/* * Wildcard TDM400P TDM FXS/FXO Interface Driver for DAHDI Telephony interface * * Written by Mark Spencer * Matthew Fredrickson * * Copyright (C) 2001-2008, Digium, Inc. * * All rights reserved. * */ /* * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2 as published by the * Free Software Foundation. See the LICENSE file included with * this program for more details. */ #include #include #include #include #include #include #include #include #include #include "proslic.h" /* * Define for audio vs. register based ring detection * */ /* #define AUDIO_RINGCHECK */ /* Experimental max loop current limit for the proslic Loop current limit is from 20 mA to 41 mA in steps of 3 (according to datasheet) So set the value below to: 0x00 : 20mA (default) 0x01 : 23mA 0x02 : 26mA 0x03 : 29mA 0x04 : 32mA 0x05 : 35mA 0x06 : 37mA 0x07 : 41mA */ static int loopcurrent = 20; #define POLARITY_XOR (\ (reversepolarity != 0) ^ (fxs->reversepolarity != 0) ^\ (fxs->vmwi_lrev != 0) ^\ ((fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVAC) != 0)) static int reversepolarity = 0; static alpha indirect_regs[] = { {0,255,"DTMF_ROW_0_PEAK",0x55C2}, {1,255,"DTMF_ROW_1_PEAK",0x51E6}, {2,255,"DTMF_ROW2_PEAK",0x4B85}, {3,255,"DTMF_ROW3_PEAK",0x4937}, {4,255,"DTMF_COL1_PEAK",0x3333}, {5,255,"DTMF_FWD_TWIST",0x0202}, {6,255,"DTMF_RVS_TWIST",0x0202}, {7,255,"DTMF_ROW_RATIO_TRES",0x0198}, {8,255,"DTMF_COL_RATIO_TRES",0x0198}, {9,255,"DTMF_ROW_2ND_ARM",0x0611}, {10,255,"DTMF_COL_2ND_ARM",0x0202}, {11,255,"DTMF_PWR_MIN_TRES",0x00E5}, {12,255,"DTMF_OT_LIM_TRES",0x0A1C}, {13,0,"OSC1_COEF",0x7B30}, {14,1,"OSC1X",0x0063}, {15,2,"OSC1Y",0x0000}, {16,3,"OSC2_COEF",0x7870}, {17,4,"OSC2X",0x007D}, {18,5,"OSC2Y",0x0000}, {19,6,"RING_V_OFF",0x0000}, {20,7,"RING_OSC",0x7EF0}, {21,8,"RING_X",0x0160}, {22,9,"RING_Y",0x0000}, {23,255,"PULSE_ENVEL",0x2000}, {24,255,"PULSE_X",0x2000}, {25,255,"PULSE_Y",0x0000}, //{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower {26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower {27,14,"XMIT_DIGITAL_GAIN",0x4000}, //{27,14,"XMIT_DIGITAL_GAIN",0x2000}, {28,15,"LOOP_CLOSE_TRES",0x1000}, {29,16,"RING_TRIP_TRES",0x3600}, {30,17,"COMMON_MIN_TRES",0x1000}, {31,18,"COMMON_MAX_TRES",0x0200}, {32,19,"PWR_ALARM_Q1Q2",0x07C0}, {33,20,"PWR_ALARM_Q3Q4",0x2600}, {34,21,"PWR_ALARM_Q5Q6",0x1B80}, {35,22,"LOOP_CLOSURE_FILTER",0x8000}, {36,23,"RING_TRIP_FILTER",0x0320}, {37,24,"TERM_LP_POLE_Q1Q2",0x008C}, {38,25,"TERM_LP_POLE_Q3Q4",0x0100}, {39,26,"TERM_LP_POLE_Q5Q6",0x0010}, {40,27,"CM_BIAS_RINGING",0x0C00}, {41,64,"DCDC_MIN_V",0x0C00}, {42,255,"DCDC_XTRA",0x1000}, {43,66,"LOOP_CLOSE_TRES_LOW",0x1000}, }; #include #include #include "fxo_modes.h" #define NUM_FXO_REGS 60 #define WC_MAX_IFACES 128 #define WC_CNTL 0x00 #define WC_OPER 0x01 #define WC_AUXC 0x02 #define WC_AUXD 0x03 #define WC_MASK0 0x04 #define WC_MASK1 0x05 #define WC_INTSTAT 0x06 #define WC_AUXR 0x07 #define WC_DMAWS 0x08 #define WC_DMAWI 0x0c #define WC_DMAWE 0x10 #define WC_DMARS 0x18 #define WC_DMARI 0x1c #define WC_DMARE 0x20 #define WC_AUXFUNC 0x2b #define WC_SERCTL 0x2d #define WC_FSCDELAY 0x2f #define WC_REGBASE 0xc0 #define WC_SYNC 0x0 #define WC_TEST 0x1 #define WC_CS 0x2 #define WC_VER 0x3 #define BIT_CS (1 << 2) #define BIT_SCLK (1 << 3) #define BIT_SDI (1 << 4) #define BIT_SDO (1 << 5) #define FLAG_EMPTY 0 #define FLAG_WRITE 1 #define FLAG_READ 2 #define DEFAULT_RING_DEBOUNCE 64 /* Ringer Debounce (64 ms) */ #define POLARITY_DEBOUNCE 64 /* Polarity debounce (64 ms) */ #define OHT_TIMER 6000 /* How long after RING to retain OHT */ /* NEON MWI pulse width - Make larger for longer period time * For more information on NEON MWI generation using the proslic * refer to Silicon Labs App Note "AN33-SI321X NEON FLASHING" * RNGY = RNGY 1/2 * Period * 8000 */ #define NEON_MWI_RNGY_PULSEWIDTH 0x3e8 /*=> period of 250 mS */ #define FLAG_3215 (1 << 0) #define NUM_CARDS 4 #define MAX_ALARMS 10 #define MOD_TYPE_FXS 0 #define MOD_TYPE_FXO 1 #define MINPEGTIME 10 * 8 /* 30 ms peak to peak gets us no more than 100 Hz */ #define PEGTIME 50 * 8 /* 50ms peak to peak gets us rings of 10 Hz or more */ #define PEGCOUNT 5 /* 5 cycles of pegging means RING */ #define NUM_CAL_REGS 12 struct calregs { unsigned char vals[NUM_CAL_REGS]; }; enum proslic_power_warn { PROSLIC_POWER_UNKNOWN = 0, PROSLIC_POWER_ON, PROSLIC_POWER_WARNED, }; enum battery_state { BATTERY_UNKNOWN = 0, BATTERY_PRESENT, BATTERY_LOST, }; struct wctdm { struct pci_dev *dev; char *variety; struct dahdi_span span; struct dahdi_device *ddev; unsigned char ios; int usecount; unsigned int intcount; int dead; int pos; int flags[NUM_CARDS]; int freeregion; int alt; int curcard; int cardflag; /* Bit-map of present cards */ enum proslic_power_warn proslic_power; spinlock_t lock; union { struct fxo { #ifdef AUDIO_RINGCHECK unsigned int pegtimer; int pegcount; int peg; int ring; #else int wasringing; int lastrdtx; #endif int ringdebounce; int offhook; unsigned int battdebounce; unsigned int battalarm; enum battery_state battery; int lastpol; int polarity; int polaritydebounce; } fxo; struct fxs { int oldrxhook; int debouncehook; int lastrxhook; int debounce; int ohttimer; int idletxhookstate; /* IDLE changing hook state */ int lasttxhook; int palarms; int reversepolarity; /* Reverse Line */ int mwisendtype; struct dahdi_vmwi_info vmwisetting; int vmwi_active_messages; u32 vmwi_lrev:1; /*MWI Line Reversal*/ u32 vmwi_hvdc:1; /*MWI High Voltage DC Idle line*/ u32 vmwi_hvac:1; /*MWI Neon High Voltage AC Idle line*/ u32 neonringing:1; /*Ring Generator is set for NEON*/ struct calregs calregs; } fxs; } mod[NUM_CARDS]; /* Receive hook state and debouncing */ int modtype[NUM_CARDS]; unsigned char reg0shadow[NUM_CARDS]; unsigned char reg1shadow[NUM_CARDS]; unsigned long ioaddr; dma_addr_t readdma; dma_addr_t writedma; volatile unsigned int *writechunk; /* Double-word aligned write memory */ volatile unsigned int *readchunk; /* Double-word aligned read memory */ struct dahdi_chan _chans[NUM_CARDS]; struct dahdi_chan *chans[NUM_CARDS]; }; struct wctdm_desc { char *name; int flags; }; static struct wctdm_desc wctdm = { "Wildcard S400P Prototype", 0 }; static struct wctdm_desc wctdme = { "Wildcard TDM400P REV E/F", 0 }; static struct wctdm_desc wctdmh = { "Wildcard TDM400P REV H", 0 }; static struct wctdm_desc wctdmi = { "Wildcard TDM400P REV I", 0 }; static int acim2tiss[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 }; static struct wctdm *ifaces[WC_MAX_IFACES]; static void wctdm_release(struct wctdm *wc); static unsigned int fxovoltage; static unsigned int battdebounce; static unsigned int battalarm; static unsigned int battthresh; static int ringdebounce = DEFAULT_RING_DEBOUNCE; /* times 4, because must be a multiple of 4ms: */ static int dialdebounce = 8 * 8; static int fwringdetect = 0; static int debug = 0; static int robust = 0; static int timingonly = 0; static int lowpower = 0; static int boostringer = 0; static int fastringer = 0; static int _opermode = 0; static char *opermode = "FCC"; static int fxshonormode = 0; static int alawoverride = 0; static int fastpickup = 0; static int fxotxgain = 0; static int fxorxgain = 0; static int fxstxgain = 0; static int fxsrxgain = 0; static int wctdm_init_proslic(struct wctdm *wc, int card, int fast , int manual, int sane); static int wctdm_init_ring_generator_mode(struct wctdm *wc, int card); static int wctdm_set_ring_generator_mode(struct wctdm *wc, int card, int mode); static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char ints) { volatile unsigned int *writechunk; int x; if (ints & 0x01) /* Write is at interrupt address. Start writing from normal offset */ writechunk = wc->writechunk; else writechunk = wc->writechunk + DAHDI_CHUNKSIZE; /* Calculate Transmission */ dahdi_transmit(&wc->span); for (x=0;xcardflag & (1 << 3)) writechunk[x] |= (wc->chans[3]->writechunk[x]); if (wc->cardflag & (1 << 2)) writechunk[x] |= (wc->chans[2]->writechunk[x] << 8); if (wc->cardflag & (1 << 1)) writechunk[x] |= (wc->chans[1]->writechunk[x] << 16); if (wc->cardflag & (1 << 0)) writechunk[x] |= (wc->chans[0]->writechunk[x] << 24); #else if (wc->cardflag & (1 << 3)) writechunk[x] |= (wc->chans[3]->writechunk[x] << 24); if (wc->cardflag & (1 << 2)) writechunk[x] |= (wc->chans[2]->writechunk[x] << 16); if (wc->cardflag & (1 << 1)) writechunk[x] |= (wc->chans[1]->writechunk[x] << 8); if (wc->cardflag & (1 << 0)) writechunk[x] |= (wc->chans[0]->writechunk[x]); #endif } } #ifdef AUDIO_RINGCHECK static inline void ring_check(struct wctdm *wc, int card) { int x; short sample; if (wc->modtype[card] != MOD_TYPE_FXO) return; wc->mod[card].fxo.pegtimer += DAHDI_CHUNKSIZE; for (x=0;xchans[card].readchunk[x], (&(wc->chans[card]))); if ((sample > 10000) && (wc->mod[card].fxo.peg != 1)) { if (debug > 1) printk(KERN_DEBUG "High peg!\n"); if ((wc->mod[card].fxo.pegtimer < PEGTIME) && (wc->mod[card].fxo.pegtimer > MINPEGTIME)) wc->mod[card].fxo.pegcount++; wc->mod[card].fxo.pegtimer = 0; wc->mod[card].fxo.peg = 1; } else if ((sample < -10000) && (wc->mod[card].fxo.peg != -1)) { if (debug > 1) printk(KERN_DEBUG "Low peg!