/* * Digium, Inc. Wildcard TE12xP T1/E1 card Driver * * Written by Michael Spiceland * * Adapted from the wctdm24xxp and wcte11xp drivers originally * written by Mark Spencer * Matthew Fredrickson * William Meadows * * Copyright (C) 2007-2010, Digium, Inc. * * All rights reserved. * */ /* * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2 as published by the * Free Software Foundation. See the LICENSE file included with * this program for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wct4xxp/wct4xxp.h" /* For certain definitions */ #include "voicebus/voicebus.h" #include "wcte12xp.h" #include "voicebus/GpakCust.h" #include "voicebus/GpakApi.h" #if VOICEBUS_SFRAME_SIZE != SFRAME_SIZE #error VOICEBUS_SFRAME_SIZE != SFRAME_SIZE #endif static int debug; static int j1mode = 0; static int alarmdebounce = 2500; /* LOF/LFA def to 2.5s AT&T TR54016*/ static int losalarmdebounce = 2500; /* LOS def to 2.5s AT&T TR54016*/ static int aisalarmdebounce = 2500; /* AIS(blue) def to 2.5s AT&T TR54016*/ static int yelalarmdebounce = 500; /* RAI(yellow) def to 0.5s AT&T devguide */ static int loopback = 0; static int t1e1override = -1; static int unchannelized = 0; static int latency = VOICEBUS_DEFAULT_LATENCY; static unsigned int max_latency = VOICEBUS_DEFAULT_MAXLATENCY; static int vpmsupport = 1; static int vpmtsisupport = 0; static int vpmnlptype = DEFAULT_NLPTYPE; static int vpmnlpthresh = DEFAULT_NLPTHRESH; static int vpmnlpmaxsupp = DEFAULT_NLPMAXSUPP; static int echocan_create(struct dahdi_chan *chan, struct dahdi_echocanparams *ecp, struct dahdi_echocanparam *p, struct dahdi_echocan_state **ec); static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec); static int t1xxp_clear_maint(struct dahdi_span *span); static const struct dahdi_echocan_features vpm150m_ec_features = { .NLP_automatic = 1, .CED_tx_detect = 1, .CED_rx_detect = 1, }; static const struct dahdi_echocan_ops vpm150m_ec_ops = { .name = "VPM150M", .echocan_free = echocan_free, }; static struct t1 *ifaces[WC_MAX_IFACES]; spinlock_t ifacelock = SPIN_LOCK_UNLOCKED; struct t1_desc { const char *name; }; static const struct t1_desc te120p = {"Wildcard TE120P"}; static const struct t1_desc te122 = {"Wildcard TE122"}; static const struct t1_desc te121 = {"Wildcard TE121"}; #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) static kmem_cache_t *cmd_cache; #else static struct kmem_cache *cmd_cache; #endif static struct command *get_free_cmd(struct t1 *wc) { struct command *cmd; cmd = kmem_cache_alloc(cmd_cache, GFP_ATOMIC); if (cmd) { memset(cmd, 0, sizeof(*cmd)); init_completion(&cmd->complete); INIT_LIST_HEAD(&cmd->node); } return cmd; } static void free_cmd(struct t1 *wc, struct command *cmd) { kmem_cache_free(cmd_cache, cmd); } static struct command *get_pending_cmd(struct t1 *wc) { struct command *cmd = NULL; unsigned long flags; spin_lock_irqsave(&wc->cmd_list_lock, flags); if (!list_empty(&wc->pending_cmds)) { cmd = list_entry(wc->pending_cmds.next, struct command, node); list_move_tail(&cmd->node, &wc->active_cmds); } spin_unlock_irqrestore(&wc->cmd_list_lock, flags); return cmd; } static void submit_cmd(struct t1 *wc, struct command *cmd) { unsigned long flags; spin_lock_irqsave(&wc->cmd_list_lock, flags); list_add_tail(&cmd->node, &wc->pending_cmds); spin_unlock_irqrestore(&wc->cmd_list_lock, flags); } static void resend_cmds(struct t1 *wc) { unsigned long flags; spin_lock_irqsave(&wc->cmd_list_lock, flags); list_splice_init(&wc->active_cmds, &wc->pending_cmds); spin_unlock_irqrestore(&wc->cmd_list_lock, flags); if (wc->vpmadt032) vpmadt032_resend(wc->vpmadt032); } static void cmd_dequeue(struct t1 *wc, unsigned char *writechunk, int eframe, int slot) { struct command *curcmd=NULL; u16 address; u8 data; u32 flags; /* Skip audio */ writechunk += 66; /* Search for something waiting to transmit */ if ((slot < 6) && (eframe) && (eframe < DAHDI_CHUNKSIZE - 1)) { /* only 6 useable cs slots per */ /* framer */ curcmd = get_pending_cmd(wc); if (curcmd) { curcmd->cs_slot = slot; curcmd->ident = wc->txident; address = curcmd->address; data = curcmd->data; flags = curcmd->flags; } else { /* If nothing else, use filler */ address = 0x4a; data = 0; flags = __CMD_RD; } if (flags & __CMD_WR) writechunk[CMD_BYTE(slot, 0, 0)] = 0x0c; /* 0c write command */ else if (flags & __CMD_LEDS) writechunk[CMD_BYTE(slot, 0, 0)] = 0x10 | ((address) & 0x0E); /* led set command */ else if (flags & __CMD_PINS) writechunk[CMD_BYTE(slot, 0, 0)] = 0x30; /* CPLD2 pin state */ else writechunk[CMD_BYTE(slot, 0, 0)] = 0x0a; /* read command */ writechunk[CMD_BYTE(slot, 1, 0)] = address; writechunk[CMD_BYTE(slot, 2, 0)] = data; } } static inline void cmd_decipher(struct t1 *wc, const u8 *readchunk) { struct command *cmd = NULL; unsigned long flags; const int IS_VPM = 0; /* Skip audio */ readchunk += 66; spin_lock_irqsave(&wc->cmd_list_lock, flags); while (!list_empty(&wc->active_cmds)) { cmd = list_entry(wc->active_cmds.next, struct command, node); if (cmd->ident != wc->rxident) break; if (cmd->flags & (__CMD_WR | __CMD_LEDS)) { /* Nobody is waiting on writes...so let's just * free them here. */ list_del_init(&cmd->node); free_cmd(wc, cmd); } else { cmd->data |= readchunk[CMD_BYTE(cmd->cs_slot, 2, IS_VPM)]; list_del_init(&cmd->node); complete(&cmd->complete); } } spin_unlock_irqrestore(&wc->cmd_list_lock, flags); } inline void cmd_decipher_vpmadt032(struct t1 *wc, const u8 *readchunk) { unsigned long flags; struct vpmadt032 *vpm = wc->vpmadt032; struct vpmadt032_cmd *cmd; BUG_ON(!vpm); /* If the hardware is not processing any commands currently, then * there is nothing for us to do here. */ if (list_empty(&vpm->active_cmds)) { return; } spin_lock_irqsave(&vpm->list_lock, flags); cmd = list_entry(vpm->active_cmds.next, struct vpmadt032_cmd, node); if (wc->rxident == cmd->txident) { list_del_init(&cmd->node); } else { cmd = NULL; } spin_unlock_irqrestore(&vpm->list_lock, flags); if (!cmd) { return; } /* Skip audio */ readchunk += 66; /* Store result */ cmd->data = (0xff & readchunk[CMD_BYTE(2, 1, 1)]) << 8; cmd->data |= readchunk[CMD_BYTE(2, 2, 1)]; if (cmd->desc & __VPM150M_WR) { kfree(cmd); } else { cmd->desc |= __VPM150M_FIN; complete(&cmd->complete); } } static int config_vpmadt032(struct vpmadt032 *vpm, struct t1 *wc) { int res, channel; GpakPortConfig_t portconfig = {0}; gpakConfigPortStatus_t configportstatus; GPAK_PortConfigStat_t pstatus; GpakChannelConfig_t chanconfig; GPAK_ChannelConfigStat_t cstatus; GPAK_AlgControlStat_t algstatus; /* First Serial Port config */ portconfig.SlotsSelect1 = SlotCfgNone; portconfig.FirstBlockNum1 = 0; portconfig.FirstSlotMask1 = 0x0000; portconfig.SecBlockNum1 = 1; portconfig.SecSlotMask1 = 0x0000; portconfig.SerialWordSize1 = SerWordSize8; portconfig.CompandingMode1 = cmpNone; portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh; portconfig.TxClockPolarity1 = SerClockActHigh; portconfig.RxClockPolarity1 = SerClockActHigh; portconfig.TxDataDelay1 = DataDelay0; portconfig.RxDataDelay1 = DataDelay0; portconfig.DxDelay1 = Disabled; portconfig.ThirdSlotMask1 = 