summaryrefslogtreecommitdiff
path: root/drivers/dahdi/wctdm24xxp/xhfc.c
blob: bd82fb4dfcb3d328188f165f1b449dc829d43789 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
/*
 * B400M  Quad-BRI module Driver
 * Written by Andrew Kohlsmith <akohlsmith@mixdown.ca>
 *
 * Copyright (C) 2010 Digium, Inc.
 * All rights reserved.
 *
 */

/*
 * See http://www.asterisk.org for more information about
 * the Asterisk project. Please do not directly contact
 * any of the maintainers of this project for assistance;
 * the project provides a web site, mailing lists and IRC
 * channels for your use.
 *
 * This program is free software, distributed under the terms of
 * the GNU General Public License Version 2 as published by the
 * Free Software Foundation. See the LICENSE file included with
 * this program for more details.
 */

#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/ppp_defs.h>
#include <linux/delay.h>
#include <linux/sched.h>

#define FAST_HDLC_NEED_TABLES
#include <dahdi/kernel.h>
#include <dahdi/fasthdlc.h>

#include "wctdm24xxp.h"
#include "xhfc.h"

#define HFC_NR_FIFOS	16
#define HFC_ZMIN	0x00			/* from datasheet */
#define HFC_ZMAX	0x7f
#define HFC_FMIN	0x00
#define HFC_FMAX	0x07

/*
 * yuck. Any reg which is not mandated read/write or read-only is write-only.
 * Also, there are dozens of registers with the same address.  Additionally,
 * there are array registers (A_) which have an index register These A_
 * registers require an index register to be written to indicate WHICH in the
 * array you want.
 */

#define R_CIRM			0x00	/* WO       */
#define R_CTRL			0x01	/* WO       */
#define R_CLK_CFG		0x02	/* WO       */
#define A_Z1			0x04	/*    RO    */
#define A_Z2			0x06	/*    RO    */
#define R_RAM_ADDR		0x08	/* WO       */
#define R_RAM_CTRL		0x09	/* WO       */
#define R_FIRST_FIFO		0x0b	/* WO       */
#define R_FIFO_THRES		0x0c	/* WO       */
#define A_F1			0x0c	/*    RO    */
#define R_FIFO_MD		0x0d	/* WO       */
#define A_F2			0x0d	/*    RO    */
#define A_INC_RES_FIFO		0x0e	/* WO       */
#define A_FIFO_STA		0x0e	/*    RO    */
#define R_FSM_IDX		0x0f	/* WO       */
#define R_FIFO			0x0f	/* WO       */

#define R_SLOT			0x10	/* WO       */
#define R_IRQ_OVIEW		0x10	/*    RO    */
#define R_MISC_IRQMSK		0x11	/* WO       */
#define R_MISC_IRQ		0x11	/*    RO    */
#define R_SU_IRQMSK		0x12	/* WO       */
#define R_SU_IRQ		0x12	/*    RO    */
#define R_IRQ_CTRL		0x13	/* WO       */
#define R_AF0_OVIEW		0x13	/*    RO    */
#define R_PCM_MD0		0x14	/* WO       */
#define A_USAGE			0x14	/*    RO    */
#define R_MSS0			0x15	/* WO       */
#define R_MSS1			0x15	/* WO       */
#define R_PCM_MD1		0x15	/* WO       */
#define R_PCM_MD2		0x15	/* WO       */
#define R_SH0H			0x15	/* WO       */
#define R_SH1H			0x15	/* WO       */
#define R_SH0L			0x15	/* WO       */
#define R_SH1L			0x15	/* WO       */
#define R_SL_SEL0		0x15	/* WO       */
#define R_SL_SEL1		0x15	/* WO       */
#define R_SL_SEL7		0x15	/* WO       */
#define R_RAM_USE		0x15	/*    RO    */
#define R_SU_SEL		0x16	/* WO       */
#define R_CHIP_ID		0x16	/*    RO    */
#define R_SU_SYNC		0x17	/* WO       */
#define R_BERT_STA		0x17	/*    RO    */
#define R_F0_CNTL		0x18	/*    RO    */
#define R_F0_CNTH		0x19	/*    RO    */
#define R_TI_WD			0x1a	/* WO       */
#define R_BERT_ECL		0x1a	/*    RO    */
#define R_BERT_WD_MD		0x1b	/* WO       */
#define R_BERT_ECH		0x1b	/*    RO    */
#define R_STATUS		0x1c	/*    RO    */
#define R_SL_MAX		0x1d	/*    RO    */
#define R_PWM_CFG		0x1e	/* WO       */
#define R_CHIP_RV		0x1f	/*    RO    */

#define R_FIFO_BL0_IRQ		0x20	/*    RO    */
#define R_FIFO_BL1_IRQ		0x21	/*    RO    */
#define R_FIFO_BL2_IRQ		0x22	/*    RO    */
#define R_FIFO_BL3_IRQ		0x23	/*    RO    */
#define R_FILL_BL0		0x24	/*    RO    */
#define R_FILL_BL1		0x25	/*    RO    */
#define R_FILL_BL2		0x26	/*    RO    */
#define R_FILL_BL3		0x27	/*    RO    */
#define R_CI_TX			0x28	/* WO       */
#define R_CI_RX			0x28	/*    RO    */
#define R_CGI_CFG0		0x29	/* WO       */
#define R_CGI_STA		0x29	/*    RO    */
#define R_CGI_CFG1		0x2a	/* WO       */
#define R_MON_RX		0x2a	/*    RO    */
#define R_MON_TX		0x2b	/* WO       */

#define A_SU_WR_STA		0x30	/* WO       */
#define A_SU_RD_STA		0x30	/*    RO    */
#define A_SU_CTRL0		0x31	/* WO       */
#define A_SU_DLYL		0x31	/*    RO    */
#define A_SU_CTRL1		0x32	/* WO       */
#define A_SU_DLYH		0x32	/*    RO    */
#define A_SU_CTRL2		0x33	/* WO       */
#define A_MS_TX			0x34	/* WO       */
#define A_MS_RX			0x34	/*    RO    */
#define A_ST_CTRL3		0x35	/* WO       */
#define A_UP_CTRL3		0x35	/* WO       */
#define A_SU_STA		0x35	/*    RO    */
#define A_MS_DF			0x36	/* WO       */
#define A_SU_CLK_DLY		0x37	/* WO       */
#define R_PWM0			0x38	/* WO       */
#define R_PWM1			0x39	/* WO       */
#define A_B1_TX			0x3c	/* WO       */
#define A_B1_RX			0x3c	/*    RO    */
#define A_B2_TX			0x3d	/* WO       */
#define A_B2_RX			0x3d	/*    RO    */
#define A_D_TX			0x3e	/* WO       */
#define A_D_RX			0x3e	/*    RO    */
#define A_BAC_S_TX		0x3f	/* WO       */
#define A_E_RX			0x3f	/*    RO    */

#define R_GPIO_OUT1		0x40	/* WO       */
#define R_GPIO_IN1		0x40	/*    RO    */
#define R_GPIO_OUT3		0x41	/* WO       */
#define R_GPIO_IN3		0x41	/*    RO    */
#define R_GPIO_EN1		0x42	/* WO       */
#define R_GPIO_EN3		0x43	/* WO       */
#define R_GPIO_SEL_BL		0x44	/* WO       */
#define R_GPIO_OUT2		0x45	/* WO       */
#define R_GPIO_IN2		0x45	/*    RO    */
#define R_PWM_MD		0x46	/* WO       */
#define R_GPIO_EN2		0x47	/* WO       */
#define R_GPIO_OUT0		0x48	/* WO       */
#define R_GPIO_IN0		0x48	/*    RO    */
#define R_GPIO_EN0		0x4a	/* WO       */
#define R_GPIO_SEL		0x4c	/* WO       */

#define R_PLL_CTRL		0x50	/* WO       */
#define R_PLL_STA		0x50	/*    RO    */
#define R_PLL_P			0x51	/*       RW */
#define R_PLL_N			0x52	/*       RW */
#define R_PLL_S			0x53	/*       RW */

#define A_FIFO_DATA		0x80	/*       RW */
#define A_FIFO_DATA_NOINC	0x84	/*       RW */

#define R_INT_DATA		0x88	/*    RO    */

#define R_RAM_DATA		0xc0	/*       RW */

#define A_SL_CFG		0xd0	/*       RW */
#define A_CH_MSK		0xf4	/*       RW */
#define A_CON_HDLC		0xfa	/*       RW */
#define A_SUBCH_CFG		0xfb	/*       RW */
#define A_CHANNEL		0xfc	/*       RW */
#define A_FIFO_SEQ		0xfd	/*       RW */
#define A_FIFO_CTRL		0xff	/*       RW */