\n"); if ((wc->mod[card].fxo.pegtimer < (PEGTIME >> 2)) && (wc->mod[card].fxo.pegtimer > (MINPEGTIME >> 2))) wc->mod[card].fxo.pegcount++; wc->mod[card].fxo.pegtimer = 0; wc->mod[card].fxo.peg = -1; } } if (wc->mod[card].fxo.pegtimer > PEGTIME) { /* Reset pegcount if our timer expires */ wc->mod[card].fxo.pegcount = 0; } /* Decrement debouncer if appropriate */ if (wc->mod[card].fxo.ringdebounce) wc->mod[card].fxo.ringdebounce--; if (!wc->mod[card].fxo.offhook && !wc->mod[card].fxo.ringdebounce) { if (!wc->mod[card].fxo.ring && (wc->mod[card].fxo.pegcount > PEGCOUNT)) { /* It's ringing */ if (debug) printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1); if (!wc->mod[card].fxo.offhook) dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING); wc->mod[card].fxo.ring = 1; } if (wc->mod[card].fxo.ring && !wc->mod[card].fxo.pegcount) { /* No more ring */ if (debug) printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1); dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK); wc->mod[card].fxo.ring = 0; } } } #endif static inline void wctdm_receiveprep(struct wctdm *wc, unsigned char ints) { volatile unsigned int *readchunk; int x; if (ints & 0x08) readchunk = wc->readchunk + DAHDI_CHUNKSIZE; else /* Read is at interrupt address. Valid data is available at normal offset */ readchunk = wc->readchunk; for (x=0;xcardflag & (1 << 3)) wc->chans[3]->readchunk[x] = (readchunk[x]) & 0xff; if (wc->cardflag & (1 << 2)) wc->chans[2]->readchunk[x] = (readchunk[x] >> 8) & 0xff; if (wc->cardflag & (1 << 1)) wc->chans[1]->readchunk[x] = (readchunk[x] >> 16) & 0xff; if (wc->cardflag & (1 << 0)) wc->chans[0]->readchunk[x] = (readchunk[x] >> 24) & 0xff; #else if (wc->cardflag & (1 << 3)) wc->chans[3]->readchunk[x] = (readchunk[x] >> 24) & 0xff; if (wc->cardflag & (1 << 2)) wc->chans[2]->readchunk[x] = (readchunk[x] >> 16) & 0xff; if (wc->cardflag & (1 << 1)) wc->chans[1]->readchunk[x] = (readchunk[x] >> 8) & 0xff; if (wc->cardflag & (1 << 0)) wc->chans[0]->readchunk[x] = (readchunk[x]) & 0xff; #endif } #ifdef AUDIO_RINGCHECK for (x=0;xcards;x++) ring_check(wc, x); #endif /* XXX We're wasting 8 taps. We should get closer :( */ for (x = 0; x < NUM_CARDS; x++) { if (wc->cardflag & (1 << x)) dahdi_ec_chunk(wc->chans[x], wc->chans[x]->readchunk, wc->chans[x]->writechunk); } dahdi_receive(&wc->span); } static void wctdm_stop_dma(struct wctdm *wc); static void wctdm_reset_tdm(struct wctdm *wc); static void wctdm_restart_dma(struct wctdm *wc); static inline void __write_8bits(struct wctdm *wc, unsigned char bits) { /* Out BIT_CS --\________________________________/---- */ /* Out BIT_SCLK ---\_/-\_/-\_/-\_/-\_/-\_/-\_/-\_/------ */ /* Out BIT_SDI ---\___/---\___/---\___/---\___/-------- */ /* Data Bit 7 6 5 4 3 2 1 0 */ /* Data written 0 1 0 1 0 1 0 1 */ int x; /* Drop chip select */ wc->ios &= ~BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); for (x=0;x<8;x++) { /* Send out each bit, MSB first, drop SCLK as we do so */ if (bits & 0x80) wc->ios |= BIT_SDI; else wc->ios &= ~BIT_SDI; wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Now raise SCLK high again and repeat */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); bits <<= 1; } /* Finally raise CS back high again */ wc->ios |= BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); } static inline void __reset_spi(struct wctdm *wc) { /* Drop chip select and clock once and raise and clock once */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); wc->ios &= ~BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); wc->ios |= BIT_SDI; wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Now raise SCLK high again and repeat */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Finally raise CS back high again */ wc->ios |= BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Clock again */ wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Now raise SCLK high again and repeat */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); } static inline unsigned char __read_8bits(struct wctdm *wc) { /* Out BIT_CS --\________________________________________/----*/ /* Out BIT_SCLK ---\_/--\_/--\_/--\_/--\_/--\_/--\_/--\_/-------*/ /* In BIT_SDO ????/1111\0000/1111\0000/1111\0000/1111\0000/???*/ /* Data bit 7 6 5 4 3 2 1 0 */ /* Data Read 1 0 1 0 1 0 1 0 */ /* Note: Clock High time is 2x Low time, due to input read */ unsigned char res=0, c; int x; /* Drop chip select */ wc->ios &= ~BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); for (x=0;x<8;x++) { res <<= 1; /* Drop SCLK */ wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Now raise SCLK high again */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Read back the value */ c = inb(wc->ioaddr + WC_AUXR); if (c & BIT_SDO) res |= 1; } /* Finally raise CS back high again */ wc->ios |= BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); /* And return our result */ return res; } static void __wctdm_setcreg(struct wctdm *wc, unsigned char reg, unsigned char val) { outb(val, wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2)); } static unsigned char __wctdm_getcreg(struct wctdm *wc, unsigned char reg) { return inb(wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2)); } static inline void __wctdm_setcard(struct wctdm *wc, int card) { if (wc->curcard != card) { __wctdm_setcreg(wc, WC_CS, (1 << card)); wc->curcard = card; } } static void __wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value) { __wctdm_setcard(wc, card); if (wc->modtype[card] == MOD_TYPE_FXO) { __write_8bits(wc, 0x20); __write_8bits(wc, reg & 0x7f); } else { __write_8bits(wc, reg & 0x7f); } __write_8bits(wc, value); } static void wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value) { unsigned long flags; spin_lock_irqsave(&wc->lock, flags); __wctdm_setreg(wc, card, reg, value); spin_unlock_irqrestore(&wc->lock, flags); } static unsigned char __wctdm_getreg(struct wctdm *wc, int card, unsigned char reg) { __wctdm_setcard(wc, card); if (wc->modtype[card] == MOD_TYPE_FXO) { __write_8bits(wc, 0x60); __write_8bits(wc, reg & 0x7f); } else { __write_8bits(wc, reg | 0x80); } return __read_8bits(wc); } static inline void reset_spi(struct wctdm *wc, int card) { unsigned long flags; spin_lock_irqsave(&wc->lock, flags); __wctdm_setcard(wc, card); __reset_spi(wc); __reset_spi(wc); spin_unlock_irqrestore(&wc->lock, flags); } static unsigned char wctdm_getreg(struct wctdm *wc, int card, unsigned char reg) { unsigned long flags; unsigned char res; spin_lock_irqsave(&wc->lock, flags); res = __wctdm_getreg(wc, card, reg); spin_unlock_irqrestore(&wc->lock, flags); return res; } static int __wait_access(struct wctdm *wc, int card) { unsigned char data = 0; int count = 0; #define MAX 6000 /* attempts */ /* Wait for indirect access */ while (count++ < MAX) { data = __wctdm_getreg(wc, card, I_STATUS); if (!data) return 0; } if(count > (MAX-1)) printk(KERN_NOTICE " ##### Loop error (%02x) #####\n", data); return 0; } static unsigned char translate_3215(unsigned char address) { int x; for (x=0;xflags[card] & FLAG_3215) { address = translate_3215(address); if (address == 255) return 0; } spin_lock_irqsave(&wc->lock, flags); if(!__wait_access(wc, card)) { __wctdm_setreg(wc, card, IDA_LO,(unsigned char)(data & 0xFF)); __wctdm_setreg(wc, card, IDA_HI,(unsigned char)((data & 0xFF00)>>8)); __wctdm_setreg(wc, card, IAA,address); res = 0; }; spin_unlock_irqrestore(&wc->lock, flags); return res; } static int wctdm_proslic_getreg_indirect(struct wctdm *wc, int card, unsigned char address) { unsigned long flags; int res = -1; char *p=NULL; /* Translate 3215 addresses */ if (wc->flags[card] & FLAG_3215) { address = translate_3215(address); if (address == 255) return 0; } spin_lock_irqsave(&wc->lock, flags); if (!__wait_access(wc, card)) { __wctdm_setreg(wc, card, IAA, address); if (!__wait_access(wc, card)) { unsigned char data1, data2; data1 = __wctdm_getreg(wc, card, IDA_LO); data2 = __wctdm_getreg(wc, card, IDA_HI); res = data1 | (data2 << 8); } else p = "Failed to wait inside\n"; } else p = "failed to wait\n"; spin_unlock_irqrestore(&wc->lock, flags); if (p) printk(KERN_NOTICE "%s", p); return res; } static int wctdm_proslic_init_indirect_regs(struct wctdm *wc, int card) { unsigned char i; for (i=0; iflags[card] & FLAG_3215) || (indirect_regs[i].altaddr != 255))) { printk(KERN_NOTICE "!!!!!!! %s iREG %X = %X should be %X\n", indirect_regs[i].name,indirect_regs[i].address,j,initial ); passed = 0; } } if (passed) { if (debug) printk(KERN_DEBUG "Init Indirect Registers completed successfully.\n"); } else { printk(KERN_NOTICE " !!!!! Init Indirect Registers UNSUCCESSFULLY.\n"); return -1; } return 0; } static inline void wctdm_proslic_recheck_sanity(struct wctdm *wc, int card) { struct fxs *const fxs = &wc->mod[card].fxs; int res; /* Check loopback */ res = wc->reg1shadow[card]; if (!res && (res != fxs->lasttxhook)) { res = wctdm_getreg(wc, card, 8); if (res) { printk(KERN_NOTICE "Ouch, part reset, quickly restoring reality (%d)\n", card); wctdm_init_proslic(wc, card, 1, 0, 1); } else { if (fxs->palarms++ < MAX_ALARMS) { printk(KERN_NOTICE "Power alarm on module %d, resetting!\n", card + 1); if (fxs->lasttxhook == SLIC_LF_RINGING) fxs->lasttxhook = SLIC_LF_ACTIVE_FWD; wctdm_setreg(wc, card, 64, fxs->lasttxhook); } else { if (fxs->palarms == MAX_ALARMS) printk(KERN_NOTICE "Too many power alarms on card %d, NOT resetting!