+ dahdi_alarm_notify(s->span);
+
+ /* set up the clock control register. Must be done before we activate
+ * the interface. */
+ if (s->te_mode)
+ b = 0x0e;
+ else
+ b = 0x0c | (6 << V_SU_SMPL_SHIFT);
+
+ b400m_setreg(b4, A_SU_CLK_DLY, b);
+
+ /* set TE/NT mode, enable B and D channels. */
+ b400m_setreg(b4, A_SU_CTRL0, V_B1_TX_EN | V_B2_TX_EN |
+ (s->te_mode ? 0 : V_SU_MD) | V_ST_PU_CTRL);
+ b400m_setreg(b4, A_SU_CTRL1, V_G2_G3_EN);
+ b400m_setreg(b4, A_SU_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
+ b400m_setreg(b4, A_ST_CTRL3, (0x7c << 1));
+
+ /* enable the state machine. */
+ b400m_setreg(b4, A_SU_WR_STA, 0x00);
+ flush_hw();
+}
+
+static void hfc_start_st(struct b400m_span *s)
+{
+ struct b400m *b4 = s->parent;
+
+ b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_ACT_ACTIVATE);
+
+ /* start T1 if in NT mode, T3 if in TE mode */
+ if (s->te_mode) {
+ /* 500ms wait first time, TIMER_3_MS afterward. */
+ s->hfc_timers[XHFC_T3] = b4->ticks + TIMER_3_MS;
+ s->hfc_timer_on[XHFC_T3] = 1;
+ s->hfc_timer_on[XHFC_T1] = 0;
+
+ s->hfc_timers[XHFC_T4] = b4->ticks + 1000;
+ s->hfc_timer_on[XHFC_T4] = 1;
+
+ if (DBG_ST) {
+ b4_info(b4, "setting port %d t3 timer to %lu\n",
+ s->port + 1, s->hfc_timers[XHFC_T3]);
+ }
+ } else {
+ static const int TIMER_1_MS = 2000;
+ s->hfc_timers[XHFC_T1] = b4->ticks + TIMER_1_MS;
+ s->hfc_timer_on[XHFC_T1] = 1;
+ s->hfc_timer_on[XHFC_T3] = 0;
+ if (DBG_ST) {
+ b4_info(b4, "setting port %d t1 timer to %lu\n",
+ s->port + 1, s->hfc_timers[XHFC_T1]);
+ }
+ }
+}
+
+/*
+ * read in the HFC GPIO to determine each port's mode (TE or NT).
+ * Then, reset and start the port.
+ * the flow controller should be set up before this is called.
+ */
+static int hdlc_start(struct b400m *b4, int fifo);
+static void hfc_init_all_st(struct b400m *b4)
+{
+ int i, gpio;
+ struct b400m_span *s;
+
+ gpio = 0;
+
+ for (i = 0; i < 4; i++) {
+ s = &b4->spans[i];
+ s->parent = b4;
+
+#ifdef SWAP_PORTS
+ s->port = (1 == i) ? 2 : (2 == i) ? 1 : i;
+#else
+ s->port = i;
+#endif
+ s->te_mode = 1;
+
+ hdlc_start(b4, s->fifos[2]);
+ }
+
+}
+
+/* NOTE: assumes fifo lock is held */
+#define debug_fz(b4, fifo, prefix, buf) \
+do { \
+ sprintf(buf, "%s: (fifo %d): f1/f2/flen=%d/%d/%d, " \
+ "z1/z2/zlen=%d/%d/%d\n", prefix, fifo, f1, f2, flen, z1, \
+ z2, zlen); \
+} while (0)
+
+/* enable FIFO RX int and reset the FIFO */
+static int hdlc_start(struct b400m *b4, int fifo)
+{
+ b4->fifo_en_txint |= (1 << fifo);
+ b4->fifo_en_rxint |= (1 << fifo);
+
+ hfc_reset_fifo_pair(b4, fifo, 1, 0);
+ return 0;
+}
+
+#ifdef HARDHDLC_RX
+
+/**
+ * hdlc_signal_complete() - Signal dahdi that we have a complete frame.
+ *
+ * @bpan: The span which received the frame.
+ * @stat: The frame status from the XHFC controller.
+ *
+ */
+static void hdlc_signal_complete(struct b400m_span *bspan, u8 stat)
+{
+ struct b400m *b4 = bspan->parent;
+
+ /* if STAT != 0, indicates bad frame */
+ if (stat != 0x00) {
+ if (DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4, "(span %d) STAT=0x%02x indicates " \
+ "frame problem: %s\n", bspan->port + 1, stat,
+ (0xff == stat) ? "HDLC Abort" : "Bad FCS");
+ }
+
+ dahdi_hdlc_abort(bspan->sigchan, (0xff == stat) ?
+ DAHDI_EVENT_ABORT : DAHDI_EVENT_BADFCS);
+ /* STAT == 0, means frame was OK */
+ } else {
+ if (DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4, "(span %d) Frame %d is good!\n",
+ bspan->port + 1, bspan->frames_in);
+ }
+ dahdi_hdlc_finish(bspan->sigchan);
+ }
+}
+
+/*
+ * Inner loop for D-channel receive function. Retrieves HDLC data from the
+ * hardware. If the hardware indicates that the frame is complete, we check
+ * the HDLC engine's STAT byte and update DAHDI as needed.