/* R_CIRM bits */
#define V_CLK_OFF		(1 << 0)	/* 1=internal clocks disabled */
#define V_WAIT_PROC		(1 << 1)	/* 1=additional /WAIT after write access */
#define V_WAIT_REG		(1 << 2)	/* 1=additional /WAIT for internal BUSY phase */
#define V_SRES			(1 << 3)	/* soft reset (group 0) */
#define V_HFC_RES		(1 << 4)	/* HFC reset (group 1) */
#define V_PCM_RES		(1 << 5)	/* PCM reset (group 2) */
#define V_SU_RES		(1 << 6)	/* S/T reset (group 3) */
#define XHFC_FULL_RESET	(V_SRES | V_HFC_RES | V_PCM_RES | V_SU_RES)

/* R_STATUS bits */
#define V_BUSY			(1 << 0)	/* 1=HFC busy, limited register access */
#define V_PROC			(1 << 1)	/* 1=HFC in processing phase */
#define V_LOST_STA		(1 << 3)	/* 1=frames have been lost */
#define V_PCM_INIT		(1 << 4)	/* 1=PCM init in progress */
#define V_WAK_STA		(1 << 5)	/* state of WAKEUP pin wien V_WAK_EN=1 */
#define V_MISC_IRQSTA		(1 << 6)	/* 1=misc interrupt has occurred */
#define V_FR_IRQSTA		(1 << 7)	/* 1=fifo interrupt has occured */
#define XHFC_INTS	(V_MISC_IRQSTA | V_FR_IRQSTA)

/* R_FIFO_BLx_IRQ bits */
#define V_FIFOx_TX_IRQ		(1 << 0)	/* FIFO TX interrupt occurred */
#define V_FIFOx_RX_IRQ		(1 << 1)	/* FIFO RX interrupt occurred */
#define FIFOx_TXRX_IRQ		(V_FIFOx_TX_IRQ | V_FIFOx_RX_IRQ)

/* R_FILL_BLx bits */
#define V_FILL_FIFOx_TX		(1 << 0)	/* TX FIFO reached V_THRES_TX level */
#define V_FILL_FIFOx_RX		(1 << 1)	/* RX FIFO reached V_THRES_RX level */
#define FILL_FIFOx_TXRX		(V_FILL_FIFOx_TX | V_FILL_FIFOx_RX)

/* R_MISC_IRQ / R_MISC_IRQMSK bits */
#define V_SLP_IRQ		(1 << 0)	/* frame sync pulse flips */
#define V_TI_IRQ		(1 << 1)	/* timer elapsed */
#define V_PROC_IRQ		(1 << 2)	/* processing/non-processing transition */
#define V_CI_IRQ		(1 << 4)	/* indication bits changed */
#define V_WAK_IRQ		(1 << 5)	/* WAKEUP pin */
#define V_MON_TX_IRQ		(1 << 6)	/* monitor byte can be written */
#define V_MON_RX_IRQ		(1 << 7)	/* monitor byte received */

/* R_SU_IRQ/R_SU_IRQMSK bits */
#define V_SU0_IRQ		(1 << 0)	/* interrupt/mask port 1 */
#define V_SU1_IRQ		(1 << 1)	/* interrupt/mask port 2 */
#define V_SU2_IRQ		(1 << 2)	/* interrupt/mask port 3 */
#define V_SU3_IRQ		(1 << 3)	/* interrupt/mask port 4 */

/* R_IRQ_CTRL bits */
#define V_FIFO_IRQ_EN		(1 << 0)	/* enable any unmasked FIFO IRQs */
#define V_GLOB_IRQ_EN		(1 << 3)	/* enable any unmasked IRQs */
#define V_IRQ_POL		(1 << 4)	/* 1=IRQ active high */

/* R_BERT_WD_MD bits */
#define V_BERT_ERR		(1 << 3)	/* 1=generate an error bit in BERT stream */
#define V_AUTO_WD_RES		(1 << 5)	/* 1=automatically kick the watchdog */
#define V_WD_RES		(1 << 7)	/* 1=kick the watchdog (bit auto clears) */

/* R_TI_WD bits */
#define V_EV_TS_SHIFT		(0)
#define V_EV_TS_MASK		(0x0f)
#define V_WD_TS_SHIFT		(4)
#define V_WD_TS_MASK		(0xf0)

/* A_FIFO_CTRL bits */
#define V_FIFO_IRQMSK		(1 << 0)	/* 1=FIFO can generate interrupts */
#define V_BERT_EN		(1 << 1)	/* 1=BERT data replaces FIFO data */
#define V_MIX_IRQ		(1 << 2)	/* IRQ when 0=end of frame only, 1=also when Z1==Z2 */
#define V_FR_ABO		(1 << 3)	/* 1=generate frame abort/frame abort detected */
#define V_NO_CRC		(1 << 4)	/* 1=do not send CRC at end of frame */
#define V_NO_REP		(1 << 5)	/* 1=frame deleted after d-chan contention */

/* R_CLK_CFG bits */
#define V_CLK_PLL		(1 << 0)	/* Sysclk select 0=OSC_IN, 1=PLL output */
#define V_CLKO_HI		(1 << 1)	/* CLKOUT selection 0=PLL/8, 1=PLL */
#define V_CLKO_PLL		(1 << 2)	/* CLKOUT source 0=divider or PLL input, 1=PLL output */
#define V_PCM_CLK		(1 << 5)	/* 1=PCM clk = OSC, 0 = PCM clk is 2x OSC */
#define V_CLKO_OFF		(1 << 6)	/* CLKOUT enable 0=enabled */
#define V_CLK_F1		(1 << 7)	/* PLL input pin 0=OSC_IN, 1=F1_1 */

/* R_PCM_MD0 bits */
#define V_PCM_MD		(1 << 0)	/* 1=PCM master */
#define V_C4_POL		(1 << 1)	/* 1=F0IO sampled on rising edge of C4IO */
#define V_F0_NEG		(1 << 2)	/* 1=negative polarity of F0IO */
#define V_F0_LEN		(1 << 3)	/* 1=F0IO active for 2 C4IO clocks */
#define V_PCM_IDX_SEL0		(0x0 << 4)	/* reg15 = R_SL_SEL0 */
#define V_PCM_IDX_SEL1		(0x1 << 4)	/* reg15 = R_SL_SEL1 */
#define V_PCM_IDX_SEL7		(0x7 << 4)	/* reg15 = R_SL_SEL7 */
#define V_PCM_IDX_MSS0		(0x8 << 4)	/* reg15 = R_MSS0 */
#define V_PCM_IDX_MD1		(0x9 << 4)	/* reg15 = R_PCM_MD1 */
#define V_PCM_IDX_MD2		(0xa << 4)	/* reg15 = R_PCM_MD2 */
#define V_PCM_IDX_MSS1		(0xb << 4)	/* reg15 = R_MSS1 */
#define V_PCM_IDX_SH0L		(0xc << 4)	/* reg15 = R_SH0L */
#define V_PCM_IDX_SH0H		(0xd << 4)	/* reg15 = R_SH0H */
#define V_PCM_IDX_SH1L		(0xe << 4)	/* reg15 = R_SH1L */
#define V_PCM_IDX_SH1H		(0xf << 4)	/* reg15 = R_SH1H */
#define V_PCM_IDX_MASK		(0xf0)

/* R_PCM_MD1 bits */
#define V_PLL_ADJ_00		(0x0 << 2)	/* adj 4 times by 0.5 system clk cycles */
#define V_PLL_ADJ_01		(0x1 << 2)	/* adj 3 times by 0.5 system clk cycles */
#define V_PLL_ADJ_10		(0x2 << 2)	/* adj 2 times by 0.5 system clk cycles */
#define V_PLL_ADJ_11		(0x3 << 2)	/* adj 1 time by 0.5 system clk cycles */
#define V_PCM_DR_2048		(0x0 << 4)	/* 2.048Mbps, 32 timeslots */
#define V_PCM_DR_4096		(0x1 << 4)	/* 4.096Mbps, 64 timeslots */
#define V_PCM_DR_8192		(0x2 << 4)	/* 8.192Mbps, 128 timeslots */
#define V_PCM_DR_075		(0x3 << 4)	/* 0.75Mbps, 12 timeslots */
#define V_PCM_LOOP		(1 << 6)	/* 1=internal loopback */
#define V_PCM_SMPL		(1 << 7)	/* 0=sample at middle of bit cell, 1=sample at 3/4 point */
#define V_PLL_ADJ_MASK		(0x3 << 2)
#define V_PCM_DR_MASK		(0x3 << 4)

/* R_PCM_MD2 bits */
#define V_SYNC_OUT1		(1 << 1)	/* SYNC_O source 0=SYNC_I or FSX_RX, 1=512kHz from PLL or multiframe */
#define V_SYNC_SRC		(1 << 2)	/* 0=line interface, 1=SYNC_I */
#define V_SYNC_OUT2		(1 << 3)	/* SYNC_O source 0=rx sync or FSC_RX 1=SYNC_I or received superframe */
#define V_C2O_EN		(1 << 4)	/* C2IO output enable (when V_C2I_EN=0) */
#define V_C2I_EN		(1 << 5)	/* PCM controller clock source 0=C4IO, 1=C2IO */
#define V_PLL_ICR		(1 << 6)	/* 0=reduce PCM frame time, 1=increase */
#define V_PLL_MAN		(1 << 7)	/* 0=auto, 1=manual */