\n", card + 1); } } } } static inline void wctdm_voicedaa_check_hook(struct wctdm *wc, int card) { #define MS_PER_CHECK_HOOK 16 #ifndef AUDIO_RINGCHECK unsigned char res; #endif signed char b; int errors = 0; struct fxo *fxo = &wc->mod[card].fxo; /* Try to track issues that plague slot one FXO's */ b = wc->reg0shadow[card]; if ((b & 0x2) || !(b & 0x8)) { /* Not good -- don't look at anything else */ if (debug) printk(KERN_DEBUG "Error (%02x) on card %d!\n", b, card + 1); errors++; } b &= 0x9b; if (fxo->offhook) { if (b != 0x9) wctdm_setreg(wc, card, 5, 0x9); } else { if (b != 0x8) wctdm_setreg(wc, card, 5, 0x8); } if (errors) return; if (!fxo->offhook) { if (fwringdetect) { res = wc->reg0shadow[card] & 0x60; if (fxo->ringdebounce) { --fxo->ringdebounce; if (res && (res != fxo->lastrdtx) && (fxo->battery == BATTERY_PRESENT)) { if (!fxo->wasringing) { fxo->wasringing = 1; if (debug) printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1); dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING); } fxo->lastrdtx = res; fxo->ringdebounce = 10; } else if (!res) { if ((fxo->ringdebounce == 0) && fxo->wasringing) { fxo->wasringing = 0; if (debug) printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1); dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK); } } } else if (res && (fxo->battery == BATTERY_PRESENT)) { fxo->lastrdtx = res; fxo->ringdebounce = 10; } } else { res = wc->reg0shadow[card]; if ((res & 0x60) && (fxo->battery == BATTERY_PRESENT)) { fxo->ringdebounce += (DAHDI_CHUNKSIZE * 16); if (fxo->ringdebounce >= DAHDI_CHUNKSIZE * ringdebounce) { if (!fxo->wasringing) { fxo->wasringing = 1; dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING); if (debug) printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1); } fxo->ringdebounce = DAHDI_CHUNKSIZE * ringdebounce; } } else { fxo->ringdebounce -= DAHDI_CHUNKSIZE * 4; if (fxo->ringdebounce <= 0) { if (fxo->wasringing) { fxo->wasringing = 0; dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK); if (debug) printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1); } fxo->ringdebounce = 0; } } } } b = wc->reg1shadow[card]; if (fxovoltage) { static int count = 0; if (!(count++ % 100)) { printk(KERN_DEBUG "Card %d: Voltage: %d Debounce %d\n", card + 1, b, fxo->battdebounce); } } if (unlikely(DAHDI_RXSIG_INITIAL == wc->chans[card]->rxhooksig)) { /* * dahdi-base will set DAHDI_RXSIG_INITIAL after a * DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events * will be queued on the channel with the current received * hook state. Channels that use robbed-bit signalling always * report the current received state via the dahdi_rbsbits * call. Since we only call dahdi_hooksig when we've detected * a change to report, let's forget our current state in order * to force us to report it again via dahdi_hooksig. * */ fxo->battery = BATTERY_UNKNOWN; } if (abs(b) < battthresh) { /* possible existing states: battery lost, no debounce timer battery lost, debounce timer (going to battery present) battery present or unknown, no debounce timer battery present or unknown, debounce timer (going to battery lost) */ if (fxo->battery == BATTERY_LOST) { if (fxo->battdebounce) { /* we were going to BATTERY_PRESENT, but battery was lost again, so clear the debounce timer */ fxo->battdebounce = 0; } } else { if (fxo->battdebounce) { /* going to BATTERY_LOST, see if we are there yet */ if (--fxo->battdebounce == 0) { fxo->battery = BATTERY_LOST; if (debug) printk(KERN_DEBUG "NO BATTERY on %d/%d!\n", wc->span.spanno, card + 1); #ifdef JAPAN if (!wc->ohdebounce && wc->offhook) { dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK); if (debug) printk(KERN_DEBUG "Signalled On Hook\n"); #ifdef ZERO_BATT_RING wc->onhook++; #endif } #else dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK); /* set the alarm timer, taking into account that part of its time period has already passed while debouncing occurred */ fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK; #endif } } else { /* start the debounce timer to verify that battery has been lost */ fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK; } } } else { /* possible existing states: battery lost or unknown, no debounce timer battery lost or unknown, debounce timer (going to battery present) battery present, no debounce timer battery present, debounce timer (going to battery lost) */ if (fxo->battery == BATTERY_PRESENT) { if (fxo->battdebounce) { /* we were going to BATTERY_LOST, but battery appeared again, so clear the debounce timer */ fxo->battdebounce = 0; } } else { if (fxo->battdebounce) { /* going to BATTERY_PRESENT, see if we are there yet */ if (--fxo->battdebounce == 0) { fxo->battery = BATTERY_PRESENT; if (debug) printk(KERN_DEBUG "BATTERY on %d/%d (%s)!\n", wc->span.spanno, card + 1, (b < 0) ? "-" : "+"); #ifdef ZERO_BATT_RING if (wc->onhook) { wc->onhook = 0; dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK); if (debug) printk(KERN_DEBUG "Signalled Off Hook\n"); } #else dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK); #endif /* set the alarm timer, taking into account that part of its time period has already passed while debouncing occurred */ fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK; } } else { /* start the debounce timer to verify that battery has appeared */ fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK; } } } if (fxo->lastpol >= 0) { if (b < 0) { fxo->lastpol = -1; fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK; } } if (fxo->lastpol <= 0) { if (b > 0) { fxo->lastpol = 1; fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK; } } if (fxo->battalarm) { if (--fxo->battalarm == 0) { /* the alarm timer has expired, so update the battery alarm state for this channel */ dahdi_alarm_channel(wc->chans[card], fxo->battery == BATTERY_LOST ? DAHDI_ALARM_RED : DAHDI_ALARM_NONE); } } if (fxo->polaritydebounce) { if (--fxo->polaritydebounce == 0) { if (fxo->lastpol != fxo->polarity) { if (debug) printk(KERN_DEBUG "%lu Polarity reversed (%d -> %d)\n", jiffies, fxo->polarity, fxo->lastpol); if (fxo->polarity) dahdi_qevent_lock(wc->chans[card], DAHDI_EVENT_POLARITY); fxo->polarity = fxo->lastpol; } } } #undef MS_PER_CHECK_HOOK } static void wctdm_fxs_hooksig(struct wctdm *wc, const int card, enum dahdi_txsig txsig) { struct fxs *const fxs = &wc->mod[card].fxs; switch (txsig) { case DAHDI_TXSIG_ONHOOK: switch (wc->span.chans[card]->sig) { case DAHDI_SIG_FXOKS: case DAHDI_SIG_FXOLS: /* Can't change Ring Generator during OHT */ if (!fxs->ohttimer) { wctdm_set_ring_generator_mode(wc, card, fxs->vmwi_hvac); fxs->lasttxhook = fxs->vmwi_hvac ? SLIC_LF_RINGING : fxs->idletxhookstate; } else { fxs->lasttxhook = fxs->idletxhookstate; } break; case DAHDI_SIG_EM: fxs->lasttxhook = fxs->idletxhookstate; break; case DAHDI_SIG_FXOGS: fxs->lasttxhook = SLIC_LF_TIP_OPEN; break; } break; case DAHDI_TXSIG_OFFHOOK: switch (wc->span.chans[card]->sig) { case DAHDI_SIG_EM: fxs->lasttxhook = SLIC_LF_ACTIVE_REV; break; default: fxs->lasttxhook = fxs->idletxhookstate; break; } break; case DAHDI_TXSIG_START: /* Set ringer mode */ wctdm_set_ring_generator_mode(wc, card, 0); fxs->lasttxhook = SLIC_LF_RINGING; break; case DAHDI_TXSIG_KEWL: fxs->lasttxhook = SLIC_LF_OPEN; break; default: printk(KERN_NOTICE "wctdm: Can't set tx state to %d\n", txsig); return; } if (debug) { printk(KERN_DEBUG "Setting FXS hook state to %d (%02x)\n", txsig, fxs->lasttxhook); } wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook); } static inline void wctdm_proslic_check_hook(struct wctdm *wc, int card) { struct fxs *const fxs = &wc->mod[card].fxs; char res; int hook; /* For some reason we have to debounce the hook detector. */ res = wc->reg0shadow[card]; hook = (res & 1); if (hook != fxs->lastrxhook) { /* Reset the debounce (must be multiple of 4ms) */ fxs->debounce = dialdebounce * 4; #if 0 printk(KERN_DEBUG "Resetting debounce card %d hook %d, %d\n", card, hook, fxs->debounce); #endif } else { if (fxs->debounce > 0) { fxs->debounce -= 16 * DAHDI_CHUNKSIZE; #if 0 printk(KERN_DEBUG "Sustaining hook %d, %d\n", hook, fxs->debounce); #endif if (!fxs->debounce) { #if 0 printk(KERN_DEBUG "Counted down debounce, newhook: %d...