+ *
+ * Returns the number of HDLC frames left in the FIFO, or -1 if we couldn't
+ * get the lock.
+ */
+static int hdlc_rx_frame(struct b400m_span *bspan)
+{
+ int fifo, i, j, x, zleft;
+ int z1, z2, zlen, f1, f2, flen, new_flen;
+ unsigned char buf[B400M_HDLC_BUF_LEN];
+ char debugbuf[256];
+ struct b400m *b4 = bspan->parent;
+
+ fifo = bspan->fifos[2];
+
+ if (DBG_HDLC && DBG_SPANFILTER)
+ b4_info(b4, "hdlc_rx_frame fifo %d: start\n", fifo);
+
+ if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4, "rx_frame: fifo %d 1: couldn't get lock\n",
+ fifo);
+ return -1;
+ }
+
+ hfc_setreg_waitbusy(b4, R_FIFO,
+ (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
+ get_F(f1, f2, flen);
+ get_Z(z1, z2, zlen);
+ debug_fz(b4, fifo, "hdlc_rx_frame", debugbuf);
+ up(&b4->fifosem);
+
+ if (DBG_HDLC && DBG_SPANFILTER)
+ pr_info("%s", debugbuf);
+
+ /* if we have at least one complete frame, increment zleft to include
+ * status byte */
+ zleft = zlen;
+ if (flen)
+ zleft++;
+
+ do {
+ if (zleft > B400M_HDLC_BUF_LEN)
+ j = B400M_HDLC_BUF_LEN;
+ else
+ j = zleft;
+
+ if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4,
+ "rx_frame fifo %d 2: couldn't get lock\n",
+ fifo);
+ return -1;
+ }
+ hfc_setreg_waitbusy(b4, R_FIFO,
+ (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
+ for (i = 0; i < j; i++)
+ buf[i] = b400m_getreg(b4, A_FIFO_DATA);
+ up(&b4->fifosem);
+
+ /* don't send STAT byte to DAHDI */
+ x = j;
+ if (bspan->sigchan) {
+ if ((j != B400M_HDLC_BUF_LEN) && flen)
+ x--;
+ if (x)
+ dahdi_hdlc_putbuf(bspan->sigchan, buf, x);
+ }
+
+ zleft -= j;
+
+ if (DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4, "transmitted %d bytes to dahdi, " \
+ "zleft=%d\n", x, zleft);
+ }
+
+ if (DBG_HDLC && DBG_SPANFILTER) {
+ /* !!! */
+ b4_info(b4, "hdlc_rx_frame(span %d): " \
+ "z1/z2/zlen=%d/%d/%d, zleft=%d\n",
+ bspan->port + 1, z1, z2, zlen, zleft);
+ for (i = 0; i < j; i++) {
+ b4_info(b4, "%02x%c", buf[i],
+ (i < (j - 1)) ? ' ' : '\n');
+ }
+ }
+ } while (zleft > 0);
+
+ /* Frame received, increment F2 and get an updated count of frames
+ * left */
+ if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4, "rx_frame fifo %d 3: couldn't get lock\n",
+ fifo);
+ return 0;
+ }
+
+ /* go get the F count again, just in case another frame snuck in while
+ * we weren't looking. */
+ if (flen) {
+ hfc_setreg_waitbusy(b4, A_INC_RES_FIFO, V_INC_F);
+ ++bspan->frames_in;
+ get_F(f1, f2, new_flen);
+ } else
+ new_flen = flen;
+
+ up(&b4->fifosem);
+
+ /* If this channel is not configured with a signalling span we don't
+ * need to notify the rest of dahdi about this frame. */
+ if (!bspan->sigchan) {
+ if (DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4, "hdlc_rx_frame fifo %d: " \
+ "new_flen %d, early end.\n", fifo, new_flen);
+ }
+ return new_flen;
+ }
+
+ if (flen) {
+ /* disable < 3 check for now */
+ if (0 && zlen < 3) {
+ if (DBG_HDLC && DBG_SPANFILTER)
+ b4_info(b4, "odd, zlen less then 3?\n");
+ dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_ABORT);
+ } else {
+ hdlc_signal_complete(bspan, buf[i - 1]);
+ }
+ }
+
+ if (DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4, "hdlc_rx_frame fifo %d: new_flen=%d end.\n",
+ fifo, new_flen);
+ }
+
+ return new_flen;
+}
+
+#endif /* HARDHDLC_RX */
+
+
+/*
+ * Takes one blob of data from DAHDI and shoots it out to the hardware. The
+ * blob may or may not be a complete HDLC frame. If it isn't, the D-channel
+ * FIFO interrupt handler will take care of pulling the rest. Returns nonzero
+ * if there is still data to send in the current HDLC frame.