/* A_SL_CFG bits */
#define V_CH_SDIR		(1 << 0)	/* 1=HFC channel receives data from PCM TS */
#define V_ROUT_TX_DIS		(0x0 << 6)	/* disabled, output disabled */
#define V_ROUT_TX_LOOP		(0x1 << 6)	/* internally looped, output disabled */
#define V_ROUT_TX_STIO1		(0x2 << 6)	/* output data to STIO1 */
#define V_ROUT_TX_STIO2		(0x3 << 6)	/* output data to STIO2 */
#define V_ROUT_RX_DIS		(0x0 << 6)	/* disabled, input data ignored */
#define V_ROUT_RX_LOOP		(0x1 << 6)	/* internally looped, input data ignored */
#define V_ROUT_RX_STIO2		(0x2 << 6)	/* channel data comes from STIO1 */
#define V_ROUT_RX_STIO1		(0x3 << 6)	/* channel data comes from STIO2 */
#define V_CH_SNUM_SHIFT		(1)
#define V_CH_SNUM_MASK		(31 << 1)

/* A_CON_HDLC bits */
#define V_IFF			(1 << 0)	/* Inter-Frame Fill: 0=0x7e, 1=0xff */
#define V_HDLC_TRP		(1 << 1)	/* 0=HDLC mode, 1=transparent */
#define V_TRP_DISABLED		(0x0 << 2)	/* FIFO disabled, no interrupt */
#define V_TRP_IRQ_64		(0x1 << 2)	/* FIFO enabled, int @ 8 bytes */
#define V_TRP_IRQ_128		(0x2 << 2)	/* FIFO enabled, int @ 16 bytes */
#define V_TRP_IRQ_256		(0x3 << 2)	/* FIFO enabled, int @ 32 bytes */
#define V_TRP_IRQ_512		(0x4 << 2)	/* FIFO enabled, int @ 64 bytes */
#define V_TRP_IRQ_1024		(0x5 << 2)	/* FIFO enabled, int @ 128 bytes */
#define V_TRP_NO_IRQ		(0x7 << 2)	/* FIFO enabled, no interrupt */
#define V_HDLC_IRQ		(0x3 << 2)	/* HDLC: FIFO enabled, interrupt at end of frame or when FIFO > 16 byte boundary (Mixed IRQ) */
#define V_DATA_FLOW_000		(0x0 << 5)	/* see A_CON_HDLC reg description in datasheet */
#define V_DATA_FLOW_001		(0x1 << 5)	/* see A_CON_HDLC reg description in datasheet */
#define V_DATA_FLOW_010		(0x2 << 5)	/* see A_CON_HDLC reg description in datasheet */
#define V_DATA_FLOW_011		(0x3 << 5)	/* see A_CON_HDLC reg description in datasheet */
#define V_DATA_FLOW_100		(0x4 << 5)	/* see A_CON_HDLC reg description in datasheet */
#define V_DATA_FLOW_101		(0x5 << 5)	/* see A_CON_HDLC reg description in datasheet */
#define V_DATA_FLOW_110		(0x6 << 5)	/* see A_CON_HDLC reg description in datasheet */
#define V_DATA_FLOW_111		(0x7 << 5)	/* see A_CON_HDLC reg description in datasheet */

/* R_FIFO bits */
#define V_FIFO_DIR		(1 << 0)	/* 1=RX FIFO data */
#define V_REV			(1 << 7)	/* 1=MSB first */
#define V_FIFO_NUM_SHIFT	(1)
#define V_FIFO_NUM_MASK		(0x3e)

/* A_CHANNEL bits */
#define V_CH_FDIR		(1 << 0)	/* 1=HFC chan for RX data */
#define V_CH_FNUM_SHIFT		(1)
#define V_CH_FNUM_MASK		(0x3e)

/* R_SLOT bits */
#define V_SL_DIR		(1 << 0)	/* 1=timeslot will RX PCM data from bus */
#define V_SL_NUM_SHIFT		(1)
#define V_SL_NUM_MASK		(0xfe)

/* A_INC_RES_FIFO bits */
#define V_INC_F			(1 << 0)	/* 1=increment FIFO F-counter (bit auto-clears) */
#define V_RES_FIFO		(1 << 1)	/* 1=reset FIFO (bit auto-clears) */
#define V_RES_LOST		(1 << 2)	/* 1=reset LOST error (bit auto-clears) */
#define V_RES_FIFO_ERR		(1 << 3)	/* 1=reset FIFO error (bit auto-clears), check V_ABO_DONE before setting */

/* R_FIFO_MD bits */
#define V_FIFO_MD_00		(0x0 << 0)	/* 16 FIFOs, 64 bytes TX/RX, 128 TX or RX if V_UNIDIR_RX */
#define V_FIFO_MD_01		(0x1 << 0)	/* 8 FIFOs, 128 bytes TX/RX, 256 TX or RX if V_UNIDIR_RX */
#define V_FIFO_MD_10		(0x2 << 0)	/* 4 FIFOs, 256 bytes TX/RX, invalid mode with V_UNIDIR_RX */
#define V_DF_MD_SM		(0x0 << 2)	/* simple data flow mode */
#define V_DF_MD_CSM		(0x1 << 2)	/* channel select mode */
#define V_DF_MD_FSM		(0x3 << 2)	/* FIFO sequence mode */
#define V_UNIDIR_MD		(1 << 4)	/* 1=unidirectional FIFO mode */
#define V_UNIDIR_RX		(1 << 5)	/* 1=unidirection FIFO is RX */

/* A_SUBCH_CFG bits */
#define V_BIT_CNT_8BIT		(0)		/* process 8 bits */
#define V_BIT_CNT_1BIT		(1)		/* process 1 bit */
#define V_BIT_CNT_2BIT		(2)		/* process 2 bits */
#define V_BIT_CNT_3BIT		(3)		/* process 3 bits */
#define V_BIT_CNT_4BIT		(4)		/* process 4 bits */
#define V_BIT_CNT_5BIT		(5)		/* process 5 bits */
#define V_BIT_CNT_6BIT		(6)		/* process 6 bits */
#define V_BIT_CNT_7BIT		(7)		/* process 7 bits */
#define V_LOOP_FIFO		(1 << 6)	/* loop FIFO data */
#define V_INV_DATA		(1 << 7)	/* invert FIFO data */
#define V_START_BIT_SHIFT	(3)
#define V_START_BIT_MASK	(0x38)

/* R_SU_SYNC bits */
#define V_SYNC_SEL_PORT0	(0x0 << 0)	/* sync to TE port 0 */
#define V_SYNC_SEL_PORT1	(0x1 << 0)	/* sync to TE port 1 */
#define V_SYNC_SEL_PORT2	(0x2 << 0)	/* sync to TE port 2 */
#define V_SYNC_SEL_PORT3	(0x3 << 0)	/* sync to TE port 3 */
#define V_SYNC_SEL_SYNCI	(0x4 << 0)	/* sync to SYNC_I */
#define V_MAN_SYNC		(1 << 3)	/* 1=manual sync mode */
#define V_AUTO_SYNCI		(1 << 4)	/* 1=SYNC_I used if FSC_RX not found */
#define V_D_MERGE_TX		(1 << 5)	/* 1=all 4 dchan taken from one byte in TX */
#define V_E_MERGE_RX		(1 << 6)	/* 1=all 4 echan combined in RX direction */
#define V_D_MERGE_RX		(1 << 7)	/* 1=all 4 dchan combined in RX direction */
#define V_SYNC_SEL_MASK		(0x03)

/* A_SU_WR_STA bits */
#define V_SU_SET_STA_MASK	(0x0f)
#define V_SU_LD_STA		(1 << 4)	/* 1=force SU_SET_STA mode, must be manually cleared 6us later */
#define V_SU_ACT_NOP		(0x0 << 5)	/* NOP */
#define V_SU_ACT_DEACTIVATE	(0x2 << 5)	/* start deactivation. auto-clears */
#define V_SU_ACT_ACTIVATE	(0x3 << 5)	/* start activation. auto-clears. */
#define V_SET_G2_G3		(1 << 7)	/* 1=auto G2->G3 in NT mode. auto-clears after transition. */

/* A_SU_RD_STA */
#define V_SU_STA_MASK		(0x0f)
#define V_SU_FR_SYNC		(1 << 4)	/* 1=synchronized */
#define V_SU_T2_EXP		(1 << 5)	/* 1=T2 expired (NT only) */
#define V_SU_INFO0		(1 << 6)	/* 1=INFO0 */
#define V_G2_G3			(1 << 7)	/* 1=allows G2->G3 (NT only, auto-clears) */