\n", hook); #endif fxs->debouncehook = hook; } if (!fxs->oldrxhook && fxs->debouncehook) { /* Off hook */ #if 1 if (debug) #endif printk(KERN_DEBUG "wctdm: Card %d Going off hook\n", card); switch (fxs->lasttxhook) { case SLIC_LF_RINGING: case SLIC_LF_OHTRAN_FWD: case SLIC_LF_OHTRAN_REV: /* just detected OffHook, during * Ringing or OnHookTransfer */ fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; break; } wctdm_fxs_hooksig(wc, card, DAHDI_TXSIG_OFFHOOK); dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK); if (robust) wctdm_init_proslic(wc, card, 1, 0, 1); fxs->oldrxhook = 1; } else if (fxs->oldrxhook && !fxs->debouncehook) { /* On hook */ #if 1 if (debug) #endif printk(KERN_DEBUG "wctdm: Card %d Going on hook\n", card); wctdm_fxs_hooksig(wc, card, DAHDI_TXSIG_ONHOOK); dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK); fxs->oldrxhook = 0; } } } fxs->lastrxhook = hook; } DAHDI_IRQ_HANDLER(wctdm_interrupt) { struct wctdm *wc = dev_id; unsigned char ints; int x; int mode; ints = inb(wc->ioaddr + WC_INTSTAT); if (!ints) return IRQ_NONE; outb(ints, wc->ioaddr + WC_INTSTAT); if (ints & 0x10) { /* Stop DMA, wait for watchdog */ printk(KERN_INFO "TDM PCI Master abort\n"); wctdm_stop_dma(wc); return IRQ_RETVAL(1); } if (ints & 0x20) { printk(KERN_INFO "PCI Target abort\n"); return IRQ_RETVAL(1); } for (x=0;x<4;x++) { if (wc->cardflag & (1 << x) && (wc->modtype[x] == MOD_TYPE_FXS)) { struct fxs *const fxs = &wc->mod[x].fxs; if (fxs->lasttxhook == SLIC_LF_RINGING && !fxs->neonringing) { /* RINGing, prepare for OHT */ fxs->ohttimer = OHT_TIMER << 3; /* logical XOR 3 variables module parameter 'reversepolarity', global reverse all FXS lines. ioctl channel variable fxs 'reversepolarity', Line Reversal Alert Signal if required. ioctl channel variable fxs 'vmwi_lrev', VMWI pending. */ /* OHT mode when idle */ fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD; } else if (fxs->ohttimer) { /* check if still OnHook */ if (!fxs->oldrxhook) { fxs->ohttimer -= DAHDI_CHUNKSIZE; if (!fxs->ohttimer) { fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; /* Switch to Active, Rev or Fwd */ /* if currently OHT */ if ((fxs->lasttxhook == SLIC_LF_OHTRAN_FWD) || (fxs->lasttxhook == SLIC_LF_OHTRAN_REV)) { if (fxs->vmwi_hvac) { /* force idle polarity Forward if ringing */ fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD; /* Set ring generator for neon */ wctdm_set_ring_generator_mode(wc, x, 1); fxs->lasttxhook = SLIC_LF_RINGING; } else { fxs->lasttxhook = fxs->idletxhookstate; } /* Apply the change as appropriate */ wctdm_setreg(wc, x, LINE_STATE, fxs->lasttxhook); } } } else { fxs->ohttimer = 0; /* Switch to Active, Rev or Fwd */ fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; } } } } if (ints & 0x0f) { wc->intcount++; x = wc->intcount & 0x3; mode = wc->intcount & 0xc; if (wc->cardflag & (1 << x)) { switch(mode) { case 0: /* Rest */ break; case 4: /* Read first shadow reg */ if (wc->modtype[x] == MOD_TYPE_FXS) wc->reg0shadow[x] = wctdm_getreg(wc, x, 68); else if (wc->modtype[x] == MOD_TYPE_FXO) wc->reg0shadow[x] = wctdm_getreg(wc, x, 5); break; case 8: /* Read second shadow reg */ if (wc->modtype[x] == MOD_TYPE_FXS) wc->reg1shadow[x] = wctdm_getreg(wc, x, LINE_STATE); else if (wc->modtype[x] == MOD_TYPE_FXO) wc->reg1shadow[x] = wctdm_getreg(wc, x, 29); break; case 12: /* Perform processing */ if (wc->modtype[x] == MOD_TYPE_FXS) { wctdm_proslic_check_hook(wc, x); if (!(wc->intcount & 0xf0)) { wctdm_proslic_recheck_sanity(wc, x); } } else if (wc->modtype[x] == MOD_TYPE_FXO) { wctdm_voicedaa_check_hook(wc, x); } break; } } if (!(wc->intcount % 10000)) { /* Accept an alarm once per 10 seconds */ for (x=0;x<4;x++) if (wc->modtype[x] == MOD_TYPE_FXS) { if (wc->mod[x].fxs.palarms) wc->mod[x].fxs.palarms--; } } wctdm_receiveprep(wc, ints); wctdm_transmitprep(wc, ints); } return IRQ_RETVAL(1); } static int wctdm_voicedaa_insane(struct wctdm *wc, int card) { int blah; blah = wctdm_getreg(wc, card, 2); if (blah != 0x3) return -2; blah = wctdm_getreg(wc, card, 11); if (debug) printk(KERN_DEBUG "VoiceDAA System: %02x\n", blah & 0xf); return 0; } static int wctdm_proslic_insane(struct wctdm *wc, int card) { int blah,insane_report; insane_report=0; blah = wctdm_getreg(wc, card, 0); if (debug) printk(KERN_DEBUG "ProSLIC on module %d, product %d, version %d\n", card, (blah & 0x30) >> 4, (blah & 0xf)); #if 0 if ((blah & 0x30) >> 4) { printk(KERN_DEBUG "ProSLIC on module %d is not a 3210.\n", card); return -1; } #endif if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) { /* SLIC not loaded */ return -1; } if ((blah & 0xf) < 2) { printk(KERN_NOTICE "ProSLIC 3210 version %d is too old\n", blah & 0xf); return -1; } if (wctdm_getreg(wc, card, 1) & 0x80) /* ProSLIC 3215, not a 3210 */ wc->flags[card] |= FLAG_3215; blah = wctdm_getreg(wc, card, 8); if (blah != 0x2) { printk(KERN_NOTICE "ProSLIC on module %d insane (1) %d should be 2\n", card, blah); return -1; } else if ( insane_report) printk(KERN_NOTICE "ProSLIC on module %d Reg 8 Reads %d Expected is 0x2\n",card,blah); blah = wctdm_getreg(wc, card, 64); if (blah != 0x0) { printk(KERN_NOTICE "ProSLIC on module %d insane (2)\n", card); return -1; } else if ( insane_report) printk(KERN_NOTICE "ProSLIC on module %d Reg 64 Reads %d Expected is 0x0\n",card,blah); blah = wctdm_getreg(wc, card, 11); if (blah != 0x33) { printk(KERN_NOTICE "ProSLIC on module %d insane (3)\n", card); return -1; } else if ( insane_report) printk(KERN_NOTICE "ProSLIC on module %d Reg 11 Reads %d Expected is 0x33\n",card,blah); /* Just be sure it's setup right. */ wctdm_setreg(wc, card, 30, 0); if (debug) printk(KERN_DEBUG "ProSLIC on module %d seems sane.\n", card); return 0; } static int wctdm_proslic_powerleak_test(struct wctdm *wc, int card) { unsigned long origjiffies; unsigned char vbat; /* Turn off linefeed */ wctdm_setreg(wc, card, 64, 0); /* Power down */ wctdm_setreg(wc, card, 14, 0x10); /* Wait for one second */ origjiffies = jiffies; while((vbat = wctdm_getreg(wc, card, 82)) > 0x6) { if ((jiffies - origjiffies) >= (HZ/2)) break;; } if (vbat < 0x06) { printk(KERN_NOTICE "Excessive leakage detected on module %d: %d volts (%02x) after %d ms\n", card, 376 * vbat / 1000, vbat, (int)((jiffies - origjiffies) * 1000 / HZ)); return -1; } else if (debug) { printk(KERN_NOTICE "Post-leakage voltage: %d volts\n", 376 * vbat / 1000); } return 0; } static int wctdm_powerup_proslic(struct wctdm *wc, int card, int fast) { unsigned char vbat; unsigned long origjiffies; int lim; /* Set period of DC-DC converter to 1/64 khz */ wctdm_setreg(wc, card, 92, 0xff /* was 0xff */); /* Wait for VBat to powerup */ origjiffies = jiffies; /* Disable powerdown */ wctdm_setreg(wc, card, 14, 0); /* If fast, don't bother checking anymore */ if (fast) return 0; while((vbat = wctdm_getreg(wc, card, 82)) < 0xc0) { /* Wait no more than 500ms */ if ((jiffies - origjiffies) > HZ/2) { break; } } if (vbat < 0xc0) { if (wc->proslic_power == PROSLIC_POWER_UNKNOWN) printk(KERN_NOTICE "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM400P??\n", card, (int)(((jiffies - origjiffies) * 1000 / HZ)), vbat * 375); wc->proslic_power = PROSLIC_POWER_WARNED; return -1; } else if (debug) { printk(KERN_DEBUG "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); } wc->proslic_power = PROSLIC_POWER_ON; /* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */ /* If out of range, just set it to the default value */ lim = (loopcurrent - 20) / 3; if ( loopcurrent > 41 ) { lim = 0; if (debug) printk(KERN_DEBUG "Loop current out of range! Setting to default 20mA!\n"); } else if (debug) printk(KERN_DEBUG "Loop current set to %dmA!\n",(lim*3)+20); wctdm_setreg(wc,card,LOOP_I_LIMIT,lim); /* Engage DC-DC converter */ wctdm_setreg(wc, card, 93, 0x19 /* was 0x19 */); #if 0 origjiffies = jiffies; while(0x80 & wctdm_getreg(wc, card, 93)) { if ((jiffies - origjiffies) > 2 * HZ) { printk(KERN_DEBUG "Timeout waiting for DC-DC calibration on module %d\n", card); return -1; } } #if 0 /* Wait a full two seconds */ while((jiffies - origjiffies) < 2 * HZ); /* Just check to be sure */ vbat = wctdm_getreg(wc, card, 82); printk(KERN_DEBUG "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); #endif #endif return 0; } static int wctdm_proslic_manual_calibrate(struct wctdm *wc, int card){ unsigned long origjiffies; unsigned char i; wctdm_setreg(wc, card, 21, 0);//(0) Disable all interupts in DR21 wctdm_setreg(wc, card, 22, 0);//(0)Disable all interupts in DR21 wctdm_setreg(wc, card, 23, 0);//(0)Disable all interupts in DR21 wctdm_setreg(wc, card, 64, 0);//(0) wctdm_setreg(wc, card, 97, 0x18); //(0x18)Calibrations without the ADC and DAC offset and without common mode calibration. wctdm_setreg(wc, card, 96, 0x47); //(0x47) Calibrate common mode and differential DAC mode DAC + ILIM origjiffies=jiffies; while( wctdm_getreg(wc,card,96)!=0 ){ if((jiffies-origjiffies)>80) return -1; } //Initialized DR 98 and 99 to get consistant results. // 98 and 99 are the results registers and the search should have same intial conditions. /*******************************The following is the manual gain mismatch calibration****************************/ /*******************************This is also available as a function *******************************************/ // Delay 10ms origjiffies=jiffies; while((jiffies-origjiffies)<1); wctdm_proslic_setreg_indirect(wc, card, 88, 0); wctdm_proslic_setreg_indirect(wc, card, 89, 0); wctdm_proslic_setreg_indirect(wc, card, 90, 0); wctdm_proslic_setreg_indirect(wc, card, 91, 0); wctdm_proslic_setreg_indirect(wc, card, 92, 0); wctdm_proslic_setreg_indirect(wc, card, 93, 0); wctdm_setreg(wc, card, 98, 0x10); // This is necessary if the calibration occurs other than at reset time wctdm_setreg(wc, card, 99, 0x10); for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, card, 98, i); origjiffies=jiffies; while((jiffies-origjiffies)<4); if((wctdm_getreg(wc, card, 88)) == 0) break; } // for for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, card, 99, i); origjiffies=jiffies; while((jiffies-origjiffies)<4); if((wctdm_getreg(wc, card, 89)) == 0) break; }//for /*******************************The preceding is the manual gain mismatch calibration****************************/ /**********************************The following is the longitudinal Balance Cal***********************************/ wctdm_setreg(wc,card,64,1); while((jiffies-origjiffies)<10); // Sleep 