+ */
+static int hdlc_tx_frame(struct b400m_span *bspan)
+{
+ struct b400m *b4 = bspan->parent;
+ int res, i, fifo;
+ int z1, z2, zlen;
+ int f1 = -1, f2 = -1, flen = -1;
+ unsigned char buf[B400M_HDLC_BUF_LEN];
+ unsigned int size = ARRAY_SIZE(buf);
+ char debugbuf[256];
+
+ /* if we're ignoring TE red alarms and we are in alarm, restart the
+ * S/T state machine */
+ if (bspan->te_mode && (bspan->newalarm != 0)) {
+ hfc_start_st(bspan);
+ }
+
+ fifo = bspan->fifos[2];
+ res = dahdi_hdlc_getbuf(bspan->sigchan, buf, &size);
+
+ if (down_interruptible(&b4->fifosem)) {
+ static int arg;
+ b4_info(b4, "b400m: arg (%d), grabbed data from DAHDI " \
+ "but couldn't grab the lock!\n", ++arg);
+ /* TODO: Inform DAHDI that we have grabbed data and can't use
+ * it */
+ dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_OVERRUN);
+ return 1; /* return 1 so we keep trying */
+ }
+ hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
+
+ get_Z(z1, z2, zlen);
+ debug_fz(b4, fifo, __func__, debugbuf);
+
+ /* TODO: check zlen, etc. */
+ if ((HFC_ZMAX-zlen) < size) {
+ static int arg;
+ b4_info(b4, "b400m: arg (%d), zlen (%d) < what we " \
+ "grabbed from DAHDI (%d)!\n", ++arg, zlen, size);
+ size = zlen;
+ dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_OVERRUN);
+ }
+
+ if (size > 0) {
+ bspan->sigactive = 1;
+
+ for (i = 0; i < size; i++)
+ b400m_setreg(b4, A_FIFO_DATA, buf[i]);
+ /*
+ * If we got a full frame from DAHDI, increment F and
+ * decrement our HDLC pending counter. Otherwise, select the
+ * FIFO again (to start transmission) and make sure the TX IRQ
+ * is enabled so we will get called again to finish off the
+ * data
+ */
+ if (res != 0) {
+ ++bspan->frames_out;
+ bspan->sigactive = 0;
+ hfc_setreg_waitbusy(b4, A_INC_RES_FIFO, V_INC_F);
+ atomic_dec(&bspan->hdlc_pending);
+ } else {
+ hfc_setreg_waitbusy(b4, R_FIFO,
+ (fifo << V_FIFO_NUM_SHIFT));
+ }
+ }
+
+ up(&b4->fifosem);
+
+ if (0 && DBG_HDLC && DBG_SPANFILTER) {
+ b4_info(b4, "%s", debugbuf);
+
+ b4_info(b4, "hdlc_tx_frame(span %d): DAHDI gave %d " \
+ "bytes for FIFO %d (res = %d)\n",
+ bspan->port + 1, size, fifo, res);
+
+ for (i = 0; i < size; i++)
+ b4_info(b4,
+ "%02x%c\n", buf[i],
+ (i < (size - 1)) ? ' ' : '\n');
+
+ if (size && res != 0) {
+ pr_info("Transmitted frame %d on span %d\n",
+ bspan->frames_out - 1, bspan->port);
+ }
+ }
+
+ return (res == 0);
+}
+
+/*
+ * b400m lowlevel functions These are functions which impact more than just
+ * the HFC controller. (those are named hfc_xxx())
+ */
+
+/*
+ * Performs a total reset of the card, reinitializes GPIO. The card is
+ * initialized enough to have LEDs running, and that's about it. Anything to
+ * do with audio and enabling any kind of processing is done in stage2.
+ */
+static void xhfc_init_stage1(struct b400m *b4)
+{
+ int i;
+
+ hfc_reset(b4);
+ hfc_gpio_init(b4);
+
+ /* make sure interrupts are disabled */
+ b400m_setreg(b4, R_IRQ_CTRL, 0x00);
+
+ /* make sure write hits hardware */
+ flush_hw();
+
+ /* disable all FIFO interrupts */
+ for (i = 0; i < HFC_NR_FIFOS; i++) {
+ hfc_setreg_waitbusy(b4, R_FIFO, (i << V_FIFO_NUM_SHIFT));
+ /* disable the interrupt */
+ b400m_setreg(b4, A_FIFO_CTRL, 0x00);
+ hfc_setreg_waitbusy(b4, R_FIFO,
+ (i << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
+ /* disable the interrupt */
+ b400m_setreg(b4, A_FIFO_CTRL, 0x00);
+ flush_hw();
+ }
+
+ /* set fill threshhold to 16 bytes */
+ b400m_setreg(b4, R_FIFO_THRES, 0x11);
+
+ /* clear any pending FIFO interrupts */
+ b400m_getreg(b4, R_FIFO_BL2_IRQ);
+ b400m_getreg(b4, R_FIFO_BL3_IRQ);
+
+ b4->misc_irq_mask = 0x00;
+ b400m_setreg(b4, R_MISC_IRQMSK, b4->misc_irq_mask);
+ b400m_setreg(b4, R_IRQ_CTRL, 0);
+}
+
+/*
+ * Stage 2 hardware init. Sets up the flow controller, PCM and FIFOs.