/* A_SU_CLK_DLY bits */
#define V_SU_DLY_MASK		(0x0f)
#define V_SU_SMPL_MASK		(0xf0)
#define V_SU_SMPL_SHIFT		(4)

/* A_SU_CTRL0 bits */
#define V_B1_TX_EN		(1 << 0)	/* 1=B1-channel transmit */
#define V_B2_TX_EN		(1 << 1)	/* 1=B2-channel transmit */
#define V_SU_MD			(1 << 2)	/* 0=TE, 1=NT */
#define V_ST_D_LPRIO		(1 << 3)	/* D-Chan priority 0=high, 1=low */
#define V_ST_SQ_EN		(1 << 4)	/* S/Q bits transmit (1=enabled) */
#define V_SU_TST_SIG		(1 << 5)	/* 1=transmit test signal */
#define V_ST_PU_CTRL		(1 << 6)	/* 1=enable end of pulse control */
#define V_SU_STOP		(1 << 7)	/* 1=power down */

/* A_SU_CTRL1 bits */
#define V_G2_G3_EN		(1 << 0)	/* 1=G2->G3 allowed without V_SET_G2_G3 */
#define V_D_RES			(1 << 2)	/* 1=D-chan reset */
#define V_ST_E_IGNO		(1 << 3)	/* TE:1=ignore Echan, NT:should always be 1. */
#define V_ST_E_LO		(1 << 4)	/* NT only: 1=force Echan low */
#define V_BAC_D			(1 << 6)	/* 1=BAC bit controls Dchan TX */
#define V_B12_SWAP		(1 << 7)	/* 1=swap B1/B2 */

/* A_SU_CTRL2 bits */
#define V_B1_RX_EN		(1 << 0)	/* 1=enable B1 RX */
#define V_B2_RX_EN		(1 << 1)	/* 1=enable B2 RX */
#define V_MS_SSYNC2		(1 << 2)	/* 0 normally, see datasheet */
#define V_BAC_S_SEL		(1 << 3)	/* see datasheet */
#define V_SU_SYNC_NT		(1 << 4)	/* 0=sync pulses generated only in TE, 1=in TE and NT */
#define V_SU_2KHZ		(1 << 5)	/* 0=96kHz test tone, 1=2kHz */
#define V_SU_TRI		(1 << 6)	/* 1=tristate output buffer */
#define V_SU_EXCHG		(1 << 7)	/* 1=invert output drivers */

/* R_IRQ_OVIEW bits */
#define V_FIFO_BL0_IRQ		(1 << 0)	/* FIFO 0-3 IRQ */
#define V_FIFO_BL1_IRQ		(1 << 1)	/* FIFO 4-7 IRQ */
#define V_FIFO_BL2_IRQ		(1 << 2)	/* FIFO 8-11 IRQ */
#define V_FIFO_BL3_IRQ		(1 << 3)	/* FIFO 12-15 IRQ */
#define V_MISC_IRQ		(1 << 4)	/* R_MISC_IRQ changed */
#define V_STUP_IRQ		(1 << 5)	/* R_SU_IRQ changed */
#define V_FIFO_BLx_IRQ		(V_FIFO_BL0_IRQ | V_FIFO_BL1_IRQ | V_FIFO_BL2_IRQ | V_FIFO_BL3_IRQ)

/* R_FIRST_FIFO bits */
#define V_FIRST_FIFO_NUM_SHIFT	(1)

/* A_FIFO_SEQ bits */
#define V_NEXT_FIFO_NUM_SHIFT	(1)
#define V_SEQ_END		(1 << 6)

#if (DAHDI_CHUNKSIZE != 8)
#error Sorry, the b400m does not support chunksize != 8
#endif

/* general debug messages */
#define DEBUG_GENERAL 		(1 << 0)
/* emit DTMF detector messages */
#define DEBUG_DTMF 		(1 << 1)
/* emit register read/write, but only if the kernel's DEBUG is defined */
#define DEBUG_REGS 		(1 << 2)
/* emit file operation messages */
#define DEBUG_FOPS  		(1 << 3)
#define DEBUG_ECHOCAN 		(1 << 4)
/* S/T state machine */
#define DEBUG_ST_STATE		(1 << 5)
/* HDLC controller */
#define DEBUG_HDLC		(1 << 6)
/* alarm changes */
#define DEBUG_ALARM		(1 << 7)
/* Timing related changes */
#define DEBUG_TIMING		(1 << 8)

#define DBG			(bri_debug & DEBUG_GENERAL)
#define DBG_DTMF		(bri_debug & DEBUG_DTMF)
#define DBG_REGS		(bri_debug & DEBUG_REGS)
#define DBG_FOPS		(bri_debug & DEBUG_FOPS)
#define DBG_EC			(bri_debug & DEBUG_ECHOCAN)
#define DBG_ST			(bri_debug & DEBUG_ST_STATE)
#define DBG_HDLC		(bri_debug & DEBUG_HDLC)
#define DBG_ALARM		(bri_debug & DEBUG_ALARM)
#define DBG_TIMING		(bri_debug & DEBUG_TIMING)

#define DBG_SPANFILTER		((1 << bspan->port) & bri_spanfilter)

/* #define HARDHDLC_RX */

/* Any static variables not initialized by default should be set
 * to 0 automatically */
int bri_debug;
int bri_spanfilter = 9;
int bri_teignorered = 1;
int bri_alarmdebounce;
int bri_persistentlayer1;
int timingcable;

static int synccard = -1;
static int syncspan = -1;

static const int TIMER_3_MS = 30000;

#define b4_info(b4, format, arg...)         \
	dev_info(&(b4)->wc->vb.pdev->dev , format , ## arg)

/* if defined, swaps ports 2 and 3 on the B400M module */
#define SWAP_PORTS

#define XHFC_T1					0
#define XHFC_T2					1
#define XHFC_T3					2
/* T4 - Special timer, used for debug purposes for monitoring of L1 state during activation attempt. */
#define XHFC_T4					3

#define B400M_CHANNELS_PER_SPAN			3	/* 2 B-channels and 1 D-Channel for each BRI span */
#define B400M_HDLC_BUF_LEN			128	/* arbitrary, just the max # of byts we will send to DAHDI per call */

#define get_F(f1, f2, flen) {				\
	f1 = hfc_readcounter8(b4, A_F1);		\
	f2 = hfc_readcounter8(b4, A_F2);		\
	flen = f1 - f2;					\
							\
	if (flen < 0)					\
		flen += (HFC_FMAX - HFC_FMIN) + 1;	\
	}

#define get_Z(z1, z2, zlen) {				\
	z1 = hfc_readcounter8(b4, A_Z1);		\
	z2 = hfc_readcounter8(b4, A_Z2);		\
	zlen = z1 - z2;					\
							\
	if (zlen < 0)					\
		zlen += (HFC_ZMAX - HFC_ZMIN) + 1;	\
	}

struct b400m_span {
	struct b400m *parent;
	unsigned int port;			/* which S/T port this span belongs to */

	int oldstate;				/* old state machine state */
	int newalarm;				/* alarm to send to DAHDI once alarm timer expires */
	unsigned long alarmtimer;

	unsigned int te_mode:1;			/* 1=TE, 0=NT */
	unsigned int term_on:1;			/* 1= 390 ohm termination enable, 0 = disabled */
	unsigned long hfc_timers[B400M_CHANNELS_PER_SPAN+1];	/* T1, T2, T3 */
	int hfc_timer_on[B400M_CHANNELS_PER_SPAN+1];		/* 1=timer active */
	int fifos[B400M_CHANNELS_PER_SPAN];			/* B1, B2, D <--> host fifo numbers */

	/* HDLC controller fields */
	struct wctdm_span *wspan;  /* pointer to the actual dahdi_span */
	struct dahdi_chan *sigchan;		/* pointer to the signalling channel for this span */
	int sigactive;				/* nonzero means we're in the middle of sending an HDLC frame */
	atomic_t hdlc_pending;			/* hdlc_hard_xmit() increments, hdlc_tx_frame() decrements */
	unsigned int frames_out;
	unsigned int frames_in;

	struct fasthdlc_state rxhdlc;
	int infcs;
	int f_sz;
};