100? wctdm_setreg(wc, card, 64, 0); wctdm_setreg(wc, card, 23, 0x4); // enable interrupt for the balance Cal wctdm_setreg(wc, card, 97, 0x1); // this is a singular calibration bit for longitudinal calibration wctdm_setreg(wc, card, 96, 0x40); wctdm_getreg(wc, card, 96); /* Read Reg 96 just cause */ wctdm_setreg(wc, card, 21, 0xFF); wctdm_setreg(wc, card, 22, 0xFF); wctdm_setreg(wc, card, 23, 0xFF); /**The preceding is the longitudinal Balance Cal***/ return(0); } #if 1 static int wctdm_proslic_calibrate(struct wctdm *wc, int card) { unsigned long origjiffies; int x; /* Perform all calibrations */ wctdm_setreg(wc, card, 97, 0x1f); /* Begin, no speedup */ wctdm_setreg(wc, card, 96, 0x5f); /* Wait for it to finish */ origjiffies = jiffies; while(wctdm_getreg(wc, card, 96)) { if ((jiffies - origjiffies) > 2 * HZ) { printk(KERN_NOTICE "Timeout waiting for calibration of module %d\n", card); return -1; } } if (debug) { /* Print calibration parameters */ printk(KERN_DEBUG "Calibration Vector Regs 98 - 107: \n"); for (x=98;x<108;x++) { printk(KERN_DEBUG "%d: %02x\n", x, wctdm_getreg(wc, card, x)); } } return 0; } #endif static void wait_just_a_bit(int foo) { long newjiffies; newjiffies = jiffies + foo; while(jiffies < newjiffies); } /********************************************************************* * Set the hwgain on the analog modules * * card = the card position for this module (0-23) * gain = gain in dB x10 (e.g. -3.5dB would be gain=-35) * tx = (0 for rx; 1 for tx) * *******************************************************************/ static int wctdm_set_hwgain(struct wctdm *wc, int card, __s32 gain, __u32 tx) { if (!(wc->modtype[card] == MOD_TYPE_FXO)) { printk(KERN_NOTICE "Cannot adjust gain. Unsupported module type!\n"); return -1; } if (tx) { if (debug) printk(KERN_DEBUG "setting FXO tx gain for card=%d to %d\n", card, gain); if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, card, 38, 16 + (gain/-10)); wctdm_setreg(wc, card, 40, 16 + (-gain%10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, card, 38, gain/10); wctdm_setreg(wc, card, 40, (gain%10)); } else { printk(KERN_INFO "FXO tx gain is out of range (%d)\n", gain); return -1; } } else { /* rx */ if (debug) printk(KERN_DEBUG "setting FXO rx gain for card=%d to %d\n", card, gain); if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, card, 39, 16+ (gain/-10)); wctdm_setreg(wc, card, 41, 16 + (-gain%10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, card, 39, gain/10); wctdm_setreg(wc, card, 41, (gain%10)); } else { printk(KERN_INFO "FXO rx gain is out of range (%d)\n", gain); return -1; } } return 0; } static int set_vmwi(struct wctdm * wc, int chan_idx) { struct fxs *const fxs = &wc->mod[chan_idx].fxs; if (fxs->vmwi_active_messages) { fxs->vmwi_lrev = (fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV) ? 1 : 0; fxs->vmwi_hvdc = (fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVDC) ? 1 : 0; fxs->vmwi_hvac = (fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVAC) ? 1 : 0; } else { fxs->vmwi_lrev = 0; fxs->vmwi_hvdc = 0; fxs->vmwi_hvac = 0; } if (debug) { printk(KERN_DEBUG "Setting VMWI on channel %d, messages=%d, " "lrev=%d, hvdc=%d, hvac=%d\n", chan_idx, fxs->vmwi_active_messages, fxs->vmwi_lrev, fxs->vmwi_hvdc, fxs->vmwi_hvac ); } if (fxs->vmwi_hvac) { /* Can't change ring generator while in On Hook Transfer mode*/ if (!fxs->ohttimer) { if (POLARITY_XOR) fxs->idletxhookstate |= SLIC_LF_REVMASK; else fxs->idletxhookstate &= ~SLIC_LF_REVMASK; /* Set ring generator for neon */ wctdm_set_ring_generator_mode(wc, chan_idx, 1); /* Activate ring to send neon pulses */ fxs->lasttxhook = SLIC_LF_RINGING; wctdm_setreg(wc, chan_idx, LINE_STATE, fxs->lasttxhook); } } else { if (fxs->neonringing) { /* Set ring generator for normal ringer */ wctdm_set_ring_generator_mode(wc, chan_idx, 0); /* ACTIVE, polarity determined later */ fxs->lasttxhook = SLIC_LF_ACTIVE_FWD; } else if ((fxs->lasttxhook == SLIC_LF_RINGING) || (fxs->lasttxhook == SLIC_LF_OPEN)) { /* Can't change polarity while ringing or when open, set idlehookstate instead */ if (POLARITY_XOR) fxs->idletxhookstate |= SLIC_LF_REVMASK; else fxs->idletxhookstate &= ~SLIC_LF_REVMASK; printk(KERN_DEBUG "Unable to change polarity on channel" "%d, lasttxhook=0x%X\n", chan_idx, fxs->lasttxhook ); return 0; } if (POLARITY_XOR) { fxs->idletxhookstate |= SLIC_LF_REVMASK; fxs->lasttxhook |= SLIC_LF_REVMASK; } else { fxs->idletxhookstate &= ~SLIC_LF_REVMASK; fxs->lasttxhook &= ~SLIC_LF_REVMASK; } wctdm_setreg(wc, chan_idx, LINE_STATE, fxs->lasttxhook); } return 0; } static int wctdm_init_voicedaa(struct wctdm *wc, int card, int fast, int manual, int sane) { unsigned char reg16=0, reg26=0, reg30=0, reg31=0; long newjiffies; wc->modtype[card] = MOD_TYPE_FXO; /* Sanity check the ProSLIC */ reset_spi(wc, card); if (!sane && wctdm_voicedaa_insane(wc, card)) return -2; /* Software reset */ wctdm_setreg(wc, card, 1, 0x80); /* Wait just a bit */ wait_just_a_bit(HZ/10); /* Enable PCM, ulaw */ if (alawoverride){ wctdm_setreg(wc, card, 33, 0x20); } else { wctdm_setreg(wc, card, 33, 0x28); } /* Set On-hook speed, Ringer impedence, and ringer threshold */ reg16 |= (fxo_modes[_opermode].ohs << 6); reg16 |= (fxo_modes[_opermode].rz << 1); reg16 |= (fxo_modes[_opermode].rt); wctdm_setreg(wc, card, 16, reg16); if(fwringdetect) { /* Enable ring detector full-wave rectifier mode */ wctdm_setreg(wc, card, 18, 2); wctdm_setreg(wc, card, 24, 0); } else { /* Set to the device defaults */ wctdm_setreg(wc, card, 18, 0); wctdm_setreg(wc, card, 24, 0x19); } /* Set DC Termination: Tip/Ring voltage adjust, minimum operational current, current limitation */ reg26 |= (fxo_modes[_opermode].dcv << 6); reg26 |= (fxo_modes[_opermode].mini << 4); reg26 |= (fxo_modes[_opermode].ilim << 1); wctdm_setreg(wc, card, 26, reg26); /* Set AC Impedence */ reg30 = (fxo_modes[_opermode].acim); wctdm_setreg(wc, card, 30, reg30); /* Misc. DAA parameters */ if (fastpickup) reg31 = 0xe3; else reg31 = 0xa3; reg31 |= (fxo_modes[_opermode].ohs2 << 3); wctdm_setreg(wc, card, 31, reg31); /* Set Transmit/Receive timeslot */ wctdm_setreg(wc, card, 34, (3-card) * 8); wctdm_setreg(wc, card, 35, 0x00); wctdm_setreg(wc, card, 36, (3-card) * 8); wctdm_setreg(wc, card, 37, 0x00); /* Enable ISO-Cap */ wctdm_setreg(wc, card, 6, 0x00); if (fastpickup) wctdm_setreg(wc, card, 17, wctdm_getreg(wc, card, 17) | 0x20); /* Wait 1000ms for ISO-cap to come up */ newjiffies = jiffies; newjiffies += 2 * HZ; while((jiffies < newjiffies) && !(wctdm_getreg(wc, card, 11) & 0xf0)) wait_just_a_bit(HZ/10); if (!(wctdm_getreg(wc, card, 11) & 0xf0)) { printk(KERN_NOTICE "VoiceDAA did not bring up ISO link properly!\n"); return -1; } if (debug) printk(KERN_DEBUG "ISO-Cap is now up, line side: %02x rev %02x\n", wctdm_getreg(wc, card, 11) >> 4, (wctdm_getreg(wc, card, 13) >> 2) & 0xf); /* Enable on-hook line monitor */ wctdm_setreg(wc, card, 5, 0x08); /* Take values for fxotxgain and fxorxgain and apply them to module */ wctdm_set_hwgain(wc, card, fxotxgain, 1); wctdm_set_hwgain(wc, card, fxorxgain, 0); /* NZ -- crank the tx gain up by 7 dB */ if (!strcmp(fxo_modes[_opermode].name, "NEWZEALAND")) { printk(KERN_INFO "Adjusting gain\n"); wctdm_set_hwgain(wc, card, 7, 1); } if(debug) printk(KERN_DEBUG "DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wctdm_getreg(wc, card, 38)/16)?-(wctdm_getreg(wc, card, 38) - 16) : wctdm_getreg(wc, card, 38), (wctdm_getreg(wc, card, 40)/16)? -(wctdm_getreg(wc, card, 40) - 16):wctdm_getreg(wc, card, 40), (wctdm_getreg(wc, card, 39)/16)? -(wctdm_getreg(wc, card, 39) - 16) : wctdm_getreg(wc, card, 39),(wctdm_getreg(wc, card, 41)/16)?-(wctdm_getreg(wc, card, 41) - 16):wctdm_getreg(wc, card, 41)); return 0; } static int wctdm_init_proslic(struct wctdm *wc, int card, int fast, int manual, int sane) { unsigned short tmp[5]; unsigned char r19,r9; int x; int fxsmode=0; struct fxs *const fxs = &wc->mod[card].fxs; /* Sanity check the ProSLIC */ if (!sane && wctdm_proslic_insane(wc, card)) return -2; /* default messages to none and method to FSK */ memset(&fxs->vmwisetting, 0, sizeof(fxs->vmwisetting)); fxs->vmwi_lrev = 0; fxs->vmwi_hvdc = 0; fxs->vmwi_hvac = 0; /* By default, don't send on hook */ if (!reversepolarity != !fxs->reversepolarity) fxs->idletxhookstate = SLIC_LF_ACTIVE_REV; else fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD; if (sane) { /* Make sure we turn off the DC->DC converter to prevent anything from blowing up */ wctdm_setreg(wc, card, 14, 0x10); } if (wctdm_proslic_init_indirect_regs(wc, card)) { printk(KERN_INFO "Indirect Registers failed to initialize on module %d.