+ * Initializes the echo cancellers. S/T interfaces are not initialized here,
+ * that is done later, in hfc_init_all_st(). Interrupts are enabled and once
+ * the s/t interfaces are configured, chip should be pretty much operational.
+ */
+static void xhfc_init_stage2(struct b400m *b4)
+{
+ /*
+ * set up PCM bus. XHFC is PCM slave C2IO is the clock, auto sync,
+ * SYNC_O follows SYNC_I. 128 timeslots, long frame sync positive
+ * polarity, sample on falling clock edge. STIO2 is transmit-only,
+ * STIO1 is receive-only.
+ */
+ b400m_setreg(b4, R_PCM_MD0, V_PCM_IDX_MD1);
+ b400m_setreg(b4, R_PCM_MD1, V_PCM_DR_8192 | (0x3 << 2));
+ b400m_setreg(b4, R_PCM_MD0, V_PCM_IDX_MD2);
+ b400m_setreg(b4, R_PCM_MD2, V_C2I_EN | V_SYNC_OUT1);
+ b400m_setreg(b4, R_SU_SYNC, V_SYNC_SEL_PORT0);
+
+ /* Now set up the flow controller. */
+ hfc_setup_fsm(b4);
+
+ /*
+ * At this point, everything's set up and ready to go. Don't actually
+ * enable the global interrupt pin. DAHDI still needs to start up the
+ * spans, and we don't know exactly when.
+ */
+}
+
+static int xhfc_startup(struct dahdi_span *span)
+{
+ struct b400m_span *bspan = span->pvt;
+ struct b400m *b4 = bspan->parent;
+ if (!b4->running)
+ hfc_enable_interrupts(bspan->parent);
+
+ return 0;
+}
+
+/* resets all the FIFOs for a given span. Disables IRQs for the span FIFOs */
+static void xhfc_reset_span(struct b400m_span *bspan)
+{
+ int i;
+ struct b400m *b4 = bspan->parent;
+
+ /* b4_info(b4, "xhfc_reset_span()\n"); */
+ for (i = 0; i < 3; i++)
+ hfc_reset_fifo_pair(b4, bspan->fifos[i], (i == 2) ? 1 : 0, 1);
+}
+
+static void b400m_enable_workqueues(struct wctdm *wc)
+{
+ struct b400m *b4s[2];
+ int i, numb4s = 0;
+ unsigned long flags;
+
+ spin_lock_irqsave(&wc->reglock, flags);
+ for (i = 0; i < wc->mods_per_board; i += 4) {
+ if (wc->modtype[i] == MOD_TYPE_BRI)
+ b4s[numb4s++] = wc->mods[i].bri;
+ }
+ spin_unlock_irqrestore(&wc->reglock, flags);
+
+ for (i = 0; i < numb4s; i++) {
+ if (b4s[i])
+ b4s[i]->shutdown = 0;
+ }
+
+}
+
+static void b400m_disable_workqueues(struct wctdm *wc)
+{
+ struct b400m *b4s[2];
+ int i, numb4s = 0;
+ unsigned long flags;
+
+ spin_lock_irqsave(&wc->reglock, flags);
+ for (i = 0; i < wc->mods_per_board; i += 4) {
+ if (wc->modtype[i] == MOD_TYPE_BRI)
+ b4s[numb4s++] = wc->mods[i].bri;
+ }
+ spin_unlock_irqrestore(&wc->reglock, flags);
+
+ for (i = 0; i < numb4s; i++) {
+ if (b4s[i]) {
+ down(&wc->syncsem);
+ b4s[i]->shutdown = 1;
+ up(&wc->syncsem);
+ flush_workqueue(b4s[i]->xhfc_ws);
+ }
+ }
+}
+/*
+ * Software selectable NT and TE mode settings on the B400M.
+ *
+ * mode - bitwise selection of NT vs TE mode
+ * 1 = NT; 0 = TE;
+ * bit 0 is port 0
+ * bit 1 is port 1
+ * ...