0x0000; portconfig.FouthSlotMask1 = 0x0000; portconfig.FifthSlotMask1 = 0x0000; portconfig.SixthSlotMask1 = 0x0000; portconfig.SevenSlotMask1 = 0x0000; portconfig.EightSlotMask1 = 0x0000; /* Second Serial Port config */ portconfig.SlotsSelect2 = SlotCfg8Groups; portconfig.FirstBlockNum2 = 0; portconfig.FirstSlotMask2 = 0x5554; portconfig.SecBlockNum2 = 1; portconfig.SecSlotMask2 = 0x5555; portconfig.ThirdSlotMask2 = 0x5555; portconfig.FouthSlotMask2 = 0x5555; portconfig.SerialWordSize2 = SerWordSize8; portconfig.CompandingMode2 = cmpNone; portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh; portconfig.TxClockPolarity2 = SerClockActHigh; portconfig.RxClockPolarity2 = SerClockActHigh; portconfig.TxDataDelay2 = DataDelay0; portconfig.RxDataDelay2 = DataDelay0; portconfig.DxDelay2 = Disabled; portconfig.FifthSlotMask2 = 0x0001; portconfig.SixthSlotMask2 = 0x0000; portconfig.SevenSlotMask2 = 0x0000; portconfig.EightSlotMask2 = 0x0000; /* Third Serial Port Config */ portconfig.SlotsSelect3 = SlotCfg8Groups; portconfig.FirstBlockNum3 = 0; portconfig.FirstSlotMask3 = 0x5554; portconfig.SecBlockNum3 = 1; portconfig.SecSlotMask3 = 0x5555; portconfig.SerialWordSize3 = SerWordSize8; portconfig.CompandingMode3 = cmpNone; portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh; portconfig.TxClockPolarity3 = SerClockActHigh; portconfig.RxClockPolarity3 = SerClockActLow; portconfig.TxDataDelay3 = DataDelay0; portconfig.RxDataDelay3 = DataDelay0; portconfig.DxDelay3 = Disabled; portconfig.ThirdSlotMask3 = 0x5555; portconfig.FouthSlotMask3 = 0x5555; portconfig.FifthSlotMask3 = 0x0001; portconfig.SixthSlotMask3 = 0x0000; portconfig.SevenSlotMask3 = 0x0000; portconfig.EightSlotMask3 = 0x0000; if ((configportstatus = gpakConfigurePorts(vpm->dspid, &portconfig, &pstatus))) { t1_info(wc, "Configuration of ports failed (%d)!\n", configportstatus); return -1; } else { if (vpm->options.debug & DEBUG_VPMADT032_ECHOCAN) t1_info(wc, "Configured McBSP ports successfully\n"); } if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) { t1_info(wc, "Error pinging DSP (%d)\n", res); return -1; } for (channel = 0; channel < ARRAY_SIZE(vpm->curecstate); ++channel) { vpm->curecstate[channel].tap_length = 0; vpm->curecstate[channel].nlp_type = vpm->options.vpmnlptype; vpm->curecstate[channel].nlp_threshold = vpm->options.vpmnlpthresh; vpm->curecstate[channel].nlp_max_suppress = vpm->options.vpmnlpmaxsupp; vpm->setchanconfig_from_state(vpm, channel, &chanconfig); if ((res = gpakConfigureChannel(vpm->dspid, channel, tdmToTdm, &chanconfig, &cstatus))) { t1_info(wc, "Unable to configure channel #%d (%d)", channel, res); if (res == 1) { printk(KERN_CONT ", reason %d", cstatus); } printk(KERN_CONT "\n"); return -1; } if ((res = gpakAlgControl(vpm->dspid, channel, BypassEcanA, &algstatus))) { t1_info(wc, "Unable to disable echo can on channel %d " "(reason %d:%d)\n", channel + 1, res, algstatus); return -1; } } if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) { t1_info(wc, "Error pinging DSP (%d)\n", res); return -1; } set_bit(VPM150M_ACTIVE, &vpm->control); return 0; } #define debug_printk(wc, lvl, fmt, args...) if (debug >= (lvl)) do { \ t1_info((wc), fmt , ## args); } while (0) static void cmd_dequeue_vpmadt032(struct t1 *wc, unsigned char *writechunk, int whichframe) { struct vpmadt032_cmd *cmd; struct vpmadt032 *vpm = wc->vpmadt032; int x; unsigned char leds = ~((atomic_read(&wc->txints) / 1000) % 8) & 0x7; /* Skip audio */ writechunk += 66; if (test_bit(VPM150M_SPIRESET, &vpm->control) || test_bit(VPM150M_HPIRESET, &vpm->control)) { debug_printk(wc, 1, "HW Resetting VPMADT032 ...\n"); for (x = 0; x < 4; x++) { if (!x) { if (test_and_clear_bit(VPM150M_SPIRESET, &vpm->control)) writechunk[CMD_BYTE(x, 0, 1)] = 0x08; else if (test_and_clear_bit(VPM150M_HPIRESET, &vpm->control)) writechunk[CMD_BYTE(x, 0, 1)] = 0x0b; } else writechunk[CMD_BYTE(x, 0, 1)] = 0x00 | leds; writechunk[CMD_BYTE(x, 1, 1)] = 0; writechunk[CMD_BYTE(x, 2, 1)] = 0x00; } return; } if ((cmd = vpmadt032_get_ready_cmd(vpm))) { cmd->txident = wc->txident; #if 0 printk(KERN_DEBUG "Found command txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", cmd->txident, cmd->desc, cmd->address, cmd->data); #endif if (cmd->desc & __VPM150M_RWPAGE) { /* Set CTRL access to page*/ writechunk[CMD_BYTE(0, 0, 1)] = (0x8 << 4); writechunk[CMD_BYTE(0, 1, 1)] = 0; writechunk[CMD_BYTE(0, 2, 1)] = 0x20; /* Do a page write */ if (cmd->desc & __VPM150M_WR) { writechunk[CMD_BYTE(1, 0, 1)] = ((0x8 | 0x4) << 4); } else { writechunk[CMD_BYTE(1, 0, 1)] = ((0x8 | 0x4 | 0x1) << 4); } writechunk[CMD_BYTE(1, 1, 1)] = 0; if (cmd->desc & __VPM150M_WR) { writechunk[CMD_BYTE(1, 2, 1)] = cmd->data & 0xf; } else { writechunk[CMD_BYTE(1, 2, 1)] = 0; } if (cmd->desc & __VPM150M_WR) { /* Fill in buffer to size */ writechunk[CMD_BYTE(2, 0, 1)] = 0; writechunk[CMD_BYTE(2, 1, 1)] = 0; writechunk[CMD_BYTE(2, 2, 1)] = 0; } else { /* Do reads twice b/c of vpmadt032 bug */ writechunk[CMD_BYTE(2, 0, 1)] = ((0x8 | 0x4 | 0x1) << 4); writechunk[CMD_BYTE(2, 1, 1)] = 0; writechunk[CMD_BYTE(2, 2, 1)] = 0; } /* Clear XADD */ writechunk[CMD_BYTE(3, 0, 1)] = (0x8 << 4); writechunk[CMD_BYTE(3, 1, 1)] = 0; writechunk[CMD_BYTE(3, 2, 1)] = 0; /* Fill in buffer to size */ writechunk[CMD_BYTE(4, 0, 1)] = 0; writechunk[CMD_BYTE(4, 1, 1)] = 0; writechunk[CMD_BYTE(4, 2, 1)] = 0; } else { /* Set address */ writechunk[CMD_BYTE(0, 0, 1)] = ((0x8 | 0x4) << 4); writechunk[CMD_BYTE(0, 1, 1)] = (cmd->address >> 8) & 0xff; writechunk[CMD_BYTE(0, 2, 1)] = cmd->address & 0xff; /* Send/Get our data */ if (cmd->desc & __VPM150M_WR) { writechunk[CMD_BYTE(1, 0, 1)] = ((0x8 | (0x3 << 1)) << 4); } else { writechunk[CMD_BYTE(1, 0, 1)] = ((0x8 | (0x3 << 1) | 0x1) << 4); } writechunk[CMD_BYTE(1, 1, 1)] = (cmd->data >> 8) & 0xff; writechunk[CMD_BYTE(1, 2, 1)] = cmd->data & 0xff; if (cmd->desc & __VPM150M_WR) { /* Fill in */ writechunk[CMD_BYTE(2, 0, 1)] = 0; writechunk[CMD_BYTE(2, 1, 1)] = 0; writechunk[CMD_BYTE(2, 2, 1)] = 0; } else { /* Do this again for reads b/c of the bug in vpmadt032 */ writechunk[CMD_BYTE(2, 0, 1)] = ((0x8 | (0x3 << 1) | 0x1) << 4); writechunk[CMD_BYTE(2, 1, 1)] = (cmd->data >> 8) & 0xff; writechunk[CMD_BYTE(2, 2, 1)] = cmd->data & 0xff; } /* Fill in the rest */ writechunk[CMD_BYTE(3, 0, 1)] = 0; writechunk[CMD_BYTE(3, 1, 1)] = 0; writechunk[CMD_BYTE(3, 2, 1)] = 0; /* Fill in the rest */ writechunk[CMD_BYTE(4, 0, 1)] = 0; writechunk[CMD_BYTE(4, 1, 1)] = 0; writechunk[CMD_BYTE(4, 2, 1)] = 0; } } else if (test_and_clear_bit(VPM150M_SWRESET, &vpm->control)) { for (x = 0; x < 7; x++) { if (0 == x) { writechunk[CMD_BYTE(x, 0, 1)] = (0x8 << 4); } else { writechunk[CMD_BYTE(x, 0, 1)] = 0x00; } writechunk[CMD_BYTE(x, 1, 1)] = 0; if (0 == x) { writechunk[CMD_BYTE(x, 2, 1)] = 0x01; } else { writechunk[CMD_BYTE(x, 2, 1)] = 0x00; } } } else { for (x = 0; x < 7; x++) { writechunk[CMD_BYTE(x, 0, 1)] = 0x00; writechunk[CMD_BYTE(x, 1, 1)] = 0x00; writechunk[CMD_BYTE(x, 2, 1)] = 0x00; } } /* Add our leds in */ for (x = 0; x < 7; x++) writechunk[CMD_BYTE(x, 0, 1)] |= leds; #if 0 int y; for (x = 0; x < 7; x++) { for (y = 0; y < 3; y++) { if (writechunk[CMD_BYTE(x, y, 1)] & 0x2) { t1_info(wc, "the test bit is high for byte %d\n", y); } } } #endif #if 0 /* This may be needed sometime in the future to troubleshoot ADT related issues. */ if (test_bit(VPM150M_ACTIVE, &vpm->control) && !whichframe && !