/* This structure exists one per module */
struct b400m {
	char name[10];
	int position;				/* module position in carrier board */
	int b400m_no;				/* 0-based B400M number in system */

	struct wctdm *wc;			/* parent structure */

	spinlock_t reglock;			/* lock for all register accesses */

	unsigned long ticks;

	unsigned long fifo_en_rxint;		/* each bit is the RX int enable for that FIFO */
	unsigned long fifo_en_txint;		/* each bit is the TX int enable for that FIFO */
	unsigned char fifo_irqstatus;		/* top-half ORs in new interrupts, bottom-half ANDs them out */

	int setsyncspan;			/* Span reported from HFC for sync on this card */
	int reportedsyncspan;			/* Span reported from HFC for sync on this card */

	unsigned int running:1;			/* interrupts are enabled */
	unsigned int shutdown:1;		/* 1=bottom half doesn't process anything, just returns */
	unsigned int inited:1;			/* FIXME: temporary */
	unsigned int misc_irq_mask:1;		/* 1= interrupt is valid */

	struct b400m_span spans[4];		/* Individual spans */

	struct workqueue_struct *xhfc_ws;
	struct work_struct xhfc_wq;

	unsigned char irq_oview;		/* copy of r_irq_oview */
	unsigned char fifo_fill;		/* copy of R_FILL_BL0 */

	struct semaphore regsem;		/* lock for low-level register accesses */
	struct semaphore fifosem;		/* lock for fifo accesses */

	unsigned char lastreg;			/* last XHFC register accessed (used to speed up multiple address "hits" */
};

static void hfc_start_st(struct b400m_span *s);
static void hfc_stop_st(struct b400m_span *s);

void b400m_set_dahdi_span(struct b400m *b4, int spanno,
			  struct wctdm_span *wspan)
{
	b4->spans[spanno].wspan = wspan;
	wspan->bspan = &b4->spans[spanno];
}

static inline void flush_hw(void)
{
}

static int xhfc_getreg(struct wctdm *wc, struct wctdm_module *const mod,
		       int addr, u8 *lastreg)
{
	int x;

	if (*lastreg != (unsigned char)addr) {
		wctdm_setreg(wc, mod, 0x60, addr);
		*lastreg = (unsigned char)addr;
	}
	x = wctdm_getreg(wc, mod, 0x80);
	return x;
}

static int xhfc_setreg(struct wctdm *wc, struct wctdm_module *const mod,
		       int addr, int val, u8 *lastreg)
{
	if (*lastreg != (unsigned char)addr) {
		wctdm_setreg(wc, mod, 0x60, addr);
		*lastreg = (unsigned char)addr;
	}
	return wctdm_setreg(wc, mod, 0x00, val);
}

static inline struct wctdm_module *get_mod(struct b400m *b4)
{
	return &b4->wc->mods[b4->position];
}

static int b400m_getreg(struct b400m *b4, int addr)
{
	int x;

	if (down_trylock(&b4->regsem)) {
		if (down_interruptible(&b4->regsem)) {
			b4_info(b4, "b400m_getreg(0x%02x) interrupted\n",
				addr);
			return -1;
		}
	}

	x = xhfc_getreg(b4->wc, get_mod(b4), addr, &b4->lastreg);
	up(&b4->regsem);

	return x;
}

static int b400m_setreg(struct b400m *b4, const int addr, const int val)
{
	int x;

	if (down_trylock(&b4->regsem)) {
		if (down_interruptible(&b4->regsem)) {
			b4_info(b4, "b400m_setreg(0x%02x -> 0x%02x) "
				"interrupted\n", val, addr);
			return -1;
		}
	}

	x = xhfc_setreg(b4->wc, get_mod(b4), addr, val, &b4->lastreg);
	up(&b4->regsem);

	return x;
}


/*
 * A lot of the registers in the XHFC are indexed.
 * this function sets the index, and then writes to the indexed register.
 */
static void b400m_setreg_ra(struct b400m *b4, u8 r, u8 rd, u8 a, u8 ad)
{
	if (down_trylock(&b4->regsem)) {
		if (down_interruptible(&b4->regsem)) {
			b4_info(b4, "b400m_setreg_ra(0x%02x -> 0x%02x) "
				"interrupted\n", a, ad);
			return;
		}
	}

	xhfc_setreg(b4->wc, get_mod(b4), r, rd, &b4->lastreg);
	xhfc_setreg(b4->wc, get_mod(b4), a, ad, &b4->lastreg);
	up(&b4->regsem);
}

static u8 b400m_getreg_ra(struct b400m *b4, u8 r, u8 rd, u8 a)
{
	unsigned char res;
	if (down_trylock(&b4->regsem)) {
		if (down_interruptible(&b4->regsem)) {
			b4_info(b4, "b400m_getreg_ra(0x%02x) interrupted\n",
				a);
			return -1;
		}
	}

	xhfc_setreg(b4->wc, get_mod(b4), r, rd, &b4->lastreg);
	res = xhfc_getreg(b4->wc, get_mod(b4), a, &b4->lastreg);
	up(&b4->regsem);
	return res;
}


/*
 * XHFC-4S GPIO routines
 *
 * the xhfc doesn't use its gpio for anything.  :-)
 */

/*
 * initialize XHFC GPIO.
 * GPIO 0-7 are output, low (unconnected, or used for their primary function).
 */
static void hfc_gpio_init(struct b400m *b4)
{
	/* GPIO0..3,7 are GPIO, 4,5,6 primary function */
	b400m_setreg(b4, R_GPIO_SEL, 0x8f);
	/* GPIO0..7 drivers set low */
	b400m_setreg(b4, R_GPIO_OUT0, 0x00);
	/* GPIO0..7 drivers enabled */
	b400m_setreg(b4, R_GPIO_EN0, 0xff);
	/* all other GPIO set to primary function */
	b400m_setreg(b4, R_GPIO_SEL_BL, 0x00);

}


/* performs a register write and then waits for the HFC "busy" bit to clear
 * NOTE: doesn't actually read status, since busy bit is 1us typically, and
 * we're much, much slower than that. */
static void hfc_setreg_waitbusy(struct b400m *b4, const unsigned int reg,
				const unsigned int val)
{
	b400m_setreg(b4, reg, val);
}

/*
 * reads an 8-bit register over over and over until the same value is read
 * twice, then returns that value.
 */
static unsigned char hfc_readcounter8(struct b400m *b4, const unsigned int reg)
{
	unsigned char r1, r2;
	unsigned long maxwait = 1048576;

	do {
		r1 = b400m_getreg(b4, reg);
		r2 = b400m_getreg(b4, reg);
	} while ((r1 != r2) && maxwait--);

	if (!maxwait) {
		if (printk_ratelimit()) {
			dev_warn(&b4->wc->vb.pdev->dev,
				 "hfc_readcounter8(reg 0x%02x) timed out " \
				 "waiting for data to settle!\n", reg);
		}
	}

	return r1;
}

/* performs a soft-reset of the HFC-4S. */
static void hfc_reset(struct b400m *b4)
{
	unsigned long start;
	int TIMEOUT = HZ;			/* 1s */

	/* Set the FIFOs to 8 128 bytes FIFOs, bidirectional, and set up the
	 * flow controller for channel select mode. */
	/* Note, this reg has to be set *before* the SW reset */
	b400m_setreg(b4, R_FIFO_MD, V_FIFO_MD_01 | V_DF_MD_FSM);

	msleep(1);		/* wait a bit for clock to settle */
/* reset everything, wait 100ms, then allow the XHFC to come out of reset */
	b400m_setreg(b4, R_CIRM, V_SRES);
	flush_hw();

	msleep(100);

	b400m_setreg(b4, R_CIRM, 0x00);
	flush_hw();

	/* wait for XHFC to come out of reset. */
	start = jiffies;
	while (b400m_getreg(b4, R_STATUS) & (V_BUSY | V_PCM_INIT)) {
		if (time_after(jiffies, start + TIMEOUT)) {
			b4_info(b4, "hfc_reset() Module won't come out of "
				"reset... continuing.\n");
			break;
		}
	};

	/* Disable the output clock pin, and also the PLL (it's not needed) */
	b400m_setreg(b4, R_CTRL, 0x00);
}

static void hfc_enable_fifo_irqs(struct b400m *b4)
{
	b400m_setreg(b4, R_IRQ_CTRL, V_FIFO_IRQ_EN | V_GLOB_IRQ_EN);
	flush_hw();
}

static void hfc_enable_interrupts(struct b400m *b4)
{
	b4->running = 1;

	/* mask all misc interrupts */
	b4->misc_irq_mask = 0x01;
	b400m_setreg(b4, R_MISC_IRQMSK, b4->misc_irq_mask);

/* clear any pending interrupts */
	b400m_getreg(b4, R_STATUS);
	b400m_getreg(b4, R_MISC_IRQ);
	b400m_getreg(b4, R_FIFO_BL0_IRQ);
	b400m_getreg(b4, R_FIFO_BL1_IRQ);
	b400m_getreg(b4, R_FIFO_BL2_IRQ);
	b400m_getreg(b4, R_FIFO_BL3_IRQ);

	hfc_enable_fifo_irqs(b4);
}

static inline void hfc_reset_fifo(struct b400m *b4)
{
	hfc_setreg_waitbusy(b4, A_INC_RES_FIFO,
			    V_RES_FIFO | V_RES_LOST | V_RES_FIFO_ERR);
}

static void hfc_setup_fifo(struct b400m *b4, int fifo)
{
	if (fifo < 4) {
		/* TX */
		hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
		b400m_setreg(b4, A_CON_HDLC,
			     V_HDLC_IRQ | V_DATA_FLOW_000 | V_IFF);
		hfc_reset_fifo(b4);