+ * term - termination resistance
+ * 0 = no termination resistance
+ * 1 = 390 ohm termination resistance switched on
+ */
+static int b400m_set_ntte(struct b400m_span *bspan, int te_mode, int term_on)
+{
+ struct b400m *b4 = bspan->parent;
+ unsigned char data;
+ unsigned char addr;
+ int all_modes = 0, all_terms = 0;
+ int i;
+
+ bspan->te_mode = te_mode;
+ bspan->term_on = term_on;
+
+ for (i = 0; i < 4; i++) {
+ if (!b4->spans[i].te_mode)
+ all_modes |= (1 << i);
+ if (b4->spans[i].term_on)
+ all_terms |= (1 << i);
+ }
+
+ data = 0x10 | ((all_terms << 4) & 0xc0) | ((all_terms << 2) & 0x0c);
+ addr = 0x10 | all_modes;
+
+ msleep(voicebus_current_latency(&b4->wc->vb) + 2);
+ wctdm_setreg(b4->wc, b4->position, addr, data);
+
+ b4->lastreg = 0xff;
+ msleep(voicebus_current_latency(&b4->wc->vb) + 2);
+
+ hfc_reset_st(bspan);
+
+ if (bri_persistentlayer1)
+ hfc_start_st(bspan);
+
+ return 0;
+}
+
+/* spanconfig for us means ...? */
+int b400m_spanconfig(struct dahdi_span *span, struct dahdi_lineconfig *lc)
+{
+ struct b400m_span *bspan;
+ struct b400m *b4;
+ struct wctdm *wc;
+ int te_mode, term;
+ int pos;
+
+ bspan = span->pvt;
+ b4 = bspan->parent;
+ wc = b4->wc;
+
+ b400m_disable_workqueues(b4->wc);
+
+ te_mode = (lc->lineconfig & DAHDI_CONFIG_NTTE) ? 0 : 1;
+
+ term = (lc->lineconfig & DAHDI_CONFIG_TERM) ? 1 : 0;
+
+ b4_info(b4, "xhfc: Configuring port %d span %d in %s " \
+ "mode with termination resistance %s\n", bspan->port,
+ span->spanno, (te_mode) ? "TE" : "NT",
+ (term) ? "ENABLED" : "DISABLED");
+
+ b400m_set_ntte(bspan, te_mode, term);
+ if (lc->sync < 0) {
+ b4_info(b4, "Span %d has invalid sync priority (%d), " \
+ "removing from sync source list\n", span->spanno,
+ lc->sync);
+ lc->sync = 0;
+ }
+
+ if (span->offset >= 4) {
+ pos = span->offset;
+ } else {
+ /* This is tricky. Have to figure out if we're slot 1 or slot
+ * 2 */
+ pos = span->offset + b4->position;
+ }
+
+ if (!te_mode && lc->sync) {
+ b4_info(b4, "NT Spans cannot be timing sources. " \
+ "Span %d requested to be timing source of " \
+ "priority %d. Changing priority to 0\n", pos,
+ lc->sync);
+ lc->sync = 0;
+ }
+
+ wc->spans[pos]->timing_priority = lc->sync;
+
+ bspan->span = span;
+ xhfc_reset_span(bspan);
+
+ /* call startup() manually here, because DAHDI won't call the startup
+ * function unless it receives an IOCTL to do so, and dahdi_cfg
+ * doesn't. */
+ xhfc_startup(span);
+
+ span->flags |= DAHDI_FLAG_RUNNING;
+
+ set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
+
+ b400m_enable_workqueues(b4->wc);
+
+ return 0;
+}
+
+/* chanconfig for us means to configure the HDLC controller, if appropriate
+ *
+ * NOTE: apparently the DAHDI ioctl function calls us with a interrupts
+ * disabled. This means we cannot actually touch the hardware, because all
+ * register accesses are wrapped up in a mutex that can sleep.
+ *
+ * The solution to that is to simply increment the span's "restart" flag, and
+ * the driver's workqueue will do the dirty work on our behalf.
+ */
+int b400m_chanconfig(struct dahdi_chan *chan, int sigtype)
+{
+ int alreadyrunning;
+ struct b400m_span *bspan = chan->span->pvt;
+ struct b400m *b4 = bspan->parent;
+ int res;
+
+ alreadyrunning = bspan->span->flags & DAHDI_FLAG_RUNNING;
+
+ if (DBG_FOPS) {
+ b4_info(b4, "%s channel %d (%s) sigtype %08x\n",
+ alreadyrunning ? "Reconfigured" : "Configured",
+ chan->channo, chan->name, sigtype);
+ }
+
+ switch (sigtype) {
+ case DAHDI_SIG_HARDHDLC:
+ if (DBG_FOPS) {
+ b4_info(b4, "%sonfiguring hardware HDLC on %s\n",
+ ((sigtype == DAHDI_SIG_HARDHDLC) ? "C" :
+ "Unc"), chan->name);
+ }
+ bspan->sigchan = chan;
+ bspan->sigactive = 0;
+ atomic_set(&bspan->hdlc_pending, 0);
+ res = 0;
+ break;
+ case DAHDI_SIG_HDLCFCS:
+ case DAHDI_SIG_HDLCNET:
+ case DAHDI_SIG_HDLCRAW:
+ /* Only HARDHDLC is supported for the signalling channel on BRI
+ * spans. */
+ res = -EINVAL;
+ break;
+ default:
+ res = 0;
+ break;
+ };
+
+ return res;
+}
+
+int b400m_dchan(struct dahdi_span *span)
+{
+ struct b400m_span *bspan;
+ struct b400m *b4;
+ unsigned char *rxb;
+ int res;
+ int i;
+
+ bspan = span->pvt;
+ b4 = bspan->parent;
+#ifdef HARDHDLC_RX
+ return 0;
+#else
+#endif
+
+ if (!bspan->sigchan)
+ return 0;
+
+ rxb = bspan->sigchan->readchunk;
+
+ if (!rxb) {
+ b4_info(b4, "No RXB!\n");
+ return 0;
+ }
+
+ for (i = 0; i < DAHDI_CHUNKSIZE; i++) {
+ fasthdlc_rx_load_nocheck(&bspan->rxhdlc, *(rxb++));
+ res = fasthdlc_rx_run(&bspan->rxhdlc);
+ /* If there is nothing there, continue */
+ if (res & RETURN_EMPTY_FLAG)
+ continue;
+ else if (res & RETURN_COMPLETE_FLAG) {
+
+ if (!bspan->f_sz)
+ continue;
+
+ /* Only count this if it's a non-empty frame */
+ if (bspan->infcs != PPP_GOODFCS) {
+ dahdi_hdlc_abort(bspan->sigchan,
+ DAHDI_EVENT_BADFCS);
+ } else {
+ dahdi_hdlc_finish(bspan->sigchan);
+ }
+ bspan->infcs = PPP_INITFCS;
+ bspan->f_sz = 0;
+ continue;
+ } else if (res & RETURN_DISCARD_FLAG) {
+
+ if (!bspan->f_sz)
+ continue;
+
+ dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_ABORT);
+ bspan->infcs = PPP_INITFCS;
+ bspan->f_sz = 0;
+ break;
+ } else {
+ unsigned char rxc = res;
+ bspan->infcs = PPP_FCS(bspan->infcs, rxc);
+ bspan->f_sz++;
+ dahdi_hdlc_putbuf(bspan->sigchan, &rxc, 1);
+ }
+ }
+
+ return 0;
+}
+
+/* internal functions, not specific to the hardware or DAHDI */
+
+/*
+ */
+#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
+static void xhfc_work(void *data)
+{
+ struct b400m *b4 = data;
+#else
+static void xhfc_work(struct work_struct *work)
+{
+ struct b400m *b4 = container_of(work, struct b400m, xhfc_wq);
+#endif
+ int i, j, k, fifo;
+ unsigned char b, b2;
+
+ if (b4->shutdown || !b4->wc->initialized)
+ return;
+
+ b4->irq_oview = b400m_getreg(b4, R_IRQ_OVIEW);
+ b4->fifo_fill = b400m_getreg(b4, R_FILL_BL0);
+
+ if (b4->irq_oview & V_FIFO_BL0_IRQ) {
+ b4->fifo_irqstatus |= b400m_getreg(b4, R_FIFO_BL0_IRQ);
+ b4->irq_oview &= ~V_FIFO_BL0_IRQ;
+ }
+
+ /* only look at BL0, we put all D channel FIFOs in the first block. */
+ b = b2 = b4->fifo_irqstatus;
+
+ for (j = 0; j < 4; j++) {
+#ifdef SWAP_PORTS
+ fifo = (1 == j) ? 2 : (2 == j) ? 1 : j;
+#else
+ fifo = j;
+#endif
+
+#ifdef HARDHDLC_RX
+ if (b & V_FIFOx_RX_IRQ) {
+ if (fifo < 4) { /* d-channel FIFO */
+
+ /*
+ * I have to loop here until hdlc_rx_frame
+ * says there are no more frames waiting. for
+ * whatever reason, the HFC will not generate
+ * another interrupt if there are still HDLC
+ * frames waiting to be received. i.e. I get
+ * an int when F1 changes, not when F1 != F2.
+ *
+ */
+ do {
+ k = hdlc_rx_frame(&b4->spans[fifo]);
+ } while (k);
+ }
+ }
+
+#endif
+ b >>= 2;
+ }
+
+ /* zero the bits we just processed */
+ b4->fifo_irqstatus &= ~b2;
+ b4->fifo_fill &= ~b2;
+
+
+#if 1
+ /* All four D channel FIFOs are in BL0. */
+ b = b2 = b4->fifo_fill;
+
+ for (j = 0; j < 4; j++) {
+#ifdef SWAP_PORTS
+ fifo = (1 == j) ? 2 : (2 == j) ? 1 : j;
+#else
+ fifo = j;
+#endif
+ if (b4->spans[fifo].sigactive && (b & V_FIFOx_TX_IRQ))
+ hdlc_tx_frame(&b4->spans[fifo]);
+
+#ifdef HARDHDLC_RX
+ if (b & V_FIFOx_RX_IRQ)
+ hdlc_rx_frame(&b4->spans[fifo]);
+#endif
+
+ b >>= 2;
+ }
+#endif
+
+ /* Check for outgoing HDLC frame requests The HFC does not generate TX
+ * interrupts when there is room to send, so I use an atomic counter
+ * that is incremented every time DAHDI wants to send a frame, and
+ * decremented every time I send a frame. It'd be better if I could
+ * just use the interrupt handler, but the HFC seems to trigger a FIFO
+ * TX IRQ only when it has finished sending a frame, not when one can
+ * be sent.