\n", card); return -1; } /* Clear scratch pad area */ wctdm_proslic_setreg_indirect(wc, card, 97,0); /* Clear digital loopback */ wctdm_setreg(wc, card, 8, 0); /* Revision C optimization */ wctdm_setreg(wc, card, 108, 0xeb); /* Disable automatic VBat switching for safety to prevent Q7 from accidently turning on and burning out. */ wctdm_setreg(wc, card, 67, 0x07); /* Note, if pulse dialing has problems at high REN loads change this to 0x17 */ /* Turn off Q7 */ wctdm_setreg(wc, card, 66, 1); /* Flush ProSLIC digital filters by setting to clear, while saving old values */ for (x=0;x<5;x++) { tmp[x] = wctdm_proslic_getreg_indirect(wc, card, x + 35); wctdm_proslic_setreg_indirect(wc, card, x + 35, 0x8000); } /* Power up the DC-DC converter */ if (wctdm_powerup_proslic(wc, card, fast)) { printk(KERN_NOTICE "Unable to do INITIAL ProSLIC powerup on module %d\n", card); return -1; } if (!fast) { /* Check for power leaks */ if (wctdm_proslic_powerleak_test(wc, card)) { printk(KERN_NOTICE "ProSLIC module %d failed leakage test. Check for short circuit\n", card); } /* Power up again */ if (wctdm_powerup_proslic(wc, card, fast)) { printk(KERN_NOTICE "Unable to do FINAL ProSLIC powerup on module %d\n", card); return -1; } #ifndef NO_CALIBRATION /* Perform calibration */ if(manual) { if (wctdm_proslic_manual_calibrate(wc, card)) { //printk(KERN_NOTICE "Proslic failed on Manual Calibration\n"); if (wctdm_proslic_manual_calibrate(wc, card)) { printk(KERN_NOTICE "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n"); return -1; } printk(KERN_NOTICE "Proslic Passed Manual Calibration on Second Attempt\n"); } } else { if(wctdm_proslic_calibrate(wc, card)) { //printk(KERN_NOTICE "ProSlic died on Auto Calibration.\n"); if (wctdm_proslic_calibrate(wc, card)) { printk(KERN_NOTICE "Proslic Failed on Second Attempt to Auto Calibrate\n"); return -1; } printk(KERN_NOTICE "Proslic Passed Auto Calibration on Second Attempt\n"); } } /* Perform DC-DC calibration */ wctdm_setreg(wc, card, 93, 0x99); r19 = wctdm_getreg(wc, card, 107); if ((r19 < 0x2) || (r19 > 0xd)) { printk(KERN_NOTICE "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19); wctdm_setreg(wc, card, 107, 0x8); } /* Save calibration vectors */ for (x=0;xcalregs.vals[x] = wctdm_getreg(wc, card, 96 + x); #endif } else { /* Restore calibration registers */ for (x=0;xcalregs.vals[x]); } /* Calibration complete, restore original values */ for (x=0;x<5;x++) { wctdm_proslic_setreg_indirect(wc, card, x + 35, tmp[x]); } if (wctdm_proslic_verify_indirect_regs(wc, card)) { printk(KERN_INFO "Indirect Registers failed verification.\n"); return -1; } #if 0 /* Disable Auto Power Alarm Detect and other "features" */ wctdm_setreg(wc, card, 67, 0x0e); blah = wctdm_getreg(wc, card, 67); #endif #if 0 if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix printk(KERN_INFO "ProSlic IndirectReg Died.\n"); return -1; } #endif if (alawoverride) wctdm_setreg(wc, card, 1, 0x20); else wctdm_setreg(wc, card, 1, 0x28); // U-Law 8-bit interface wctdm_setreg(wc, card, 2, (3-card) * 8); // Tx Start count low byte 0 wctdm_setreg(wc, card, 3, 0); // Tx Start count high byte 0 wctdm_setreg(wc, card, 4, (3-card) * 8); // Rx Start count low byte 0 wctdm_setreg(wc, card, 5, 0); // Rx Start count high byte 0 wctdm_setreg(wc, card, 18, 0xff); // clear all interrupt wctdm_setreg(wc, card, 19, 0xff); wctdm_setreg(wc, card, 20, 0xff); wctdm_setreg(wc, card, 73, 0x04); if (fxshonormode) { fxsmode = acim2tiss[fxo_modes[_opermode].acim]; wctdm_setreg(wc, card, 10, 0x08 | fxsmode); } if (lowpower) wctdm_setreg(wc, card, 72, 0x10); #if 0 wctdm_setreg(wc, card, 21, 0x00); // enable interrupt wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt #endif #if 0 /* Enable loopback */ wctdm_setreg(wc, card, 8, 0x2); wctdm_setreg(wc, card, 14, 0x0); wctdm_setreg(wc, card, 64, 0x0); wctdm_setreg(wc, card, 1, 0x08); #endif if (wctdm_init_ring_generator_mode(wc, card)) { return -1; } if(fxstxgain || fxsrxgain) { r9 = wctdm_getreg(wc, card, 9); switch (fxstxgain) { case 35: r9+=8; break; case -35: r9+=4; break; case 0: break; } switch (fxsrxgain) { case 35: r9+=2; break; case -35: r9+=1; break; case 0: break; } wctdm_setreg(wc,card,9,r9); } if(debug) printk(KERN_DEBUG "DEBUG: fxstxgain:%s fxsrxgain:%s\n",((wctdm_getreg(wc, card, 9)/8) == 1)?"3.5":(((wctdm_getreg(wc,card,9)/4) == 1)?"-3.5":"0.0"),((wctdm_getreg(wc, card, 9)/2) == 1)?"3.5":((wctdm_getreg(wc,card,9)%2)?"-3.5":"0.0")); fxs->lasttxhook = fxs->idletxhookstate; wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook); return 0; } static int wctdm_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data) { struct wctdm_stats stats; struct wctdm_regs regs; struct wctdm_regop regop; struct wctdm_echo_coefs echoregs; struct dahdi_hwgain hwgain; struct wctdm *wc = chan->pvt; struct fxs *const fxs = &wc->mod[chan->chanpos - 1].fxs; int x; switch (cmd) { case DAHDI_ONHOOKTRANSFER: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; fxs->ohttimer = x << 3; /* Active mode when idle */ fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; if (fxs->neonringing) { /* keep same Forward polarity */ fxs->lasttxhook = SLIC_LF_OHTRAN_FWD; printk(KERN_INFO "ioctl: Start OnHookTrans, card %d\n", chan->chanpos - 1); wctdm_setreg(wc, chan->chanpos - 1, LINE_STATE, fxs->lasttxhook); } else if (fxs->lasttxhook == SLIC_LF_ACTIVE_FWD || fxs->lasttxhook == SLIC_LF_ACTIVE_REV) { /* Apply the change if appropriate */ fxs->lasttxhook = POLARITY_XOR ? SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD; printk(KERN_INFO "ioctl: Start OnHookTrans, card %d\n", chan->chanpos - 1); wctdm_setreg(wc, chan->chanpos - 1, LINE_STATE, fxs->lasttxhook); } break; case DAHDI_SETPOLARITY: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; /* Can't change polarity while ringing or when open */ if ((fxs->lasttxhook == SLIC_LF_RINGING) || (fxs->lasttxhook == SLIC_LF_OPEN)) return -EINVAL; fxs->reversepolarity = x; if (POLARITY_XOR) { fxs->lasttxhook |= SLIC_LF_REVMASK; printk(KERN_INFO "ioctl: Reverse Polarity, card %d\n", chan->chanpos - 1); } else { fxs->lasttxhook &= ~SLIC_LF_REVMASK; printk(KERN_INFO "ioctl: Normal Polarity, card %d\n", chan->chanpos - 1); } wctdm_setreg(wc, chan->chanpos - 1, LINE_STATE, fxs->lasttxhook); break; case DAHDI_VMWI_CONFIG: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (copy_from_user(&(fxs->vmwisetting), (__user void *) data, sizeof(fxs->vmwisetting))) return -EFAULT; set_vmwi(wc, chan->chanpos - 1); break; case DAHDI_VMWI: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; if (0 > x) return -EFAULT; fxs->vmwi_active_messages = x; set_vmwi(wc, chan->chanpos - 1); break; case WCTDM_GET_STATS: if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { stats.tipvolt = wctdm_getreg(wc, chan->chanpos - 1, 80) * -376; stats.ringvolt = wctdm_getreg(wc, chan->chanpos - 1, 81) * -376; stats.batvolt = wctdm_getreg(wc, chan->chanpos - 1, 82) * -376; } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { stats.tipvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; stats.ringvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; stats.batvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; } else return -EINVAL; if (copy_to_user((__user void *)data, &stats, sizeof(stats))) return -EFAULT; break; case WCTDM_GET_REGS: if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { for (x=0;xchanpos -1, x); for (x=0;xchanpos - 1, x); } else { memset(®s, 0, sizeof(regs)); for (x=0;xchanpos - 1, x); } if (copy_to_user((__user void *)data, ®s, sizeof(regs))) return -EFAULT; break; case WCTDM_SET_REG: if (copy_from_user(®op, (__user void *) data, sizeof(regop))) return -EFAULT; if (regop.indirect) { if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; printk(KERN_INFO "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_proslic_setreg_indirect(wc, chan->chanpos - 1, regop.reg, regop.val); } else { regop.val &= 0xff; printk(KERN_INFO "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_setreg(wc, chan->chanpos - 1, regop.reg, regop.val); } break; case WCTDM_SET_ECHOTUNE: printk(KERN_INFO "-- Setting echo registers: \n"); if (copy_from_user(&echoregs, (__user void *)data, sizeof(echoregs))) return -EFAULT; if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { /* Set the ACIM register */ wctdm_setreg(wc, chan->chanpos - 1, 30, echoregs.acim); /* Set the digital echo canceller registers */ wctdm_setreg(wc, chan->chanpos - 1, 45, echoregs.coef1); wctdm_setreg(wc, chan->chanpos - 1, 46, echoregs.coef2); wctdm_setreg(wc, chan->chanpos - 1, 47, echoregs.coef3); wctdm_setreg(wc, chan->chanpos - 1, 48, echoregs.coef4); wctdm_setreg(wc, chan->chanpos - 1, 49, echoregs.coef5); wctdm_setreg(wc, chan->chanpos - 1, 50, echoregs.coef6); wctdm_setreg(wc, chan->chanpos - 1, 51, echoregs.coef7); wctdm_setreg(wc, chan->chanpos - 1, 52, echoregs.coef8); printk(KERN_INFO "-- Set echo registers successfully\n"); break; } else { return -EINVAL; } break; case DAHDI_SET_HWGAIN: if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain))) return -EFAULT; wctdm_set_hwgain(wc, chan->chanpos-1, hwgain.newgain, hwgain.tx); if (debug) printk(KERN_DEBUG "Setting hwgain on channel %d to %d for %s direction\n", chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx"); break; default: return -ENOTTY; } return 0; } static int wctdm_open(struct dahdi_chan *chan) { struct wctdm *wc = chan->pvt; if (!