		/* RX */
		hfc_setreg_waitbusy(b4, R_FIFO,
				    (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
		b400m_setreg(b4, A_CON_HDLC,
			     V_HDLC_IRQ | V_DATA_FLOW_000 | V_IFF);
		hfc_reset_fifo(b4);
	} else {
		/* TX */
		hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
		b400m_setreg(b4, A_CON_HDLC,
			     V_HDLC_TRP | V_TRP_NO_IRQ | V_DATA_FLOW_110);
		hfc_reset_fifo(b4);

		/* RX */
		hfc_setreg_waitbusy(b4, R_FIFO,
				    (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
		b400m_setreg(b4, A_CON_HDLC,
			     V_HDLC_TRP | V_TRP_NO_IRQ | V_DATA_FLOW_110);
		hfc_reset_fifo(b4);
	}
}

static void hfc_setup_pcm(struct b400m *b4, int port)
{
	int physport;
	int offset;
	int hfc_chan;
	int ts;
#ifdef HARDHDLC_RX
	const int MAX_OFFSET = 2;
#else
	const int MAX_OFFSET = 3;
#endif

#ifdef SWAP_PORTS
	/* swap the middle ports */
	physport = (1 == port) ? 2 : (2 == port) ? 1 : port;
#else
	physport = port;
#endif

	for (offset = 0; offset < MAX_OFFSET; offset++) {
		hfc_chan = (port * 4) + offset;
		ts = (physport * 3) + offset;
		ts += (b4->b400m_no * 12);
		b400m_setreg(b4, R_SLOT, (ts << V_SL_NUM_SHIFT));
		b400m_setreg(b4, A_SL_CFG,
			     (hfc_chan << V_CH_SNUM_SHIFT) |
			     V_ROUT_TX_STIO2);

		if (offset < 2) {
			b400m_setreg(b4, R_SLOT,
				     (ts  << V_SL_NUM_SHIFT) |
				     V_SL_DIR);
			b400m_setreg(b4, A_SL_CFG,
				     (hfc_chan << V_CH_SNUM_SHIFT) |
				     V_ROUT_RX_STIO1 | V_CH_SDIR);
		}
	}
}

#ifdef SWAP_PORTS
#ifdef HARDHDLC_RX
static const int fifos[24] = {0, 0, 2, 2, 1, 1, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6,
			      5, 5, 5, 5, 7, 7, 7, 7 };
#else
static const int fifos[24] = {0, 4, 2, 6, 1, 5, 3, 7, 4, 4, 4, 4, 6, 6, 6, 6,
			      5, 5, 5, 5, 7, 7, 7, 7 };
#endif
static const int hfc_chans[12] = {2, 10, 6, 14, 0, 1, 8, 9, 4, 5, 12, 13 };
#else
#ifdef HARDHDLC_RX
static const int fifos[24] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5,
			      6, 6, 6, 6, 7, 7, 7, 7 };
#else
static const int fifos[24] = {0, 4, 1, 5, 2, 6, 3, 7, 4, 4, 4, 4, 5, 5, 5, 5,
			      6, 6, 6, 6, 7, 7, 7, 7 };
#endif
static const int hfc_chans[12] = { 2, 6, 10, 14, 0, 1, 4, 5, 8, 9, 12, 13 };
#endif

static void hfc_setup_fifo_arrays(struct b400m *b4, int fifo)
{
	int val;
	if (!fifo) {
		val = (fifos[fifo] << V_FIRST_FIFO_NUM_SHIFT) | (fifo & 1);
		b400m_setreg(b4, R_FIRST_FIFO, val);
	} else {
#ifdef HARDHDLC_RX
		val = (fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) | (fifo & 1);
#else
		val = (fifo < 8) ? (fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) :
				   (fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) |
					(fifo&1);
#endif
		b400m_setreg(b4, A_FIFO_SEQ, val);
	}

	b400m_setreg(b4, R_FSM_IDX, fifo);
	val = (fifo < 8) ? (hfc_chans[fifo>>1] << V_CH_FNUM_SHIFT) :
			   (hfc_chans[fifo>>1] << V_CH_FNUM_SHIFT) |
				(fifo & 1);

	b400m_setreg(b4, A_CHANNEL, val);
	b400m_setreg(b4, A_SUBCH_CFG, 0x02);
}

static void hfc_setup_fsm(struct b400m *b4)
{
	int chan, fifo, port, offset;
#ifdef SWAP_PORTS
	const int chan_to_fifo[12] = { 4, 4, 0, 6, 6, 2, 5, 5, 1, 7, 7, 3 };
#else
	const int chan_to_fifo[12] = { 4, 4, 0, 5, 5, 1, 6, 6, 2, 7, 7, 3 };
#endif

	for (port = 0; port < 4; port++) {
		for (offset = 0; offset < 3; offset++) {
			b4->spans[port].fifos[offset] =
					chan_to_fifo[(port * 3) + offset];
		}
	}

	for (chan = 0; chan < ARRAY_SIZE(fifos); chan++)
		hfc_setup_fifo_arrays(b4, chan);

	b400m_setreg(b4, A_FIFO_SEQ, V_SEQ_END);

	for (fifo = 0; fifo < 8; fifo++)
		hfc_setup_fifo(b4, fifo);

	for (port = 0; port < 4; port++)
		hfc_setup_pcm(b4, port);
}

/* takes a read/write fifo pair and optionally resets it, optionally enabling
 * the rx/tx interrupt */
static void hfc_reset_fifo_pair(struct b400m *b4, int fifo,
				int reset, int force_no_irq)
{
	unsigned char b;

	if (down_interruptible(&b4->fifosem)) {
		b4_info(b4, "Unable to retrieve fifo sem\n");
		return;
	}
	b = (!force_no_irq && b4->fifo_en_txint & (1 << fifo)) ?
		V_FIFO_IRQMSK : 0;
	hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));

	if (fifo < 4)
		b |= V_MIX_IRQ;

	b400m_setreg(b4, A_FIFO_CTRL, b);

	if (reset)
		hfc_reset_fifo(b4);

	b = (!force_no_irq && b4->fifo_en_rxint & (1 << fifo)) ?
		V_FIFO_IRQMSK : 0;
	hfc_setreg_waitbusy(b4, R_FIFO,
			    (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);

	if (fifo < 4)
		b |= V_MIX_IRQ;

	b400m_setreg(b4, A_FIFO_CTRL, b);

	if (reset)
		hfc_reset_fifo(b4);

	up(&b4->fifosem);
}

static void xhfc_set_sync_src(struct b400m *b4, int port)
{
	int b;

	/* -2 means we need to go back and try again later */
	if (port == -2)
		return;

	if (port == b4->setsyncspan)
		return;
	else
		b4->setsyncspan = port;

	b4_info(b4, "xhfc_set_sync_src - modpos %d: setting sync to "
		"be port %d\n", b4->position, port);

	if (port == -1) 		/* automatic */
		b = 0;
	else {
#ifdef SWAP_PORTS
		port = (1 == port) ? 2 : (2 == port) ? 1 : port;
#endif
		b = (port & V_SYNC_SEL_MASK) | V_MAN_SYNC;
	}

	b400m_setreg(b4, R_SU_SYNC, b);
}

static void wctdm_change_card_sync_src(struct wctdm *wc, int newsrc, int master)
{
	int newctlreg;

	newctlreg = wc->ctlreg;

	if (master)
		newctlreg |= (1 << 5);
	else
		newctlreg &= ~(1 << 5);

	newctlreg &= 0xfc;

	newctlreg |= newsrc;

	if (DBG_TIMING) {
		dev_info(&wc->vb.pdev->dev,
			 "Final ctlreg before swap: %02x\n", newctlreg);
	}

	wc->ctlreg = newctlreg;
	wc->oldsync = newsrc;

	msleep(10);
}

static void wctdm_change_system_sync_src(int oldsync, int oldspan,
					 int newsync, int newspan)
{
	struct wctdm *wc;
	struct wctdm *oldsyncwc = NULL, *newsyncwc = NULL;
	int newspot;
	int i;
	int max_latency = 0;

	if (oldsync > -1)
		oldsyncwc = ifaces[oldsync];

	if (newsync > -1)
		newsyncwc = ifaces[newsync];

	if (newsync == -1) {
		BUG_ON(!ifaces[0]);

		newsyncwc = ifaces[0];
		newsync = 0;
	}

	newspot = (-1 == newspan) ? 0 : 2 | (newspan >> 2);

	if ((oldsync == newsync) && (oldspan == newspan)) {
		dev_info(&newsyncwc->vb.pdev->dev,
			 "No need for timing change.  All is same\n");
		return;
	}