+ */
+ for (i = 0; i < ARRAY_SIZE(b4->spans); i++) {
+ struct b400m_span *bspan = &b4->spans[i];
+
+ if (atomic_read(&bspan->hdlc_pending)) {
+ do {
+ k = hdlc_tx_frame(bspan);
+ } while (k);
+ }
+ }
+
+ b = b400m_getreg(b4, R_SU_IRQ);
+
+ if (b) {
+ for (i = 0; i < ARRAY_SIZE(b4->spans); i++) {
+ int physport;
+
+#ifdef SWAP_PORTS
+ if (i == 1)
+ physport = 2;
+ else if (i == 2)
+ physport = 1;
+ else
+ physport = i;
+#else
+ physport = i;
+#endif
+ if (b & (1 << i))
+ hfc_handle_state(&b4->spans[physport]);
+ }
+ }
+
+ hfc_update_st_timers(b4);
+}
+
+int wctdm_bri_checkisr(struct wctdm *wc, int modpos, int offset)
+{
+ struct b400m *b4;
+ int ret = 0;
+
+ /* don't do anything for non-base card slots */
+ if (modpos & 0x03)
+ return 0;
+
+ /* DEFINITELY don't do anything if our structures aren't ready! */
+ if (!wc || !wc->initialized || !(wc->mods[modpos].bri) ||
+ !((struct b400m *)wc->mods[modpos].bri)->inited) {
+ return 0;
+ }
+
+ b4 = (struct b400m *)wc->mods[modpos].bri;
+ if (offset == 0) {
+ if (!b4->shutdown) {
+ /* if (!(wc->intcount % 50)) */
+ queue_work(b4->xhfc_ws, &b4->xhfc_wq);
+ }
+ b4->ticks++;
+ }
+
+ return ret;
+}
+
+/* DAHDI calls this when it has data it wants to send to the HDLC controller */
+void wctdm_hdlc_hard_xmit(struct dahdi_chan *chan)
+{
+ struct wctdm *wc;
+ struct b400m *b4;
+ struct b400m_span *bspan;
+ struct dahdi_span *dspan;
+ int span;
+
+ dspan = chan->span;
+ bspan = dspan->pvt;
+ b4 = bspan->parent;
+ wc = b4->wc;
+ span = bspan->port;
+
+ if ((DBG_FOPS || DBG_HDLC) && DBG_SPANFILTER) {
+ b4_info(b4, "hdlc_hard_xmit on chan %s (%i/%i), " \
+ "span=%i (sigchan=%p, chan=%p)\n", chan->name,
+ chan->channo, chan->chanpos, span + 1,
+ bspan->sigchan, chan);
+ }
+
+ /* Increment the hdlc_pending counter and trigger the bottom-half so
+ * it will be picked up and sent. */
+ if (bspan->sigchan == chan)
+ atomic_inc(&bspan->hdlc_pending);
+}
+
+static int b400m_probe(struct wctdm *wc, int modpos)
+{
+ unsigned char id, x;
+ struct b400m *b4;
+ unsigned long flags;
+ int chiprev;
+
+ wctdm_setreg(wc, modpos, 0x10, 0x10);
+ id = xhfc_getreg(wc, modpos, R_CHIP_ID, &x);
+
+ /* chip ID high 7 bits must be 0x62, see datasheet */
+ if ((id & 0xfe) != 0x62)
+ return -2;
+
+ b4 = kzalloc(sizeof(struct b400m), GFP_KERNEL);
+ if (!b4) {
+ dev_err(&wc->vb.pdev->dev,
+ "Couldn't allocate memory for b400m structure!\n");
+ return -ENOMEM;
+ }
+
+ /* card found, enabled and main struct allocated. Fill it out. */
+ b4->wc = wc;
+ b4->position = modpos;
+
+ /* which B400M in the system is this one? count all of them found so
+ * far */
+ for (x = 0; x < modpos; x += 4) {
+ if (wc->modtype[x] == MOD_TYPE_BRI)
+ ++b4->b400m_no;
+ }
+
+ spin_lock_init(&b4->reglock);
+ init_MUTEX(&b4->regsem);
+ init_MUTEX(&b4->fifosem);
+
+ for (x = 0; x < 4; x++) {
+ fasthdlc_init(&b4->spans[x].rxhdlc, FASTHDLC_MODE_16);
+ b4->spans[x].infcs = PPP_INITFCS;
+ }
+
+ b4->lastreg = 0xff; /* a register we won't hit right off the bat */
+
+ chiprev = b400m_getreg(b4, R_CHIP_RV);
+
+ b4->setsyncspan = -1; /* sync span is unknown */
+ b4->reportedsyncspan = -1; /* sync span is unknown */
+
+ if (DBG) {
+ b4_info(b4, "Identified controller rev %d in module %d.\n",
+ chiprev, b4->position);
+ }
+
+ xhfc_init_stage1(b4);
+
+ xhfc_init_stage2(b4);
+ hfc_init_all_st(b4);
+
+ hfc_enable_interrupts(b4);
+
+ spin_lock_irqsave(&wc->reglock, flags);
+ wc->mods[modpos].bri = (void *)b4;
+ spin_unlock_irqrestore(&wc->reglock, flags);
+
+ return 0;
+}
+
+void b400m_post_init(struct b400m *b4)
+{
+ snprintf(b4->name, sizeof(b4->name) - 1, "b400m-%d",
+ b4->b400m_no);
+ b4->xhfc_ws = create_singlethread_workqueue(b4->name);
+# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