(atomic_read(&wc->txints) % 10000)) queue_work(vpm->wq, &vpm->work_debug); #endif } static inline int t1_setreg(struct t1 *wc, int addr, int val) { struct command *cmd; cmd = get_free_cmd(wc); if (!cmd) { WARN_ON(1); return -ENOMEM; } cmd->address = addr; cmd->data = val; cmd->flags |= __CMD_WR; submit_cmd(wc, cmd); return 0; } static int t1_getreg(struct t1 *wc, int addr) { struct command *cmd = NULL; unsigned long ret; might_sleep(); cmd = get_free_cmd(wc); if (!cmd) return -ENOMEM; cmd->address = addr; cmd->data = 0x00; cmd->flags = __CMD_RD; submit_cmd(wc, cmd); ret = wait_for_completion_timeout(&cmd->complete, HZ*10); if (unlikely(!ret)) { spin_lock_bh(&wc->cmd_list_lock); if (!list_empty(&cmd->node)) { /* Since we've removed this command from the list, we * can go ahead and free it right away. */ list_del_init(&cmd->node); spin_unlock_bh(&wc->cmd_list_lock); if (printk_ratelimit()) { dev_warn(&wc->vb.pdev->dev, "Timeout in %s\n", __func__); } free_cmd(wc, cmd); return -EIO; } else { /* Looks like this command was removed from the list by * someone else already. Let's wait for them to complete * it so that we don't free up the memory. */ spin_unlock_bh(&wc->cmd_list_lock); ret = wait_for_completion_timeout(&cmd->complete, HZ*2); WARN_ON(!ret); ret = cmd->data; free_cmd(wc, cmd); return ret; } } ret = cmd->data; free_cmd(wc, cmd); return ret; } static void t1_setleds(struct t1 *wc, int leds) { struct command *cmd; leds = (~leds) & 0x0E; /* invert the LED bits (3 downto 1)*/ cmd = get_free_cmd(wc); if (!cmd) return; cmd->flags |= __CMD_LEDS; cmd->address = leds; submit_cmd(wc, cmd); } static inline int t1_getpins(struct t1 *wc, int inisr) { struct command *cmd; unsigned long ret; cmd = get_free_cmd(wc); BUG_ON(!cmd); cmd->address = 0x00; cmd->data = 0x00; cmd->flags = __CMD_PINS; submit_cmd(wc, cmd); ret = wait_for_completion_timeout(&cmd->complete, HZ*2); if (unlikely(!ret)) { spin_lock_bh(&wc->cmd_list_lock); list_del_init(&cmd->node); spin_unlock_bh(&wc->cmd_list_lock); if (printk_ratelimit()) { dev_warn(&wc->vb.pdev->dev, "Timeout in %s\n", __func__); } free_cmd(wc, cmd); return -EIO; } ret = cmd->data; free_cmd(wc, cmd); return ret; } static void __t1xxp_set_clear(struct t1 *wc, int channo) { int i,j; int ret; unsigned short val=0; for (i = 0; i < 24; i++) { j = (i / 8); if (wc->span.chans[i]->flags & DAHDI_FLAG_CLEAR) val |= 1 << (7 - (i % 8)); if (((i % 8)==7) && /* write byte every 8 channels */ ((channo < 0) || /* channo=-1 means all channels */ (j == (channo-1)/8) )) { /* only the register for this channo */ ret = t1_setreg(wc, 0x2f + j, val); if (ret < 0) { t1_info(wc, "set_clear failed for chan %d!\n", i); } val = 0; } } } static void free_wc(struct t1 *wc) { unsigned int x; unsigned long flags; struct command *cmd; LIST_HEAD(list); for (x = 0; x < (wc->spantype == TYPE_E1 ? 31 : 24); x++) { kfree(wc->chans[x]); kfree(wc->ec[x]); } spin_lock_irqsave(&wc->cmd_list_lock, flags); list_splice_init(&wc->active_cmds, &list); list_splice_init(&wc->pending_cmds, &list); spin_unlock_irqrestore(&wc->cmd_list_lock, flags); while (!list_empty(&list)) { cmd = list_entry(list.next, struct command, node); list_del_init(&cmd->node); free_cmd(wc, cmd); } destroy_workqueue(wc->wq); kfree(wc); } static void t1_release(struct t1 *wc) { dahdi_unregister(&wc->span); t1_info(wc, "Freed a Wildcard TE12xP.\n"); free_wc(wc); } static void t4_serial_setup(struct t1 *wc) { t1_info(wc, "Setting up global serial parameters for %s\n", wc->spantype == TYPE_E1 ? (unchannelized ? "Unchannelized E1" : "E1") : "T1"); t1_setreg(wc, 0x85, 0xe0); /* GPC1: Multiplex mode enabled, FSC is output, active low, RCLK from channel 0 */ t1_setreg(wc, 0x08, 0x05); /* IPC: Interrupt push/pull active low */ /* Global clocks (8.192 Mhz CLK) */ t1_setreg(wc, 0x92, 0x00); t1_setreg(wc, 0x93, 0x18); t1_setreg(wc, 0x94, 0xfb); t1_setreg(wc, 0x95, 0x0b); t1_setreg(wc, 0x96, 0x00); t1_setreg(wc, 0x97, 0x0b); t1_setreg(wc, 0x98, 0xdb); t1_setreg(wc, 0x99, 0xdf); /* Configure interrupts */ t1_setreg(wc, 0x46, 0xc0); /* GCR: Interrupt on Activation/Deactivation of AIX, LOS */ /* Configure system interface */ t1_setreg(wc, 0x3e, 0x0a /* 0x02 */); /* SIC1: 4.096 Mhz clock/bus, double buffer receive / transmit, byte interleaved */ t1_setreg(wc, 0x3f, 0x00); /* SIC2: No FFS, no center receive eliastic buffer, phase 0 */ t1_setreg(wc, 0x40, 0x04); /* SIC3: Edges for capture */ t1_setreg(wc, 0x44, 0x30); /* CMR1: RCLK is at 8.192 Mhz dejittered */ t1_setreg(wc, 0x45, 0x00); /* CMR2: We provide sync and clock for tx and rx. */ t1_setreg(wc, 0x22, 0x00); /* XC0: Normal operation of Sa-bits */ t1_setreg(wc, 0x23, 0x04); /* XC1: 0 offset */ t1_setreg(wc, 0x24, 0x00); /* RC0: Just shy of 255 */ t1_setreg(wc, 0x25, 0x05); /* RC1: The rest of RC0 */ /* Configure ports */ t1_setreg(wc, 0x80, 0x00); /* PC1: SPYR/SPYX input on RPA/XPA */ t1_setreg(wc, 0x81, 0x22); /* PC2: RMFB/XSIG output/input on RPB/XPB */ t1_setreg(wc, 0x82, 0x65); /* PC3: Some unused stuff */ t1_setreg(wc, 0x83, 0x35); /* PC4: Some more unused stuff */ t1_setreg(wc, 0x84, 0x31); /* PC5: XMFS active low, SCLKR is input, RCLK is output */ t1_setreg(wc, 0x86, 0x03); /* PC6: CLK1 is Tx Clock output, CLK2 is 8.192 Mhz from DCO-R */ t1_setreg(wc, 0x3b, 0x00); /* Clear LCR1 */ } static void t1_configure_t1(struct t1 *wc, int lineconfig, int txlevel) { unsigned int fmr4, fmr2, fmr1, fmr0, lim2; char *framing, *line; int mytxlevel; if ((txlevel > 7) || (txlevel < 4)) mytxlevel = 0; else mytxlevel = txlevel - 4; fmr1 = 0x9e; /* FMR1: Mode 0, T1 mode, CRC on for ESF, 2.048 Mhz system data rate, no XAIS */ fmr2 = 0x20; /* FMR2: no payload loopback, don't auto yellow alarm */ if (loopback) fmr2 |= 0x4; if (j1mode) fmr4 = 0x1c; else fmr4 = 0x0c; /* FMR4: Lose sync on 2 out of 5 framing bits, auto resync */ lim2 = 0x21; /* LIM2: 50% peak is a "1", Advanced Loss recovery */ lim2 |= (mytxlevel << 6); /* LIM2: Add line buildout */ t1_setreg(wc, 0x1d, fmr1); t1_setreg(wc, 0x1e, fmr2); /* Configure line interface */ if (lineconfig & DAHDI_CONFIG_AMI) { line = "AMI"; fmr0 = 0xa0; } else { line = "B8ZS"; fmr0 = 0xf0; } if (lineconfig & DAHDI_CONFIG_D4) { framing = "D4"; } else { framing = "ESF"; fmr4 |= 0x2; fmr2 |= 0xc0; } t1_setreg(wc, 0x1c, fmr0); t1_setreg(wc, 0x20, fmr4); t1_setreg(wc, 0x21, 0x40); /* FMR5: Enable RBS mode */ t1_setreg(wc, 0x37, 0xf8); /* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */ t1_setreg(wc, 0x36, 0x08); /* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */ t1_setreg(wc, 0x02, 0x50); /* CMDR: Reset the receiver and transmitter line interface */ t1_setreg(wc, 0x02, 0x00); /* CMDR: Reset the receiver and transmitter line interface */ t1_setreg(wc, 0x3a, lim2); /* LIM2: 50% peak amplitude is a "1" */ t1_setreg(wc, 0x38, 0x0a); /* PCD: LOS after 176 consecutive "zeros" */ t1_setreg(wc, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */ if (j1mode) t1_setreg(wc, 0x24, 0x80); /* J1 overide */ /* Generate pulse mask for T1 */ switch (mytxlevel) { case 3: t1_setreg(wc, 0x26, 0x07); /* XPM0 */ t1_setreg(wc, 0x27, 0x01); /* XPM1 */ t1_setreg(wc, 0x28, 0x00); /* XPM2 */ break; case 2: t1_setreg(wc, 0x26, 0x8c); /* XPM0 */ t1_setreg(wc, 0x27, 0x11); /* XPM1 */ t1_setreg(wc, 0x28, 0x01); /* XPM2 */ break; case 1: t1_setreg(wc, 0x26, 0x8c); /* XPM0 */ t1_setreg(wc, 0x27, 0x01); /* XPM1 */ t1_setreg(wc, 0x28, 0x00); /* XPM2 */ break; case 0: default: t1_setreg(wc, 0x26, 0xd7); /* XPM0 */ t1_setreg(wc, 0x27, 0x22); /* XPM1 */ t1_setreg(wc, 0x28, 0x01); /* XPM2 */ break; } t1_info(wc, "Span configured for %s/%s\n", framing, line); } static void t1_configure_e1(struct t1 *wc, int lineconfig) { unsigned int fmr2, fmr1, fmr0; unsigned int cas = 0; char *crc4 = ""; char *framing, *line; fmr1 = 0x46; /* FMR1: E1 mode, Automatic force resync, PCM30 mode, 8.192 Mhz backplane, no XAIS */ fmr2 = 0x03; /* FMR2: Auto transmit remote alarm, auto loss of multiframe recovery, no payload loopback */ if (unchannelized) fmr2 |= 0x30; if (loopback) fmr2 |= 0x4; if (lineconfig & DAHDI_CONFIG_CRC4) { fmr1 |= 0x08; /* CRC4 transmit */ fmr2 |= 0xc0; /* CRC4 receive */ crc4 = "/CRC4"; } t1_setreg(wc, 0x1d, fmr1); t1_setreg(wc, 0x1e, fmr2); /* Configure line interface */ if (lineconfig & DAHDI_CONFIG_AMI) { line = "AMI"; fmr0 = 0xa0; } else { line = "HDB3"; fmr0 = 0xf0; } if (lineconfig & DAHDI_CONFIG_CCS) { framing = "CCS"; } else { framing = "CAS"; cas = 0x40; } t1_setreg(wc, 0x1c, fmr0); if (unchannelized) t1_setreg(wc, 0x1f, 0x40); t1_setreg(wc, 0x37, 0xf0 /*| 0x6 */ ); /* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */ t1_setreg(wc, 0x36, 0x08); /* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */ t1_setreg(wc, 0x02, 0x50); /* CMDR: Reset the receiver and transmitter line interface */ t1_setreg(wc, 0x02, 0x00); /* CMDR: Reset the receiver and transmitter line interface */ /* Condition receive line interface for E1 after reset */ t1_setreg(wc, 0xbb, 0x17); t1_setreg(wc, 0xbc, 0x55); t1_setreg(wc, 0xbb, 0x97); t1_setreg(wc, 0xbb, 0x11); t1_setreg(wc, 0xbc, 0xaa); t1_setreg(wc, 0xbb, 0x91); t1_setreg(wc, 0xbb, 0x12); t1_setreg(wc, 0xbc, 0x55); t1_setreg(wc, 0xbb, 0x92); t1_setreg(wc, 0xbb, 0x0c); t1_setreg(wc, 0xbb, 0x00); t1_setreg(wc, 0xbb, 0x8c); t1_setreg(wc, 0x3a, 0x20); /* LIM2: 50% peak amplitude is a "1" */ t1_setreg(wc, 0x38, 0x0a); /* PCD: LOS after 176 consecutive "zeros" */ t1_setreg(wc, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */ t1_setreg(wc, 0x20, 0x9f); /* XSW: Spare bits all to 1 */ if (unchannelized) t1_setreg(wc, 0x21, 0x3c); else t1_setreg(wc, 0x21, 0x1c|cas); /* XSP: E-bit set when async. AXS auto, XSIF to 1 */ /* Generate pulse mask for E1 */ t1_setreg(wc, 0x26, 0x54); /* XPM0 */ t1_setreg(wc, 0x27, 0x02); /* XPM1 */ t1_setreg(wc, 0x28, 0x00); /* XPM2 */ t1_info(wc, "Span configured for %s/%s%s\n", framing, line, crc4); } static void t1xxp_framer_start(struct t1 *wc, struct dahdi_span *span) { if (wc->spantype == TYPE_E1) { /* if this is an E1 card */ t1_configure_e1(wc, span->lineconfig); } else { /* is a T1 card */ t1_configure_t1(wc, span->lineconfig, span->txlevel); __t1xxp_set_clear(wc, -1); } set_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags); } static int t1xxp_startup(struct dahdi_span *span) { struct t1 *wc = span->pvt; int i; /* initialize the start value for the entire chunk of last ec buffer */ for (i = 0; i < span->channels; i++) { memset(wc->ec_chunk1[i], DAHDI_LIN2X(0, span->chans[i]), DAHDI_CHUNKSIZE); memset(wc->ec_chunk2[i], DAHDI_LIN2X(0, span->chans[i]), DAHDI_CHUNKSIZE); } /* Reset framer with proper parameters and start */ t1xxp_framer_start(wc, span); debug_printk(wc, 1, "Calling startup (flags is %lu)\n", span->flags); return 0; } static int t1xxp_shutdown(struct dahdi_span *span) { struct t1 *wc = span->pvt; t1_setreg(wc, 0x46, 0x41); /* GCR: Interrupt on Activation/Deactivation of AIX, LOS */ clear_bit(DAHDI_FLAGBIT_RUNNING, &span->flags); return 0; } static int t1xxp_chanconfig(struct dahdi_chan *chan, int sigtype) { struct t1 *wc = chan->pvt; if (test_bit(DAHDI_FLAGBIT_RUNNING, &chan->span->flags) && (wc->spantype != TYPE_E1)) { __t1xxp_set_clear(wc, chan->channo); } return 0; } static int t1xxp_rbsbits(struct dahdi_chan *chan, int bits) { u_char m,c; int n,b; struct t1 *wc = chan->pvt; unsigned long flags; debug_printk(wc, 2, "Setting bits to %d on channel %s\n", bits, chan->name); if (wc->spantype == TYPE_E1) { /* do it E1 way */ if (chan->chanpos == 16) return 0; n = chan->chanpos - 1; if (chan->chanpos > 15) n--; b = (n % 15); spin_lock_irqsave(&wc->reglock, flags); c = wc->txsigs[b]; m = (n / 15) << 2; /* nibble selector */ c &= (0xf << m); /* keep the other nibble */ c |= (bits & 0xf) << (4 - m); /* put our new nibble here */ wc->txsigs[b] = c; spin_unlock_irqrestore(&wc->reglock, flags); /* output them to the chip */ t1_setreg(wc, 0x71 + b, c); } else if (wc->span.lineconfig & DAHDI_CONFIG_D4) { n = chan->chanpos - 1; b = (n / 4); spin_lock_irqsave(&wc->reglock, flags); c = wc->txsigs[b]; m = ((3 - (n % 4)) << 1); /* nibble selector */ c &= ~(0x3 << m); /* keep the other nibble */ c |= ((bits >> 2) & 0x3) << m; /* put our new nibble here */ wc->txsigs[b] = c; spin_unlock_irqrestore(&wc->reglock, flags); /* output them to the chip */ t1_setreg(wc, 0x70 + b, c); t1_setreg(wc, 0x70 + b + 6, c); } else if (wc->span.lineconfig & DAHDI_CONFIG_ESF) { n = chan->chanpos - 1; b = (n / 2); spin_lock_irqsave(&wc->reglock, flags); c = wc->txsigs[b]; m = ((n % 2) << 2); /* nibble selector */ c &= (0xf << m); /* keep the other nibble */ c |= (bits & 0xf) << (4 - m); /* put our new nibble here */ wc->txsigs[b] = c; spin_unlock_irqrestore(&wc->reglock, flags); /* output them to the chip */ t1_setreg(wc, 0x70 + b, c); } debug_printk(wc, 2, "Finished setting RBS bits\n"); return 0; } static inline void t1_check_sigbits(struct t1 *wc) { int a,i,rxs; if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags))) return; if (wc->spantype == TYPE_E1) { for (i = 0; i < 15; i++) { a = t1_getreg(wc, 0x71 + i); if (a > -1) { /* Get high channel in low bits */ rxs = (a & 0xf); if (!(wc->span.chans[i+16]->sig & DAHDI_SIG_CLEAR)) { if (wc->span.chans[i+16]->rxsig != rxs) { dahdi_rbsbits(wc->span.chans[i+16], rxs); } } rxs = (a >> 4) & 0xf; if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) { if (wc->span.chans[i]->rxsig != rxs) { dahdi_rbsbits(wc->span.chans[i], rxs); } } } } } else if (wc->span.lineconfig & DAHDI_CONFIG_D4) { for (i = 0; i < 24; i+=4) { a = t1_getreg(wc, 0x70 + (i>>2)); if (a > -1) { /* Get high channel in low bits */ rxs = (a & 0x3) << 2; if (!(wc->span.chans[i+3]->sig & DAHDI_SIG_CLEAR)) { if (wc->span.chans[i+3]->rxsig != rxs) { dahdi_rbsbits(wc->span.chans[i+3], rxs); } } rxs = (a & 0xc); if (!