	/* First we set all sources to local timing */
	for (i = 0; i < WC_MAX_IFACES; i++) {
		wc = ifaces[i];
		if ((wc != oldsyncwc) && wc) {
			wctdm_change_card_sync_src(wc, 0, 0);
			if (voicebus_current_latency(&wc->vb) > max_latency)
				max_latency = voicebus_current_latency(&wc->vb);
		}
	}
	msleep(max_latency << 1);

	/* Set the old sync source to local timing, not driving timing */
	if (oldsyncwc) {
		wctdm_change_card_sync_src(oldsyncwc, 0, 0);
		msleep(voicebus_current_latency(&oldsyncwc->vb) << 1);
	}

	dev_info(&newsyncwc->vb.pdev->dev,
		 "Setting new card %d now to be timing master\n", newsync);
	/* Finally, set the new sync source to broadcast master timing */
	wctdm_change_card_sync_src(newsyncwc, newspot, 1);
	msleep(voicebus_current_latency(&newsyncwc->vb) << 1);

	/* Last we double verify and set all the remaining cards to be timing
	 * slaves */
	for (i = 0; (i < WC_MAX_IFACES) && ifaces[i]; i++) {
		wc = ifaces[i];
		if (i == newsync)
			continue;

		dev_info(&wc->vb.pdev->dev,
			 "Setting card %d to be timing slave\n", i);
		wctdm_change_card_sync_src(wc, 1, 0);
	}
	msleep(max_latency << 1);
	synccard = newsync;
	syncspan = newspan;
}

static int xhfc_find_sync_with_timingcable(struct b400m *b4)
{
	struct wctdm *wc = b4->wc;
	int i, j, osrc, src = -1;
	int lowestprio = 10000;
	int lowestcard = -1;

	if (down_trylock(&ifacelock)) {
		set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
		return -2;
	}

	for (j = 0; j < WC_MAX_IFACES && ifaces[j]; j++) {
		if (is_initialized(ifaces[j])) {
			set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
			osrc = -2;
			goto out;
		} else {
			for (i = 0; i < (MAX_SPANS - 1); i++) {
				struct wctdm_span *wspan = ifaces[j]->spans[i];
				if (wspan &&
				    wspan->timing_priority &&
				    !wspan->span.alarms &&
				    (wspan->timing_priority <
				     lowestprio)) {
					src = i;
					lowestprio = wspan->timing_priority;
					lowestcard = j;
				}
			}
		}
	}

	if (lowestcard != synccard) {
		b4_info(b4, "Found new timing master, card "
			"%d.  Old is card %d\n", lowestcard, synccard);
	} else if (src != syncspan) {
		b4_info(b4, "Timing change, but only from %d to %d on "
			"card %d\n", syncspan, src, lowestcard);
	}

	wctdm_change_system_sync_src(synccard, syncspan,
				     lowestcard, src);

	osrc = -1;

	if (wc == ifaces[lowestcard]) {
		if (src < (b4->position + 4) && (src >= b4->position))
			osrc = src - b4->position;
	}

out:
	up(&ifacelock);

	return osrc;
}

static int xhfc_find_sync_without_timingcable(struct b400m *b4)
{
	struct wctdm *wc = b4->wc;
	int i, osrc, src = -1;
	int lowestprio = 10000;
	int newctlregmux;

	if (down_trylock(&wc->syncsem)) {
		set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
		return -2;
	}

	/* Find lowest slave timing priority on digital spans */
	for (i = 0; i < (MAX_SPANS - 1); i++) {
		struct wctdm_span *const wspan = wc->spans[i];
		if (wspan && wspan->timing_priority &&
		    !wspan->span.alarms &&
		    (wspan->timing_priority < lowestprio)) {
			src = i;
			lowestprio = wspan->timing_priority;
		}
	}

	if (src < 0) {
		if (DBG_TIMING)
			b4_info(b4, "Picked analog span\n");
		osrc = src;
		goto check_card_timing;
	} else {
		if (DBG_TIMING) {
			b4_info(b4, "Picked span offset %d to be timing "
				"source\n", src);
		}
	}

	osrc = ((src < (b4->position + 4)) && (src >= b4->position)) ?
			src - b4->position : -1;

	if (DBG_TIMING) {
		b4_info(b4, "For b4->position %d timing is %d\n",
			b4->position, osrc);
	}

check_card_timing:

	if (src != -1)
		newctlregmux = 2 | (src >> 2);
	else
		newctlregmux = 0;

	if ((newctlregmux & 3) != (wc->ctlreg & 3)) {
		if (DBG_TIMING) {
			b4_info(b4, "!!!Need to change timing "
				"on baseboard to spot %d!!!\n",
				src >> 2);
		}

		wctdm_change_card_sync_src(wc, newctlregmux, 0);
	} else {
		if (DBG_TIMING) {
			dev_info(&b4->wc->vb.pdev->dev, "!!!No need to change timing " \
			       "on baseboard to spot %d, already there!!!\n",
			       src >> 2);

		}
	}


	up(&wc->syncsem);

	return osrc;
}

/*
 * Finds the highest-priority sync span that is not in alarm and returns it.
 * Note: the span #s in b4->spans[].sync are 1-based, and this returns a
 * 0-based span, or -1 if no spans are found.
 */
static inline int xhfc_find_sync(struct b400m *b4)
{
	if (timingcable)
		return xhfc_find_sync_with_timingcable(b4);
	else
		return xhfc_find_sync_without_timingcable(b4);
}

/*
 * allocates memory and pretty-prints a given S/T state engine state to it.
 * calling routine is responsible for freeing the pointer returned!  Performs
 * no hardware access whatsoever, but does use GFP_KERNEL so do not call from
 * IRQ context.  if full == 1, prints a "full" dump; otherwise just prints
 * current state.
 */
static char *hfc_decode_st_state(struct b400m *b4, struct b400m_span *span,
				 unsigned char state, int full)
{
	int nt, sta;
	char s[128], *str;
	const char *ststr[2][16] = {	/* TE, NT */
		{ "RESET",       "?",           "SENSING", "DEACT.",
		  "AWAIT.SIG",   "IDENT.INPUT", "SYNCD",    "ACTIVATED",
		  "LOSTFRAMING", "?",           "?",        "?",
		  "?",           "?",           "?",        "?" },
		{ "RESET",       "DEACT.",      "PEND.ACT", "ACTIVE",
		  "PEND.DEACT",  "?",           "?",        "?",
		  "?",           "?",           "?",        "?",
		  "?",           "?",           "?",        "?" }
	};

	str = kmalloc(256, GFP_KERNEL);
	if (!str) {
		dev_warn(&b4->wc->vb.pdev->dev,
			 "could not allocate mem for ST state decode " \
			 "string!\n");
		return NULL;
	}

	nt = (span->te_mode == 0);
	sta = (state & V_SU_STA_MASK);

	sprintf(str, "P%d: %s state %c%d (%s)", span->port + 1,
		(nt ? "NT" : "TE"), (nt ? 'G' : 'F'), sta,
		ststr[nt][sta]);

	if (full) {
		sprintf(s, " SYNC: %s, RX INFO0: %s",
			((state & V_SU_FR_SYNC) ? "yes" : "no"),
			((state & V_SU_INFO0) ? "yes" : "no"));
		strcat(str, s);

		if (nt) {
			sprintf(s, ", T2 %s, auto G2->G3: %s",
				((state & V_SU_T2_EXP) ? "expired" : "OK"),
				((state & V_G2_G3) ? "yes" : "no"));
			strcat(str, s);
		}
	}

	return str;
}

/*
 * sets an S/T port state machine to a given state.  if 'auto' is nonzero,
 * will put the state machine back in auto mode after setting the state.
 */
static void hfc_handle_state(struct b400m_span *s);
static void hfc_force_st_state(struct b400m *b4, struct b400m_span *s,
			       int state, int resume_auto)
{
	b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA,
			state | V_SU_LD_STA);

	if (resume_auto)
		b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, state);

	if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
		char *x;

		x = hfc_decode_st_state(b4, s, state, 1);
		b4_info(b4, "forced port %d to state %d (auto: %d), "
			 "new decode: %s\n", s->port + 1, state,
			 resume_auto, x);
		kfree(x);
	}

	/* make sure that we activate any timers/etc needed by this state
	 * change */
	hfc_handle_state(s);
}

/* figures out what to do when an S/T port's timer expires. */
static void hfc_timer_expire(struct b400m_span *s, int t_no)
{
	struct b400m *b4 = s->parent;

	if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
		b4_info(b4, "%lu: hfc_timer_expire, Port %d T%d "
			"expired (value=%lu ena=%d)\n", b4->ticks,
			s->port + 1, t_no + 1, s->hfc_timers[t_no],
			s->hfc_timer_on[t_no]);
	}
	/*
	 * there are three timers associated with every HFC S/T port.
	 *
	 * T1 is used by the NT state machine, and is the maximum time the NT
	 * side should wait for G3 (active) state.
	 *
	 * T2 is not actually used in the driver, it is handled by the HFC-4S
	 * internally.
	 *
	 * T3 is used by the TE state machine; it is the maximum time the TE
	 * side should wait for the INFO4 (activated) signal.
	 */