+ INIT_WORK(&b4->xhfc_wq, xhfc_work, b4);
+# else
+ INIT_WORK(&b4->xhfc_wq, xhfc_work);
+# endif
+ b4->inited = 1;
+}
+
+/* functions called from the wctdm code */
+int wctdm_init_b400m(struct wctdm *wc, int card)
+{
+ int i, ret = 0;
+ unsigned long flags;
+
+ if (wc->modtype[card & 0xfc] == MOD_TYPE_QRV)
+ return -2;
+
+ if (!(card & 0x03)) { /* only init if at lowest port in module */
+ spin_lock_irqsave(&wc->reglock, flags);
+ wc->modtype[card + 0] = MOD_TYPE_BRI;
+ wc->modtype[card + 1] = MOD_TYPE_BRI;
+ wc->modtype[card + 2] = MOD_TYPE_BRI;
+ wc->modtype[card + 3] = MOD_TYPE_BRI;
+ spin_unlock_irqrestore(&wc->reglock, flags);
+
+ for (i = 0; i < 10; i++)
+ schluffen(&wc->regq);
+
+ if (b400m_probe(wc, card) != 0) {
+ spin_lock_irqsave(&wc->reglock, flags);
+ wc->modtype[card + 0] = MOD_TYPE_NONE;
+ wc->modtype[card + 1] = MOD_TYPE_NONE;
+ wc->modtype[card + 2] = MOD_TYPE_NONE;
+ wc->modtype[card + 3] = MOD_TYPE_NONE;
+ spin_unlock_irqrestore(&wc->reglock, flags);
+ ret = -2;
+ }
+ } else { /* for the "sub-cards" */
+ if (wc->modtype[card & 0xfc] == MOD_TYPE_BRI) {
+ spin_lock_irqsave(&wc->reglock, flags);
+ wc->modtype[card] = MOD_TYPE_BRI;
+ wc->mods[card].bri = wc->mods[card & 0xfc].bri;
+ spin_unlock_irqrestore(&wc->reglock, flags);
+ } else {
+ ret = -2;
+ }
+ }
+
+ return ret;
+}
+
+void wctdm_unload_b400m(struct wctdm *wc, int card)
+{
+ struct b400m *b4 = wc->mods[card].bri;
+ int i;
+
+ /* TODO: shutdown once won't work if just a single card is hotswapped
+ * out. But since most of the time this is called because the entire
+ * driver is in the process of unloading, I'll leave it here. */
+ static int shutdown_once;
+
+
+ /* only really unload with the 'base' card number. base+1/2/3 aren't
+ * real. */
+ if (card & 0x03)
+ return;
+
+ if (timingcable && !shutdown_once) {
+ b4_info(b4, "Disabling all workqueues for B400Ms\n");
+ /* Gotta shut down timing change potential during this */
+ for (i = 0; i < WC_MAX_IFACES; i++) {
+ if (ifaces[i])
+ b400m_disable_workqueues(ifaces[i]);
+ }
+ b4_info(b4, "Forcing sync to card 0\n");
+ /* Put the timing configuration in a known state: card 0 is
+ * master */
+ wctdm_change_system_sync_src(synccard, syncspan, -1, -1);
+ /* Change all other cards in the system to self time before
+ * card 0 is removed */
+ b4_info(b4, "Setting all cards to return to self sync\n");
+ for (i = 1; i < WC_MAX_IFACES; i++) {
+ if (ifaces[i])
+ wctdm_change_card_sync_src(ifaces[i], 0, 0);
+ }
+
+ b4_info(b4,
+ "Finished preparing timing linked cards for "
+ "shutdown\n");
+
+ shutdown_once = 1;
+ }
+
+ if (b4) {
+ b4->inited = 0;
+
+ wait_just_a_bit(HZ/10);
+
+ /* TODO: wait for tdm24xx driver to unregister the spans */
+ /* do { ... } while(not_unregistered); */
+
+ /* Change sync source back to base board so we don't freeze up
+ * when we reset the XHFC */
+ b400m_disable_workqueues(wc);
+
+ for (i = 0; i < (MAX_SPANS - 1); i++) {
+ if (wc->spans[i])
+ wc->spans[i]->timing_priority = 0;
+ }
+
+ for (i = 0; i < 4; i++)
+ b4->spans[i].span->flags &= ~DAHDI_FLAG_RUNNING;
+
+ wctdm_change_card_sync_src(b4->wc, 0, 0);
+
+ xhfc_init_stage1(b4);
+
+ destroy_workqueue(b4->xhfc_ws);
+
+ /* Set these to MOD_TYPE_NONE to ensure that our checkisr
+ * routines are not entered */
+ wc->modtype[card] = MOD_TYPE_NONE;
+ wc->modtype[card + 1] = MOD_TYPE_NONE;
+ wc->modtype[card + 2] = MOD_TYPE_NONE;
+ wc->modtype[card + 3] = MOD_TYPE_NONE;
+
+ wc->mods[card].bri = NULL;
+ wc->mods[card + 1].bri = NULL;
+ wc->mods[card + 2].bri = NULL;
+ wc->mods[card + 3].bri = NULL;
+
+ msleep(voicebus_current_latency(&wc->vb) << 1);
+ b4_info(b4, "Driver unloaded.\n");
+ kfree(b4);
+ }
+
+}
+
+void b400m_module_init(void)
+{
+ fasthdlc_precalc();
+}
+
+void b400m_module_cleanup(void)
+{
+}