(wc->span.chans[i+2]->sig & DAHDI_SIG_CLEAR)) { if (wc->span.chans[i+2]->rxsig != rxs) { dahdi_rbsbits(wc->span.chans[i+2], rxs); } } rxs = (a >> 2) & 0xc; if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR)) { if (wc->span.chans[i+1]->rxsig != rxs) { dahdi_rbsbits(wc->span.chans[i+1], rxs); } } rxs = (a >> 4) & 0xc; if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) { if (wc->span.chans[i]->rxsig != rxs) { dahdi_rbsbits(wc->span.chans[i], rxs); } } } } } else { for (i = 0; i < 24; i+=2) { a = t1_getreg(wc, 0x70 + (i>>1)); if (a > -1) { /* Get high channel in low bits */ rxs = (a & 0xf); if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR)) { if (wc->span.chans[i+1]->rxsig != rxs) { dahdi_rbsbits(wc->span.chans[i+1], rxs); } } rxs = (a >> 4) & 0xf; if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) { if (wc->span.chans[i]->rxsig != rxs) { dahdi_rbsbits(wc->span.chans[i], rxs); } } } } } } struct maint_work_struct { struct work_struct work; struct t1 *wc; int cmd; struct dahdi_span *span; }; #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) static void t1xxp_maint_work(void *data) { struct maint_work_struct *w = data; #else static void t1xxp_maint_work(struct work_struct *work) { struct maint_work_struct *w = container_of(work, struct maint_work_struct, work); #endif struct t1 *wc = w->wc; struct dahdi_span *span = w->span; int reg = 0; int cmd = w->cmd; if (wc->spantype == TYPE_E1) { switch (cmd) { case DAHDI_MAINT_NONE: t1_info(wc, "Clearing all maint modes\n"); t1xxp_clear_maint(span); break; case DAHDI_MAINT_LOCALLOOP: t1xxp_clear_maint(span); reg = t1_getreg(wc, LIM0); if (reg < 0) goto cleanup; t1_setreg(wc, LIM0, reg | LIM0_LL); break; case DAHDI_MAINT_REMOTELOOP: case DAHDI_MAINT_LOOPUP: case DAHDI_MAINT_LOOPDOWN: case DAHDI_MAINT_LOOPSTOP: t1_info(wc, "Only local loop supported in E1 mode\n"); goto cleanup; default: t1_info(wc, "Unknown E1 maint command: %d\n", cmd); goto cleanup; } } else { switch (cmd) { case DAHDI_MAINT_NONE: t1xxp_clear_maint(span); break; case DAHDI_MAINT_LOCALLOOP: t1xxp_clear_maint(span); reg = t1_getreg(wc, LIM0); if (reg < 0) goto cleanup; t1_setreg(wc, LIM0, reg | LIM0_LL); break; case DAHDI_MAINT_NETWORKLINELOOP: t1xxp_clear_maint(span); reg = t1_getreg(wc, LIM1); if (reg < 0) goto cleanup; t1_setreg(wc, LIM1, reg | LIM1_RL); break; case DAHDI_MAINT_NETWORKPAYLOADLOOP: t1xxp_clear_maint(span); reg = t1_getreg(wc, LIM1); if (reg < 0) goto cleanup; t1_setreg(wc, LIM1, reg | (LIM1_RL | LIM1_JATT)); break; case DAHDI_MAINT_LOOPUP: t1xxp_clear_maint(span); t1_setreg(wc, 0x21, 0x50); break; case DAHDI_MAINT_LOOPDOWN: t1xxp_clear_maint(span); t1_setreg(wc, 0x21, 0x60); break; case DAHDI_MAINT_LOOPSTOP: t1xxp_clear_maint(w->span); t1_setreg(w->wc, 0x21, 0x40); break; default: t1_info(wc, "Unknown T1 maint command: %d\n", cmd); return; } } cleanup: kfree(w); return; } static int t1xxp_maint(struct dahdi_span *span, int cmd) { struct maint_work_struct *work; struct t1 *wc = span->pvt; if (wc->spantype == TYPE_E1) { switch (cmd) { case DAHDI_MAINT_NONE: case DAHDI_MAINT_LOCALLOOP: break; case DAHDI_MAINT_REMOTELOOP: case DAHDI_MAINT_LOOPUP: case DAHDI_MAINT_LOOPDOWN: case DAHDI_MAINT_LOOPSTOP: t1_info(wc, "Only local loop supported in E1 mode\n"); return -ENOSYS; default: t1_info(wc, "Unknown E1 maint command: %d\n", cmd); return -ENOSYS; } } else { switch (cmd) { case DAHDI_MAINT_NONE: case DAHDI_MAINT_LOCALLOOP: case DAHDI_MAINT_NETWORKLINELOOP: case DAHDI_MAINT_NETWORKPAYLOADLOOP: case DAHDI_MAINT_LOOPUP: case DAHDI_MAINT_LOOPDOWN: case DAHDI_MAINT_LOOPSTOP: break; default: t1_info(wc, "Unknown T1 maint command: %d\n", cmd); return -ENOSYS; } } work = kmalloc(sizeof(*work), GFP_ATOMIC); if (!work) { t1_info(wc, "Failed to allocate memory for " "DAHDI_MAINT_LOOPSTOP\n"); return -ENOMEM; } work->span = span; work->wc = wc; work->cmd = cmd; #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) INIT_WORK(&work->work, t1xxp_maint_work, work); #else INIT_WORK(&work->work, t1xxp_maint_work); #endif queue_work(wc->wq, &work->work); return 0; } static int t1xxp_clear_maint(struct dahdi_span *span) { struct t1 *wc = span->pvt; int reg = 0; /* Turn off local loop */ reg = t1_getreg(wc, LIM0); if (reg < 0) return -EIO; t1_setreg(wc, LIM0, reg & ~LIM0_LL); /* Turn off remote loop & jitter attenuator */ reg = t1_getreg(wc, LIM1); if (reg < 0) return -EIO; t1_setreg(wc, LIM1, reg & ~(LIM1_RL | LIM1_JATT)); return 0; } static int t1xxp_open(struct dahdi_chan *chan) { return 0; } static int t1xxp_close(struct dahdi_chan *chan) { return 0; } static int t1xxp_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data) { switch (cmd) { case WCT4_GET_REGS: /* Since all register access was moved into the voicebus * module....this was removed. Although...why does the client * library need access to the registers (debugging)? \todo .. */ WARN_ON(1); return -ENOSYS; break; default: return -ENOTTY; } return 0; } static int echocan_create(struct dahdi_chan *chan, struct dahdi_echocanparams *ecp, struct dahdi_echocanparam *p, struct dahdi_echocan_state **ec) { struct t1 *wc = chan->pvt; enum adt_companding comp; if (!wc->vpmadt032 || !test_bit(4, &wc->ctlreg)) return -ENODEV; *ec = wc->ec[chan->chanpos - 1]; (*ec)->ops = &vpm150m_ec_ops; (*ec)->features = vpm150m_ec_features; comp = (DAHDI_LAW_ALAW == chan->span->deflaw) ? ADT_COMP_ALAW : ADT_COMP_ULAW; return vpmadt032_echocan_create(wc->vpmadt032, chan->chanpos - 1, comp, ecp, p); } static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec) { struct t1 *wc = chan->pvt; if (!wc->vpmadt032) return; vpmadt032_echocan_free(wc->vpmadt032, chan->chanpos - 1, ec); } static void set_span_devicetype(struct t1 *wc) { strncpy(wc->span.devicetype, wc->variety, sizeof(wc->span.devicetype) - 1); #if defined(VPM_SUPPORT) if (wc->vpmadt032) strncat(wc->span.devicetype, " (VPMADT032)", sizeof(wc->span.devicetype) - 1); #endif } static void setchanconfig_from_state(struct vpmadt032 *vpm, int channel, GpakChannelConfig_t *chanconfig) { const struct vpmadt032_options *options; GpakEcanParms_t *p; BUG_ON(!vpm); options = &vpm->options; chanconfig->PcmInPortA = 3; chanconfig->PcmInSlotA = (channel + 1) * 2; chanconfig->PcmOutPortA = SerialPortNull; chanconfig->PcmOutSlotA = (channel + 1) * 2; chanconfig->PcmInPortB = 2; chanconfig->PcmInSlotB = (channel + 1) * 2; chanconfig->PcmOutPortB = 3; chanconfig->PcmOutSlotB = (channel + 1) * 2; chanconfig->ToneTypesA = Null_tone; chanconfig->MuteToneA = Disabled; chanconfig->FaxCngDetA = Disabled; chanconfig->ToneTypesB = Null_tone; chanconfig->EcanEnableA = Enabled; chanconfig->EcanEnableB = Disabled; chanconfig->MuteToneB = Disabled; chanconfig->FaxCngDetB = Disabled; chanconfig->SoftwareCompand = cmpNone; chanconfig->FrameRate = rate10ms; p = &chanconfig->EcanParametersA; vpmadt032_get_default_parameters(p); p->EcanNlpType = vpm->curecstate[channel].nlp_type; p->EcanNlpThreshold = vpm->curecstate[channel].nlp_threshold; p->EcanNlpMaxSuppress = vpm->curecstate[channel].nlp_max_suppress; memcpy(&chanconfig->EcanParametersB, &chanconfig->EcanParametersA, sizeof(chanconfig->EcanParametersB)); } #ifdef VPM_SUPPORT static int check_and_load_vpm(struct t1 *wc) { int res; struct vpmadt032_options options; if (!vpmsupport) { t1_info(wc, "VPM Support Disabled\n"); vpmadt032_free(wc->vpmadt032); wc->vpmadt032 = NULL; return 0; } /* The firmware may already be loaded. */ if (wc->vpmadt032) { u16 version; res = gpakPingDsp(wc->vpmadt032->dspid, &version); if (!res) return 0; } memset(&options, 0, sizeof(options)); options.debug = debug; options.vpmnlptype = vpmnlptype; options.vpmnlpthresh = vpmnlpthresh; options.vpmnlpmaxsupp = vpmnlpmaxsupp; options.channels = (TYPE_T1 == wc->spantype) ? 