(wc->cardflag & (1 << (chan->chanpos - 1)))) return -ENODEV; if (wc->dead) return -ENODEV; wc->usecount++; return 0; } static inline struct wctdm *wctdm_from_span(struct dahdi_span *span) { return container_of(span, struct wctdm, span); } static int wctdm_watchdog(struct dahdi_span *span, int event) { printk(KERN_INFO "TDM: Restarting DMA\n"); wctdm_restart_dma(wctdm_from_span(span)); return 0; } static int wctdm_close(struct dahdi_chan *chan) { struct wctdm *wc = chan->pvt; struct fxs *const fxs = &wc->mod[chan->chanpos - 1].fxs; wc->usecount--; if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { int idlehookstate; idlehookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; fxs->idletxhookstate = idlehookstate; } /* If we're dead, release us now */ if (!wc->usecount && wc->dead) wctdm_release(wc); return 0; } static int wctdm_init_ring_generator_mode(struct wctdm *wc, int card) { wctdm_setreg(wc, card, 34, 0x00); /* Ringing Osc. Control */ /* neon trapezoid timers */ wctdm_setreg(wc, card, 48, 0xe0); /* Active Timer low byte */ wctdm_setreg(wc, card, 49, 0x01); /* Active Timer high byte */ wctdm_setreg(wc, card, 50, 0xF0); /* Inactive Timer low byte */ wctdm_setreg(wc, card, 51, 0x05); /* Inactive Timer high byte */ wctdm_set_ring_generator_mode(wc, card, 0); return 0; } static int wctdm_set_ring_generator_mode(struct wctdm *wc, int card, int mode) { int reg20, reg21, reg74; /* RCO, RNGX, VBATH */ struct fxs *const fxs = &wc->mod[card].fxs; fxs->neonringing = mode; /* track ring generator mode */ if (mode) { /* Neon */ if (debug) printk(KERN_DEBUG "NEON ring on chan %d, " "lasttxhook was 0x%x\n", card, fxs->lasttxhook); /* Must be in FORWARD ACTIVE before setting ringer */ fxs->lasttxhook = SLIC_LF_ACTIVE_FWD; wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook); wctdm_proslic_setreg_indirect(wc, card, 22, NEON_MWI_RNGY_PULSEWIDTH); wctdm_proslic_setreg_indirect(wc, card, 21, 0x7bef); /* RNGX (91.5Vpk) */ wctdm_proslic_setreg_indirect(wc, card, 20, 0x009f); /* RCO (RNGX, t rise)*/ wctdm_setreg(wc, card, 34, 0x19); /* Ringing Osc. Control */ wctdm_setreg(wc, card, 74, 0x3f); /* VBATH 94.5V */ wctdm_proslic_setreg_indirect(wc, card, 29, 0x4600); /* RPTP */ /* A write of 0x04 to register 64 will turn on the VM led */ } else { wctdm_setreg(wc, card, 34, 0x00); /* Ringing Osc. Control */ /* RNGY Initial Phase */ wctdm_proslic_setreg_indirect(wc, card, 22, 0x0000); wctdm_proslic_setreg_indirect(wc, card, 29, 0x3600); /* RPTP */ /* A write of 0x04 to register 64 will turn on the ringer */ if (fastringer) { /* Speed up Ringer */ reg20 = 0x7e6d; reg74 = 0x32; /* Default */ /* Beef up Ringing voltage to 89V */ if (boostringer) { reg74 = 0x3f; reg21 = 0x0247; /* RNGX */ if (debug) printk(KERN_DEBUG "Boosting fast ringer" " on chan %d (89V peak)\n", card); } else if (lowpower) { reg21 = 0x014b; /* RNGX */ if (debug) printk(KERN_DEBUG "Reducing fast ring " "power on chan %d (50V peak)\n", card); } else if (fxshonormode && fxo_modes[_opermode].ring_x) { reg21 = fxo_modes[_opermode].ring_x; if (debug) printk(KERN_DEBUG "fxshonormode: fast " "ring_x power on chan %d\n", card); } else { reg21 = 0x01b9; if (debug) printk(KERN_DEBUG "Speeding up ringer " "on chan %d (25Hz)\n", card); } /* VBATH */ wctdm_setreg(wc, card, 74, reg74); /*RCO*/ wctdm_proslic_setreg_indirect(wc, card, 20, reg20); /*RNGX*/ wctdm_proslic_setreg_indirect(wc, card, 21, reg21); } else { /* Ringer Speed */ if (fxshonormode && fxo_modes[_opermode].ring_osc) { reg20 = fxo_modes[_opermode].ring_osc; if (debug) printk(KERN_DEBUG "fxshonormode: " "ring_osc speed on chan %d\n", card); } else { reg20 = 0x7ef0; /* Default */ } reg74 = 0x32; /* Default */ /* Beef up Ringing voltage to 89V */ if (boostringer) { reg74 = 0x3f; reg21 = 0x1d1; if (debug) printk(KERN_DEBUG "Boosting ringer on " "chan %d (89V peak)\n", card); } else if (lowpower) { reg21 = 0x108; if (debug) printk(KERN_DEBUG "Reducing ring power " "on chan %d (50V peak)\n", card); } else if (fxshonormode && fxo_modes[_opermode].ring_x) { reg21 = fxo_modes[_opermode].ring_x; if (debug) printk(KERN_DEBUG "fxshonormode: ring_x" " power on chan %d\n", card); } else { reg21 = 0x160; if (debug) printk(KERN_DEBUG "Normal ring power on" " chan %d\n", card); } /* VBATH */ wctdm_setreg(wc, card, 74, reg74); /* RCO */ wctdm_proslic_setreg_indirect(wc, card, 20, reg20); /* RNGX */ wctdm_proslic_setreg_indirect(wc, card, 21, reg21); } } return 0; } static int wctdm_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig) { struct wctdm *wc = chan->pvt; int chan_entry = chan->chanpos - 1; if (wc->modtype[chan_entry] == MOD_TYPE_FXO) { /* XXX Enable hooksig for FXO XXX */ switch(txsig) { case DAHDI_TXSIG_START: case DAHDI_TXSIG_OFFHOOK: wc->mod[chan_entry].fxo.offhook = 1; wctdm_setreg(wc, chan_entry, 5, 0x9); break; case DAHDI_TXSIG_ONHOOK: wc->mod[chan_entry].fxo.offhook = 0; wctdm_setreg(wc, chan_entry, 5, 0x8); break; default: printk(KERN_NOTICE "wcfxo: Can't set tx state to %d\n", txsig); } } else { wctdm_fxs_hooksig(wc, chan_entry, txsig); } return 0; } static const struct dahdi_span_ops wctdm_span_ops = { .owner = THIS_MODULE, .hooksig = wctdm_hooksig, .open = wctdm_open, .close = wctdm_close, .ioctl = wctdm_ioctl, .watchdog = wctdm_watchdog, }; static int wctdm_initialize(struct wctdm *wc) { int x; wc->ddev = dahdi_create_device(); if (!wc->ddev) return -ENOMEM; /* DAHDI stuff */ sprintf(wc->span.name, "WCTDM/%d", wc->pos); snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Board %d", wc->variety, wc->pos + 1); wc->ddev->location = kasprintf(GFP_KERNEL, "PCI Bus %02d Slot %02d", wc->dev->bus->number, PCI_SLOT(wc->dev->devfn) + 1); if (!wc->ddev->location) { dahdi_free_device(wc->ddev); wc->ddev = NULL; return -ENOMEM; } wc->ddev->manufacturer = "Digium"; wc->ddev->devicetype = wc->variety; if (alawoverride) { printk(KERN_INFO "ALAW override parameter detected. Device will be operating in ALAW\n"); wc->span.deflaw = DAHDI_LAW_ALAW; } else { wc->span.deflaw = DAHDI_LAW_MULAW; } for (x = 0; x < NUM_CARDS; x++) { sprintf(wc->chans[x]->name, "WCTDM/%d/%d", wc->pos, x); wc->chans[x]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR; wc->chans[x]->sigcap |= DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR; wc->chans[x]->chanpos = x+1; wc->chans[x]->pvt = wc; } wc->span.chans = wc->chans; wc->span.channels = NUM_CARDS; wc->span.flags = DAHDI_FLAG_RBS; wc->span.ops = &wctdm_span_ops; list_add_tail(&wc->span.device_node, &wc->ddev->spans); if (dahdi_register_device(wc->ddev, &wc->dev->dev)) { printk(KERN_NOTICE "Unable to register span with DAHDI\n"); kfree(wc->ddev->location); dahdi_free_device(wc->ddev); wc->ddev = NULL; return -1; } return 0; } static void wctdm_post_initialize(struct wctdm *wc) { int x; /* Finalize signalling */ for (x = 0; x < NUM_CARDS; x++) { if (wc->cardflag & (1 << x)) { if (wc->modtype[x] == MOD_TYPE_FXO) wc->chans[x]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR; else wc->chans[x]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR; } else if (!(wc->chans[x]->sigcap & DAHDI_SIG_BROKEN)) { wc->chans[x]->sigcap = 0; } } } static int wctdm_hardware_init(struct wctdm *wc) { /* Hardware stuff */ unsigned char ver; unsigned char x,y; int failed; /* Signal Reset */ outb(0x01, wc->ioaddr + WC_CNTL); /* Check Freshmaker chip */ x=inb(wc->ioaddr + WC_CNTL); ver = __wctdm_getcreg(wc, WC_VER); failed = 0; if (ver != 0x59) { printk(KERN_INFO "Freshmaker version: %02x\n", ver); for (x=0;x<255;x++) { /* Test registers */ if (ver >= 0x70) { __wctdm_setcreg(wc, WC_CS, x); y = __wctdm_getcreg(wc, WC_CS); } else { __wctdm_setcreg(wc, WC_TEST, x); y = __wctdm_getcreg(wc, WC_TEST); } if (x != y) { printk(KERN_INFO "%02x != %02x\n", x, y); failed++; } } if (!failed) { printk(KERN_INFO "Freshmaker passed register test\n"); } else { printk(KERN_NOTICE "Freshmaker failed register test\n"); return -1; } /* Go to half-duty FSYNC */ __wctdm_setcreg(wc, WC_SYNC, 0x01); y = __wctdm_getcreg(wc, WC_SYNC); } else { printk(KERN_INFO "No freshmaker chip\n"); } /* Reset PCI Interface chip and registers (and serial) */ outb(0x06, wc->ioaddr + WC_CNTL); /* Setup our proper outputs for when we switch for our "serial" port */ wc->ios = BIT_CS | BIT_SCLK | BIT_SDI; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Set all to outputs except AUX 5, which is an input */ outb(0xdf, wc->ioaddr + WC_AUXC); /* Select alternate function for AUX0 */ outb(0x4, wc->ioaddr + WC_AUXFUNC); /* Wait 1/4 of a sec */ wait_just_a_bit(HZ/4); /* Back to normal, with automatic DMA wrap around */ outb(0x30 | 0x01, wc->ioaddr + WC_CNTL); /* Make sure serial port and DMA are out of reset */ outb(inb(wc->ioaddr + WC_CNTL) & 0xf9, wc->ioaddr + WC_CNTL); /* Configure serial port for MSB->LSB operation */ outb(0xc1, wc->ioaddr + WC_SERCTL); /* Delay FSC by 0 so it's properly aligned */ outb(0x0, wc->ioaddr + WC_FSCDELAY); /* Setup DMA Addresses */ outl(wc->writedma, wc->ioaddr + WC_DMAWS); /* Write start */ outl(wc->writedma + DAHDI_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMAWI); /* Middle (interrupt) */ outl(wc->writedma + DAHDI_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMAWE); /* End */ outl(wc->readdma, wc->ioaddr + WC_DMARS); /* Read start */ outl(wc->readdma + DAHDI_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMARI); /* Middle (interrupt) */ outl(wc->readdma + DAHDI_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMARE); /* End */ /* Clear interrupts */ outb(0xff, wc->ioaddr + WC_INTSTAT); /* Wait 1/4 of a second more */ wait_just_a_bit(HZ/4); for (x = 0; x < NUM_CARDS; x++) { int sane=0,ret=0,readi=0; #if 1 /* Init with Auto Calibration */ if (!