24 : 32; /* We do not want to check that the VPM is alive until after we're * done setting it up here, an hour should cover it... */ wc->vpm_check = jiffies + HZ*3600; wc->vpmadt032 = vpmadt032_alloc(&options, wc->name); if (!wc->vpmadt032) return -ENOMEM; wc->vpmadt032->setchanconfig_from_state = setchanconfig_from_state; res = vpmadt032_init(wc->vpmadt032, &wc->vb); if (-ENODEV == res) { /* There does not appear to be a VPMADT032 installed. */ vpmadt032_free(wc->vpmadt032); wc->vpmadt032 = NULL; clear_bit(4, &wc->ctlreg); return res; } else if (res) { /* There was some problem during initialization, but it passed * the address test, let's try again in a bit. */ wc->vpm_check = jiffies + HZ/2; return -EAGAIN; } if (config_vpmadt032(wc->vpmadt032, wc)) { clear_bit(4, &wc->ctlreg); wc->vpm_check = jiffies + HZ/2; return -EAGAIN; } /* turn on vpm (RX audio from vpm module) */ set_bit(4, &wc->ctlreg); wc->vpm_check = jiffies + HZ*5; if (vpmtsisupport) { debug_printk(wc, 1, "enabling VPM TSI pin\n"); /* turn on vpm timeslot interchange pin */ set_bit(0, &wc->ctlreg); } return 0; } #else static inline int check_and_load_vpm(const struct t1 *wc) { return 0; } #endif static int t1xxp_spanconfig(struct dahdi_span *span, struct dahdi_lineconfig *lc) { struct t1 *wc = span->pvt; check_and_load_vpm(wc); set_span_devicetype(wc); /* Do we want to SYNC on receive or not */ if (lc->sync) { set_bit(7, &wc->ctlreg); span->syncsrc = span->spanno; } else { clear_bit(7, &wc->ctlreg); span->syncsrc = 0; } /* If already running, apply changes immediately */ if (test_bit(DAHDI_FLAGBIT_RUNNING, &span->flags)) return t1xxp_startup(span); return 0; } static int t1_software_init(struct t1 *wc) { int x; int num; struct pci_dev *pdev = wc->vb.pdev; /* Find position */ for (x = 0; x < ARRAY_SIZE(ifaces); ++x) { if (ifaces[x] == wc) { debug_printk(wc, 1, "software init for card %d\n", x); break; } } if (x == ARRAY_SIZE(ifaces)) return -1; t4_serial_setup(wc); num = x; sprintf(wc->span.name, "WCT1/%d", num); snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Card %d", wc->variety, num); wc->span.manufacturer = "Digium"; set_span_devicetype(wc); snprintf(wc->span.location, sizeof(wc->span.location) - 1, "PCI Bus %02d Slot %02d", pdev->bus->number, PCI_SLOT(pdev->devfn) + 1); wc->span.owner = THIS_MODULE; wc->span.spanconfig = t1xxp_spanconfig; wc->span.chanconfig = t1xxp_chanconfig; wc->span.irq = pdev->irq; wc->span.startup = t1xxp_startup; wc->span.shutdown = t1xxp_shutdown; wc->span.rbsbits = t1xxp_rbsbits; wc->span.maint = t1xxp_maint; wc->span.open = t1xxp_open; wc->span.close = t1xxp_close; wc->span.ioctl = t1xxp_ioctl; #ifdef VPM_SUPPORT if (vpmsupport) wc->span.echocan_create = echocan_create; #endif if (wc->spantype == TYPE_E1) { if (unchannelized) wc->span.channels = 32; else wc->span.channels = 31; wc->span.spantype = "E1"; wc->span.linecompat = DAHDI_CONFIG_HDB3 | DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4; wc->span.deflaw = DAHDI_LAW_ALAW; } else { wc->span.channels = 24; wc->span.spantype = "T1"; wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS | DAHDI_CONFIG_D4 | DAHDI_CONFIG_ESF; wc->span.deflaw = DAHDI_LAW_MULAW; } wc->span.chans = wc->chans; set_bit(DAHDI_FLAGBIT_RBS, &wc->span.flags); wc->span.pvt = wc; init_waitqueue_head(&wc->span.maintq); for (x = 0; x < wc->span.channels; x++) { sprintf(wc->chans[x]->name, "WCT1/%d/%d", num, x + 1); wc->chans[x]->sigcap = DAHDI_SIG_EM | DAHDI_SIG_CLEAR | DAHDI_SIG_EM_E1 | DAHDI_SIG_FXSLS | DAHDI_SIG_FXSGS | DAHDI_SIG_MTP2 | DAHDI_SIG_FXSKS | DAHDI_SIG_FXOLS | DAHDI_SIG_DACS_RBS | DAHDI_SIG_FXOGS | DAHDI_SIG_FXOKS | DAHDI_SIG_CAS | DAHDI_SIG_SF; wc->chans[x]->pvt = wc; wc->chans[x]->chanpos = x + 1; } if (dahdi_register(&wc->span, 0)) { t1_info(wc, "Unable to register span with DAHDI\n"); return -1; } set_bit(INITIALIZED, &wc->bit_flags); return 0; } #if 0 #ifdef VPM_SUPPORT static inline unsigned char t1_vpm_in(struct t1 *wc, int unit, const unsigned int addr) { return t1_getreg_full(wc, addr, unit); } static inline unsigned char t1_vpm_out(struct t1 *wc, int unit, const unsigned int addr, const unsigned char val) { return t1_setreg(wc, addr, val, unit); } #endif #endif static int t1_hardware_post_init(struct t1 *wc) { unsigned int reg; int x; /* T1 or E1 */ if (t1e1override > -1) { if (t1e1override) wc->spantype = TYPE_E1; else wc->spantype = TYPE_T1; } else { if (t1_getpins(wc,0) & 0x01) /* returns 1 for T1 mode */ wc->spantype = TYPE_T1; else wc->spantype = TYPE_E1; } debug_printk(wc, 1, "spantype: %s\n", 1 == wc->spantype ? "T1" : "E1"); /* what version of the FALC are we using? */ reg = t1_setreg(wc, 0x4a, 0xaa); reg = t1_getreg(wc, 0x4a); debug_printk(wc, 1, "FALC version: %08x\n", reg); /* make sure reads and writes work */ for (x = 0; x < 256; x++) { t1_setreg(wc, 0x14, x); reg = t1_getreg(wc, 0x14); if (reg != x) t1_info(wc, "Wrote '%x' but read '%x'\n", x, reg); } t1_setleds(wc, wc->ledstate); return 0; } static inline void t1_check_alarms(struct t1 *wc) { unsigned char c,d; int alarms; int x,j; unsigned char fmr4; /* must read this always */ if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags))) return; c = t1_getreg(wc, 0x4c); fmr4 = t1_getreg(wc, 0x20); /* must read this even if we don't use it */ d = t1_getreg(wc, 0x4d); /* Assume no alarms */ alarms = 0; /* And consider only carrier alarms */ wc->span.alarms &= (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE | DAHDI_ALARM_NOTOPEN); if (wc->spantype == TYPE_E1) { if (c & 0x04) { /* No multiframe found, force RAI high after 400ms only if we haven't found a multiframe since last loss of frame */ if (!wc->flags.nmf) { t1_setreg(wc, 0x20, 0x9f | 0x20); /* LIM0: Force RAI High */ wc->flags.nmf = 1; t1_info(wc, "NMF workaround on!\n"); } t1_setreg(wc, 0x1e, 0xc3); /* Reset to CRC4 mode */ t1_setreg(wc, 0x1c, 0xf2); /* Force Resync */ t1_setreg(wc, 0x1c, 0xf0); /* Force Resync */ } else if (!(c & 0x02)) { if (wc->flags.nmf) { t1_setreg(wc, 0x20, 0x9f); /* LIM0: Clear forced RAI */ wc->flags.nmf = 0; t1_info(wc, "NMF workaround off!