(ret=wctdm_init_proslic(wc, x, 0, 0, sane))) { wc->cardflag |= (1 << x); if (debug) { readi = wctdm_getreg(wc,x,LOOP_I_LIMIT); printk(KERN_DEBUG "Proslic module %d loop current is %dmA\n",x, ((readi*3)+20)); } printk(KERN_INFO "Module %d: Installed -- AUTO FXS/DPO\n",x); } else { if(ret!=-2) { sane=1; /* Init with Manual Calibration */ if (!wctdm_init_proslic(wc, x, 0, 1, sane)) { wc->cardflag |= (1 << x); if (debug) { readi = wctdm_getreg(wc,x,LOOP_I_LIMIT); printk(KERN_DEBUG "Proslic module %d loop current is %dmA\n",x, ((readi*3)+20)); } printk(KERN_INFO "Module %d: Installed -- MANUAL FXS\n",x); } else { printk(KERN_NOTICE "Module %d: FAILED FXS (%s)\n", x, fxshonormode ? fxo_modes[_opermode].name : "FCC"); wc->chans[x]->sigcap = __DAHDI_SIG_FXO | DAHDI_SIG_BROKEN; } } else if (!(ret = wctdm_init_voicedaa(wc, x, 0, 0, sane))) { wc->cardflag |= (1 << x); printk(KERN_INFO "Module %d: Installed -- AUTO FXO (%s mode)\n",x, fxo_modes[_opermode].name); } else printk(KERN_NOTICE "Module %d: Not installed\n", x); } #endif } /* Return error if nothing initialized okay. */ if (!wc->cardflag && !timingonly) return -1; __wctdm_setcreg(wc, WC_SYNC, (wc->cardflag << 1) | 0x1); return 0; } static void wctdm_enable_interrupts(struct wctdm *wc) { /* Enable interrupts (we care about all of them) */ outb(0x3f, wc->ioaddr + WC_MASK0); /* No external interrupts */ outb(0x00, wc->ioaddr + WC_MASK1); } static void wctdm_restart_dma(struct wctdm *wc) { /* Reset Master and TDM */ outb(0x01, wc->ioaddr + WC_CNTL); outb(0x01, wc->ioaddr + WC_OPER); } static void wctdm_start_dma(struct wctdm *wc) { /* Reset Master and TDM */ outb(0x0f, wc->ioaddr + WC_CNTL); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1); outb(0x01, wc->ioaddr + WC_CNTL); outb(0x01, wc->ioaddr + WC_OPER); } static void wctdm_stop_dma(struct wctdm *wc) { outb(0x00, wc->ioaddr + WC_OPER); } static void wctdm_reset_tdm(struct wctdm *wc) { /* Reset TDM */ outb(0x0f, wc->ioaddr + WC_CNTL); } static void wctdm_disable_interrupts(struct wctdm *wc) { outb(0x00, wc->ioaddr + WC_MASK0); outb(0x00, wc->ioaddr + WC_MASK1); } static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int res; struct wctdm *wc; struct wctdm_desc *d = (struct wctdm_desc *)ent->driver_data; int x; int y; for (x=0;x= WC_MAX_IFACES) { printk(KERN_NOTICE "Too many interfaces\n"); return -EIO; } if (pci_enable_device(pdev)) { res = -EIO; } else { wc = kmalloc(sizeof(struct wctdm), GFP_KERNEL); if (wc) { int cardcount = 0; ifaces[x] = wc; memset(wc, 0, sizeof(struct wctdm)); for (x=0; x < sizeof(wc->chans)/sizeof(wc->chans[0]); ++x) { wc->chans[x] = &wc->_chans[x]; } spin_lock_init(&wc->lock); wc->curcard = -1; wc->ioaddr = pci_resource_start(pdev, 0); wc->dev = pdev; wc->pos = x; wc->variety = d->name; for (y=0;yflags[y] = d->flags; /* Keep track of whether we need to free the region */ if (request_region(wc->ioaddr, 0xff, "wctdm")) wc->freeregion = 1; /* Allocate enough memory for two zt chunks, receive and transmit. Each sample uses 32 bits. Allocate an extra set just for control too */ wc->writechunk = pci_alloc_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, &wc->writedma); if (!wc->writechunk) { printk(KERN_NOTICE "wctdm: Unable to allocate DMA-able memory\n"); if (wc->freeregion) release_region(wc->ioaddr, 0xff); return -ENOMEM; } wc->readchunk = wc->writechunk + DAHDI_MAX_CHUNKSIZE * 2; /* in doublewords */ wc->readdma = wc->writedma + DAHDI_MAX_CHUNKSIZE * 8; /* in bytes */ if (wctdm_initialize(wc)) { printk(KERN_NOTICE "wctdm: Unable to intialize FXS\n"); /* Set Reset Low */ x=inb(wc->ioaddr + WC_CNTL); outb((~0x1)&x, wc->ioaddr + WC_CNTL); /* Free Resources */ free_irq(pdev->irq, wc); if (wc->freeregion) release_region(wc->ioaddr, 0xff); pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); kfree(wc); return -EIO; } /* Enable bus mastering */ pci_set_master(pdev); /* Keep track of which device we are */ pci_set_drvdata(pdev, wc); if (request_irq(pdev->irq, wctdm_interrupt, DAHDI_IRQ_SHARED, "wctdm", wc)) { printk(KERN_NOTICE "wctdm: Unable to request IRQ %d\n", pdev->irq); if (wc->freeregion) release_region(wc->ioaddr, 0xff); pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); pci_set_drvdata(pdev, NULL); kfree(wc); return -EIO; } if (wctdm_hardware_init(wc)) { /* Set Reset Low */ x=inb(wc->ioaddr + WC_CNTL); outb((~0x1)&x, wc->ioaddr + WC_CNTL); /* Free Resources */ free_irq(pdev->irq, wc); if (wc->freeregion) release_region(wc->ioaddr, 0xff); pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); pci_set_drvdata(pdev, NULL); dahdi_unregister_device(wc->ddev); kfree(wc->ddev->location); dahdi_free_device(wc->ddev); kfree(wc); return -EIO; } wctdm_post_initialize(wc); /* Enable interrupts */ wctdm_enable_interrupts(wc); /* Initialize Write/Buffers to all blank data */ memset((void *)wc->writechunk,0,DAHDI_MAX_CHUNKSIZE * 2 * 2 * 4); /* Start DMA */ wctdm_start_dma(wc); for (x = 0; x < NUM_CARDS; x++) { if (wc->cardflag & (1 << x)) cardcount++; } printk(KERN_INFO "Found a Wildcard TDM: %s (%d modules)\n", wc->variety, cardcount); res = 0; } else res = -ENOMEM; } return res; } static void wctdm_release(struct wctdm *wc) { dahdi_unregister_device(wc->ddev); if (wc->freeregion) release_region(wc->ioaddr, 0xff); kfree(wc->ddev->location); dahdi_free_device(wc->ddev); kfree(wc); printk(KERN_INFO "Freed a Wildcard\n"); } static void __devexit wctdm_remove_one(struct pci_dev *pdev) { struct wctdm *wc = pci_get_drvdata(pdev); if (wc) { /* Stop any DMA */ wctdm_stop_dma(wc); wctdm_reset_tdm(wc); /* In case hardware is still there */ wctdm_disable_interrupts(wc); /* Immediately free resources */ pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); free_irq(pdev->irq, wc); /* Reset PCI chip and registers */ outb(0x0e, wc->ioaddr + WC_CNTL); /* Release span, possibly delayed */ if (!wc->usecount) wctdm_release(wc); else wc->dead = 1; } } static DEFINE_PCI_DEVICE_TABLE(wctdm_pci_tbl) = { { 0xe159, 0x0001, 0xa159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm }, { 0xe159, 0x0001, 0xe159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm }, { 0xe159, 0x0001, 0xb100, PCI_ANY_ID, 0, 0, (unsigned long) &wctdme }, { 0xe159, 0x0001, 0xb1d9, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi }, { 0xe159, 0x0001, 0xb118, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi }, { 0xe159, 0x0001, 0xb119, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi }, { 0xe159, 0x0001, 0xa9fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa8fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa800, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa801, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa908, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa901, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, #ifdef TDM_REVH_MATCHALL { 0xe159, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, #endif { 0 } }; MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl); static int wctdm_suspend(struct pci_dev *pdev, pm_message_t state) { return -ENOSYS; } static struct pci_driver wctdm_driver = { .name = "wctdm", .probe = wctdm_init_one, .remove =__devexit_p(wctdm_remove_one), .suspend = wctdm_suspend, .id_table = wctdm_pci_tbl, }; static int __init wctdm_init(void) { int res; int x; for (x = 0; x < (sizeof(fxo_modes) / sizeof(fxo_modes[0])); x++) { if (!strcmp(fxo_modes[x].name, opermode)) break; } if (x < sizeof(fxo_modes) / sizeof(fxo_modes[0])) { _opermode = x; } else { printk(KERN_NOTICE "Invalid/unknown operating mode '%s' specified. Please choose one of:\n", opermode); for (x = 0; x < sizeof(fxo_modes) / sizeof(fxo_modes[0]); x++) printk(KERN_INFO " %s\n", fxo_modes[x].name); printk(KERN_INFO "Note this option is CASE SENSITIVE!\n"); return -ENODEV; } if (!strcmp(opermode, "AUSTRALIA")) { boostringer = 1; fxshonormode = 1; } /* for the voicedaa_check_hook defaults, if the user has not overridden them by specifying them as module parameters, then get the values from the selected operating mode */ if (battdebounce == 0) { battdebounce = fxo_modes[_opermode].battdebounce; } if (battalarm == 0) { battalarm = fxo_modes[_opermode].battalarm; } if (battthresh == 0) { battthresh = fxo_modes[_opermode].battthresh; } res = dahdi_pci_module(&wctdm_driver); if (res) return -ENODEV; return 0; } static void __exit wctdm_cleanup(void) { pci_unregister_driver(&wctdm_driver); } module_param(debug, int, 0600); module_param(fxovoltage, int, 0600); module_param(loopcurrent, int, 0600); module_param(reversepolarity, int, 0600); module_param(robust, int, 0600); module_param(opermode, charp, 0600); module_param(timingonly, int, 0600); module_param(lowpower, int, 0600); module_param(boostringer, int, 0600); module_param(fastringer, int, 0600); module_param(fxshonormode, int, 0600); module_param(battdebounce, uint, 0600); module_param(battalarm, uint, 0600); module_param(battthresh, uint, 0600); module_param(ringdebounce, int, 0600); module_param(dialdebounce, int, 0600); module_param(fwringdetect, int, 0600); module_param(alawoverride, int, 0600); module_param(fastpickup, int, 0600); module_param(fxotxgain, int, 0600); module_param(fxorxgain, int, 0600); module_param(fxstxgain, int, 0600); module_param(fxsrxgain, int, 0600); MODULE_DESCRIPTION("Wildcard TDM400P Driver"); MODULE_AUTHOR("Mark Spencer "); MODULE_ALIAS("wcfxs"); MODULE_LICENSE("GPL v2"); module_init(wctdm_init); module_exit(wctdm_cleanup);