\n"); } } } else { /* Detect loopup code if we're not sending one */ if ((!wc->span.mainttimer) && (d & 0x08)) { /* Loop-up code detected */ if ((wc->loopupcnt++ > 80) && (wc->span.maintstat != DAHDI_MAINT_REMOTELOOP)) { t1_setreg(wc, 0x36, 0x08); /* LIM0: Disable any local loop */ t1_setreg(wc, 0x37, 0xf6); /* LIM1: Enable remote loop */ wc->span.maintstat = DAHDI_MAINT_REMOTELOOP; } } else wc->loopupcnt = 0; /* Same for loopdown code */ if ((!wc->span.mainttimer) && (d & 0x10)) { /* Loop-down code detected */ if ((wc->loopdowncnt++ > 80) && (wc->span.maintstat == DAHDI_MAINT_REMOTELOOP)) { t1_setreg(wc, 0x36, 0x08); /* LIM0: Disable any local loop */ t1_setreg(wc, 0x37, 0xf0); /* LIM1: Disable remote loop */ wc->span.maintstat = DAHDI_MAINT_NONE; } } else wc->loopdowncnt = 0; } if (wc->span.lineconfig & DAHDI_CONFIG_NOTOPEN) { for (x=0,j=0;x < wc->span.channels;x++) if ((wc->span.chans[x]->flags & DAHDI_FLAG_OPEN) || (wc->span.chans[x]->flags & DAHDI_FLAG_NETDEV)) j++; if (!j) alarms |= DAHDI_ALARM_NOTOPEN; } if (c & 0x20) { /* LOF/LFA */ if (wc->alarmcount >= (alarmdebounce/100)) alarms |= DAHDI_ALARM_RED; else { if (unlikely(debug && !wc->alarmcount)) { /* starting to debounce LOF/LFA */ t1_info(wc, "LOF/LFA detected but " "debouncing for %d ms\n", alarmdebounce); } wc->alarmcount++; } } else wc->alarmcount = 0; if (c & 0x80) { /* LOS */ if (wc->losalarmcount >= (losalarmdebounce/100)) alarms |= DAHDI_ALARM_RED; else { if (unlikely(debug && !wc->losalarmcount)) { /* starting to debounce LOS */ t1_info(wc, "LOS detected but debouncing " "for %d ms\n", losalarmdebounce); } wc->losalarmcount++; } } else wc->losalarmcount = 0; if (c & 0x40) { /* AIS */ if (wc->aisalarmcount >= (aisalarmdebounce/100)) alarms |= DAHDI_ALARM_BLUE; else { if (unlikely(debug && !wc->aisalarmcount)) { /* starting to debounce AIS */ t1_info(wc, "AIS detected but debouncing " "for %d ms\n", aisalarmdebounce); } wc->aisalarmcount++; } } else wc->aisalarmcount = 0; /* Keep track of recovering */ if ((!alarms) && wc->span.alarms) wc->alarmtimer = jiffies + 5*HZ; if (wc->alarmtimer) alarms |= DAHDI_ALARM_RECOVER; /* If receiving alarms, go into Yellow alarm state */ if (alarms && !wc->flags.sendingyellow) { t1_info(wc, "Setting yellow alarm\n"); /* We manually do yellow alarm to handle RECOVER and NOTOPEN, otherwise it's auto anyway */ t1_setreg(wc, 0x20, fmr4 | 0x20); wc->flags.sendingyellow = 1; } else if (!alarms && wc->flags.sendingyellow) { t1_info(wc, "Clearing yellow alarm\n"); /* We manually do yellow alarm to handle RECOVER */ t1_setreg(wc, 0x20, fmr4 & ~0x20); wc->flags.sendingyellow = 0; } /* if ((c & 0x10) && !unchannelized) alarms |= DAHDI_ALARM_YELLOW; */ if ((c & 0x10) && !unchannelized) { /* receiving yellow (RAI) */ if (wc->yelalarmcount >= (yelalarmdebounce/100)) alarms |= DAHDI_ALARM_YELLOW; else { if (unlikely(debug && !wc->yelalarmcount)) { /* starting to debounce AIS */ t1_info(wc, "yelllow (RAI) detected but " "debouncing for %d ms\n", yelalarmdebounce); } wc->yelalarmcount++; } } else wc->yelalarmcount = 0; if (wc->span.mainttimer || wc->span.maintstat) alarms |= DAHDI_ALARM_LOOPBACK; wc->span.alarms = alarms; dahdi_alarm_notify(&wc->span); } static void handle_leds(struct t1 *wc) { unsigned char led; unsigned long flags; led = wc->ledstate; if ((wc->span.alarms & (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE)) || wc->losalarmcount) { /* When we're in red alarm, blink the led once a second. */ if (time_after(jiffies, wc->blinktimer)) { led = (led & __LED_GREEN) ? SET_LED_RED(led) : UNSET_LED_REDGREEN(led); } } else if (wc->span.alarms & DAHDI_ALARM_YELLOW) { led = (led & __LED_RED) ? SET_LED_GREEN(led) : SET_LED_RED(led); } else { if (wc->span.maintstat != DAHDI_MAINT_NONE) led = SET_LED_ORANGE(led); else led = UNSET_LED_ORANGE(led); if (test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)) led = SET_LED_GREEN(led); else led = UNSET_LED_REDGREEN(led); } if (led != wc->ledstate) { struct command *cmd; cmd = get_free_cmd(wc); if (cmd) { wc->blinktimer = jiffies + HZ/2; cmd->flags |= __CMD_LEDS; cmd->address = ~led & 0x0E; submit_cmd(wc, cmd); spin_lock_irqsave(&wc->reglock, flags); wc->ledstate = led; spin_unlock_irqrestore(&wc->reglock, flags); } } } static void t1_do_counters(struct t1 *wc) { if (wc->alarmtimer && time_after(jiffies, wc->alarmtimer)) { wc->span.alarms &= ~(DAHDI_ALARM_RECOVER); wc->alarmtimer = 0; dahdi_alarm_notify(&wc->span); } } static inline void t1_transmitprep(struct t1 *wc, u8 *writechunk) { int x; int y; int chan; /* Calculate Transmission */ if (likely(test_bit(INITIALIZED, &wc->bit_flags))) { dahdi_transmit(&wc->span); } for (x = 0; x < DAHDI_CHUNKSIZE; x++) { if (likely(test_bit(INITIALIZED, &wc->bit_flags))) { for (chan = 0; chan < wc->span.channels; chan++) writechunk[(chan+1)*2] = wc->chans[chan]->writechunk[x]; } /* process the command queue */ for (y = 0; y < 7; y++) cmd_dequeue(wc, writechunk, x, y); #ifdef VPM_SUPPORT if (wc->vpmadt032) cmd_dequeue_vpmadt032(wc, writechunk, x); #endif if (x < DAHDI_CHUNKSIZE - 1) { writechunk[EFRAME_SIZE] = wc->ctlreg; writechunk[EFRAME_SIZE + 1] = wc->txident++; } writechunk += (EFRAME_SIZE + EFRAME_GAP); } } /** * is_good_frame() - Whether the SFRAME received was one sent. * */ static inline bool is_good_frame(const u8 *sframe) { const u8 a = sframe[0*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)]; const u8 b = sframe[1*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)]; return a != b; } static inline void t1_receiveprep(struct t1 *wc, const u8* readchunk) { int x,chan; unsigned char expected; if (!is_good_frame(readchunk)) return; for (x = 0; x < DAHDI_CHUNKSIZE; x++) { if (likely(test_bit(INITIALIZED, &wc->bit_flags))) { for (chan = 0; chan < wc->span.channels; chan++) { wc->chans[chan]->readchunk[x]= readchunk[(chan+1)*2]; } } if (x < DAHDI_CHUNKSIZE - 1) { expected = wc->rxident+1; wc->rxident = readchunk[EFRAME_SIZE + 1]; wc->statreg = readchunk[EFRAME_SIZE + 2]; if (wc->rxident != expected) { wc->span.irqmisses++; resend_cmds(wc); if (unlikely(debug)) { t1_info(wc, "oops: rxident=%d " "expected=%d x=%d\n", wc->rxident, expected, x); } } } cmd_decipher(wc, readchunk); #ifdef VPM_SUPPORT if (wc->vpmadt032) { spin_lock(&wc->reglock); cmd_decipher_vpmadt032(wc, readchunk); spin_unlock(&wc->reglock); } #endif readchunk += (EFRAME_SIZE + EFRAME_GAP); } /* echo cancel */ if (likely(test_bit(INITIALIZED, &wc->bit_flags))) { for (x = 0; x < wc->span.channels; x++) { dahdi_ec_chunk(wc->chans[x], wc->chans[x]->readchunk, wc->ec_chunk2[x]); memcpy(wc->ec_chunk2[x],wc->ec_chunk1[x],DAHDI_CHUNKSIZE); memcpy(wc->ec_chunk1[x],wc->chans[x]->writechunk,DAHDI_CHUNKSIZE); } dahdi_receive(&wc->span); } } static void t1_handle_transmit(struct voicebus *vb, struct list_head *buffers) { struct t1 *wc = container_of(vb, struct t1, vb); struct vbb *vbb; list_for_each_entry(vbb, buffers, entry) { memset(vbb->data, 0, sizeof(vbb->data)); atomic_inc(&wc->txints); t1_transmitprep(wc, vbb->data); handle_leds(wc); } } static void t1_handle_receive(struct voicebus *vb, struct list_head *buffers) { struct t1 *wc = container_of(vb, struct t1, vb); struct vbb *vbb; list_for_each_entry(vbb, buffers, entry) t1_receiveprep(wc, vbb->data); } #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) static void timer_work_func(void *param) { struct t1 *wc = param; #else static void timer_work_func(struct work_struct *work) { struct t1 *wc = container_of(work, struct t1, timer_work); #endif t1_do_counters(wc); t1_check_alarms(wc); t1_check_sigbits(wc); if (test_bit(INITIALIZED, &wc->bit_flags)) mod_timer(&wc->timer, jiffies + HZ/10); } #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) static void vpm_check_func(void *data) { struct t1 *wc = data; #else static void vpm_check_func(struct work_struct *work) { struct t1 *wc = container_of(work, struct t1, vpm_check_work); #endif int res; u16 version; if (test_bit(4, &wc->ctlreg)) { res = gpakPingDsp(wc->vpmadt032->dspid, &version); if (!res) { set_bit(4, &wc->ctlreg); wc->vpm_check = jiffies + HZ*5; return; } clear_bit(4, &wc->ctlreg); t1_info(wc, "VPMADT032 is non-responsive. Resetting.\n"); } res = vpmadt032_reset(wc->vpmadt032); if (res) { t1_info(wc, "Failed VPMADT032 reset. VPMADT032 is disabled.\n"); wc->vpm_check = jiffies + HZ*5; return; } res = config_vpmadt032(wc->vpmadt032, wc); if (res) { /* We failed the configuration, let's try again. */ t1_info(wc, "Failed to configure the ports. Retrying.\n"); queue_work(wc->vpmadt032->wq, &wc->vpm_check_work); return; } /* Looks like the reset went ok so we can put the VPM module back in * the TDM path. */ set_bit(4, &wc->ctlreg); t1_info(wc, "VPMADT032 is reenabled.\n"); wc->vpm_check = jiffies + HZ*5; return; } static void te12xp_timer(unsigned long data) { struct t1 *wc = (struct t1 *)data; if (unlikely(!test_bit(INITIALIZED, &wc->bit_flags))) return; queue_work(wc->wq, &wc->timer_work); if (!wc->vpmadt032) return; if (time_after(wc->vpm_check, jiffies)) return; queue_work(wc->vpmadt032->wq, &wc->vpm_check_work); return; } static void t1_handle_error(struct voicebus *vb) { struct t1 *wc = container_of(vb, struct t1, vb); if (!wc->vpmadt032) return; clear_bit(4, &wc->ctlreg); queue_work(wc->vpmadt032->wq, &wc->vpm_check_work); } static const struct voicebus_operations voicebus_operations = { .handle_receive = t1_handle_receive, .handle_transmit = t1_handle_transmit, .handle_error = t1_handle_error, }; static int __devinit te12xp_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct t1 *wc; struct t1_desc *d = (struct t1_desc *) ent->driver_data; unsigned int x; int res; unsigned int index = -1; for (x = 0; x < sizeof(ifaces) / sizeof(ifaces[0]); x++) { if (!ifaces[x]) { index = x; break; } } if (-1 == index) { printk(KERN_INFO "%s: Too many interfaces\n", THIS_MODULE->name); return -EIO; } if (!(wc = kmalloc(sizeof(*wc), GFP_KERNEL))) { return -ENOMEM; } ifaces[index] = wc; memset(wc, 0, sizeof(*wc)); wc->ledstate = -1; spin_lock_init(&wc->reglock); spin_lock_init(&wc->cmd_list_lock); INIT_LIST_HEAD(&wc->active_cmds); INIT_LIST_HEAD(&wc->pending_cmds); wc->variety = d->name; wc->txident = 1; # if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18) wc->timer.function = te12xp_timer; wc->timer.data = (unsigned long)wc; init_timer(&wc->timer); # else setup_timer(&wc->timer, te12xp_timer, (unsigned long)wc); # endif # if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) INIT_WORK(&wc->timer_work, timer_work_func, wc); # else INIT_WORK(&wc->timer_work, timer_work_func); # endif # if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) INIT_WORK(&wc->vpm_check_work, vpm_check_func, wc); # else INIT_WORK(&wc->vpm_check_work, vpm_check_func); # endif snprintf(wc->name, sizeof(wc->name)-1, "wcte12xp%d", index); pci_set_drvdata(pdev, wc); wc->vb.ops = &voicebus_operations; wc->vb.pdev = pdev; wc->vb.debug = &debug; res = voicebus_init(&wc->vb, wc->name); if (res) { free_wc(wc); ifaces[index] = NULL; return res; } wc->wq = create_singlethread_workqueue(wc->name); if (!wc->wq) { kfree(wc); return -ENOMEM; } voicebus_set_minlatency(&wc->vb, latency); voicebus_set_maxlatency(&wc->vb, max_latency); max_latency = wc->vb.max_latency; voicebus_lock_latency(&wc->vb); if (voicebus_start(&wc->vb)) { voicebus_release(&wc->vb); free_wc(wc); return -EIO; } t1_hardware_post_init(wc); for (x = 0; x < (wc->spantype == TYPE_E1 ? 31 : 24); x++) { if (!(wc->chans[x] = kmalloc(sizeof(*wc->chans[x]), GFP_KERNEL))) { free_wc(wc); ifaces[index] = NULL; return -ENOMEM; } memset(wc->chans[x], 0, sizeof(*wc->chans[x])); if (!(wc->ec[x] = kmalloc(sizeof(*wc->ec[x]), GFP_KERNEL))) { free_wc(wc); ifaces[index] = NULL; return -ENOMEM; } memset(wc->ec[x], 0, sizeof(*wc->ec[x])); } mod_timer(&wc->timer, jiffies + HZ/5); t1_software_init(wc); t1_info(wc, "Found a %s\n", wc->variety); voicebus_unlock_latency(&wc->vb); return 0; } static void __devexit te12xp_remove_one(struct pci_dev *pdev) { struct t1 *wc = pci_get_drvdata(pdev); #ifdef VPM_SUPPORT struct vpmadt032 *vpm = wc->vpmadt032; #endif if (!wc) return; clear_bit(INITIALIZED, &wc->bit_flags); del_timer_sync(&wc->timer); flush_workqueue(wc->wq); #ifdef VPM_SUPPORT if (vpm) flush_workqueue(vpm->wq); #endif del_timer_sync(&wc->timer); #ifdef VPM_SUPPORT if(vpm) { wc->vpmadt032 = NULL; clear_bit(VPM150M_DTMFDETECT, &vpm->control); clear_bit(VPM150M_ACTIVE, &vpm->control); vpmadt032_free(vpm); } #endif voicebus_release(&wc->vb); t1_release(wc); } static struct pci_device_id te12xp_pci_tbl[] = { { 0xd161, 0x0120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te120p}, { 0xd161, 0x8000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te121}, { 0xd161, 0x8001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te122}, { 0 } }; MODULE_DEVICE_TABLE(pci, te12xp_pci_tbl); static struct pci_driver te12xp_driver = { .name = "wcte12xp", .probe = te12xp_init_one, .remove = __devexit_p(te12xp_remove_one), .id_table = te12xp_pci_tbl, }; static int __init te12xp_init(void) { int res; #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 23) cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct command), 0, #if defined(CONFIG_SLUB) && (LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 22)) SLAB_HWCACHE_ALIGN | SLAB_STORE_USER, NULL, NULL); #else SLAB_HWCACHE_ALIGN, NULL, NULL); #endif #else cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct command), 0, SLAB_HWCACHE_ALIGN, NULL); #endif if (!cmd_cache) return -ENOMEM; res = dahdi_pci_module(&te12xp_driver); if (res) { kmem_cache_destroy(cmd_cache); return -ENODEV; } return 0; } static void __exit te12xp_cleanup(void) { pci_unregister_driver(&te12xp_driver); kmem_cache_destroy(cmd_cache); } module_param(debug, int, S_IRUGO | S_IWUSR); module_param(loopback, int, S_IRUGO | S_IWUSR); module_param(t1e1override, int, S_IRUGO | S_IWUSR); module_param(j1mode, int, S_IRUGO | S_IWUSR); module_param(alarmdebounce, int, S_IRUGO | S_IWUSR); module_param(losalarmdebounce, int, S_IRUGO | S_IWUSR); module_param(aisalarmdebounce, int, S_IRUGO | S_IWUSR); module_param(yelalarmdebounce, int, S_IRUGO | S_IWUSR); module_param(latency, int, S_IRUGO); module_param(max_latency, int, S_IRUGO); #ifdef VPM_SUPPORT module_param(vpmsupport, int, S_IRUGO); module_param(vpmtsisupport, int, S_IRUGO); module_param(vpmnlptype, int, S_IRUGO); module_param(vpmnlpthresh, int, S_IRUGO); module_param(vpmnlpmaxsupp, int, S_IRUGO); #endif MODULE_DESCRIPTION("Wildcard VoiceBus Digital Card Driver"); MODULE_AUTHOR("Digium Incorporated "); MODULE_LICENSE("GPL v2"); module_init(te12xp_init); module_exit(te12xp_cleanup);