	/* First, disable the expired timer; hfc_force_st_state() may activate
	 * it again. */
	s->hfc_timer_on[t_no] = 0;

	switch (t_no) {
	case XHFC_T1:	/* switch to G4 (pending deact.), resume auto mode */
		hfc_force_st_state(b4, s, 4, 1);
		break;
	case XHFC_T2:	/* switch to G1 (deactivated), resume auto mode */
		hfc_force_st_state(b4, s, 1, 1);
		break;
	case XHFC_T3:	/* switch to F3 (deactivated), resume auto mode */
		hfc_stop_st(s);
		if (bri_persistentlayer1)
			hfc_start_st(s);
		break;
	case XHFC_T4:	/* switch to F3 (deactivated), resume auto mode */
		hfc_handle_state(s);
		s->hfc_timers[XHFC_T4] = b4->ticks + 1000;
		s->hfc_timer_on[XHFC_T4] = 1;
		break;
	default:
		if (printk_ratelimit()) {
			dev_warn(&b4->wc->vb.pdev->dev,
				 "hfc_timer_expire found an unknown expired "
				 "timer (%d)??\n", t_no);
		}
	}
}

/*
 * Run through the active timers on a card and deal with any expiries.
 * Also see if the alarm debounce time has expired and if it has, tell DAHDI.
 */
static void hfc_update_st_timers(struct b400m *b4)
{
	int i, j;
	struct b400m_span *s;

	for (i = 0; i < 4; i++) {
		s = &b4->spans[i];

		for (j = XHFC_T1; j <= XHFC_T4; j++) {

			/* we don't really do timer2, it is expired by the
			 * state change handler */
			if (j == XHFC_T2)
				continue;

			if (s->hfc_timer_on[j] &&
			    time_after_eq(b4->ticks, s->hfc_timers[j]))
				hfc_timer_expire(s, j);
		}

		if (s->wspan && s->newalarm != s->wspan->span.alarms &&
		    time_after_eq(b4->ticks, s->alarmtimer)) {
			s->wspan->span.alarms = s->newalarm;
			if ((!s->newalarm && bri_teignorered) || (!bri_teignorered))
				dahdi_alarm_notify(&s->wspan->span);

			if (DBG_ALARM) {
				dev_info(&b4->wc->vb.pdev->dev, "span %d: alarm " \
					 "%d debounced\n", i + 1,
					 s->newalarm);
			}
			set_bit(WCTDM_CHECK_TIMING, &b4->wc->checkflag);
		}
	}

	if (test_and_clear_bit(WCTDM_CHECK_TIMING, &b4->wc->checkflag))
		xhfc_set_sync_src(b4, xhfc_find_sync(b4));
}

/* this is the driver-level state machine for an S/T port */
static void hfc_handle_state(struct b400m_span *s)
{
	struct b400m *b4;
	unsigned char state, sta;
	int nt, newsync, oldalarm;
	unsigned long oldtimer;

	b4 = s->parent;
	nt = !s->te_mode;

	state = b400m_getreg_ra(b4, R_SU_SEL, s->port, A_SU_RD_STA);
	sta = (state & V_SU_STA_MASK);

	if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
		char *x;

		x = hfc_decode_st_state(b4, s, state, 1);
		b4_info(b4, "port %d A_SU_RD_STA old=0x%02x "
			"now=0x%02x, decoded: %s\n", s->port + 1,
			s->oldstate, state, x);
		kfree(x);
	}

	oldalarm = s->newalarm;
	oldtimer = s->alarmtimer;

	if (nt) {
		switch (sta) {
		default:		/* Invalid NT state */
		case 0x0:		/* NT state G0: Reset */
		case 0x1:		/* NT state G1: Deactivated */
		case 0x4:		/* NT state G4: Pending Deactivation */
			s->newalarm = DAHDI_ALARM_RED;
			break;
		case 0x2:		/* NT state G2: Pending Activation */
			s->newalarm = DAHDI_ALARM_YELLOW;
			break;
		case 0x3:		/* NT state G3: Active */
			s->hfc_timer_on[XHFC_T1] = 0;
			s->newalarm = 0;
			break;
		}
	} else {
		switch (sta) {
		default:		/* Invalid TE state */
		case 0x0:		/* TE state F0: Reset */
		case 0x2:		/* TE state F2: Sensing */
		case 0x3:		/* TE state F3: Deactivated */
		case 0x4:		/* TE state F4: Awaiting Signal */
		case 0x8:		/* TE state F8: Lost Framing */
			s->newalarm = DAHDI_ALARM_RED;
			break;
		case 0x5:		/* TE state F5: Identifying Input */
		case 0x6:		/* TE state F6: Synchronized */
			s->newalarm = DAHDI_ALARM_YELLOW;
			break;
		case 0x7:		/* TE state F7: Activated */
			s->hfc_timer_on[XHFC_T3] = 0;
			s->hfc_timer_on[XHFC_T4] = 0;
			s->newalarm = 0;
			break;
		}
	}

	s->alarmtimer = b4->ticks + bri_alarmdebounce;
	s->oldstate = state;

	if (DBG_ALARM) {
		b4_info(b4, "span %d: old alarm %d expires %ld, "
			"new alarm %d expires %ld\n", s->port + 1, oldalarm,
			oldtimer, s->newalarm, s->alarmtimer);
	}

	/* we only care about T2 expiry in G4. */
	if (nt && (sta == 4) && (state & V_SU_T2_EXP)) {
		if (s->hfc_timer_on[XHFC_T2])
			hfc_timer_expire(s, XHFC_T2);	/* handle T2 expiry */
	}

	/* If we're in F3 and receiving INFO0, start T3 and jump to F4 */
	if (!nt && (sta == 3) && (state & V_SU_INFO0)) {
		if (bri_persistentlayer1) {
			s->hfc_timers[XHFC_T3] = b4->ticks + TIMER_3_MS;
			s->hfc_timer_on[XHFC_T3] = 1;
			if (DBG_ST) {
				b4_info(b4, "port %d: receiving "
					"INFO0 in state 3, setting T3 and "
					"jumping to F4\n", s->port + 1);
			}
			hfc_start_st(s);
		}
	}

	/* read in R_BERT_STA to determine where our current sync source is */
	newsync = b400m_getreg(b4, R_BERT_STA) & 0x07;
	if (newsync != b4->reportedsyncspan) {
		if (DBG_TIMING) {
			if (newsync == 5) {
				b4_info(b4, "new card sync source: SYNC_I\n");
			} else {
				b4_info(b4, "Card position %d: new "
					"sync source: port %d\n",
					b4->position, newsync);
			}
		}

		b4->reportedsyncspan = newsync;
	}
}

static void hfc_stop_all_timers(struct b400m_span *s)
{
	s->hfc_timer_on[XHFC_T4] = 0;
	s->hfc_timer_on[XHFC_T3] = 0;
	s->hfc_timer_on[XHFC_T2] = 0;
	s->hfc_timer_on[XHFC_T1] = 0;
}

static void hfc_stop_st(struct b400m_span *s)
{
	struct b400m *b4 = s->parent;

	hfc_stop_all_timers(s);

	b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_ACT_DEACTIVATE);
}

/*
 * resets an S/T interface to a given NT/TE mode
 */
static void hfc_reset_st(struct b400m_span *s)
{
	int b;
	struct b400m *b4;

	b4 = s->parent;

	hfc_stop_st(s);

	/* force state G0/F0 (reset), then force state 1/2
	 * (deactivated/sensing) */
	b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_LD_STA);
	flush_hw();			/* make sure write hit hardware */

	s->wspan->span.alarms = DAHDI_ALARM_RED;
	s->newalarm = DAHDI_ALARM_RED;
	dahdi_alarm_notify(&s->wspan->span);

	/* set up the clock control register.  Must be done before we activate
	 * the interface. */
	if (s->te_mode)
		b = 0x0e;
	else
		b = 0x0c | (6 << V_SU_SMPL_SHIFT);

	b400m_setreg(b4, A_SU_CLK_DLY, b);

	/* set TE/NT mode, enable B and D channels. */
	b400m_setreg(b4, A_SU_CTRL0, V_B1_TX_EN | V_B2_TX_EN |
		     (s->te_mode ? 0 : V_SU_MD) | V_ST_PU_CTRL);
	b400m_setreg(b4, A_SU_CTRL1, V_G2_G3_EN);
	b400m_setreg(b4, A_SU_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
	b400m_setreg(b4, A_ST_CTRL3, (0x7c << 1));

	/* enable the state machine. */
	b400m_setreg(b4, A_SU_WR_STA, 0x00);
	flush_hw();
}

static void hfc_start_st(struct b400m_span *s)
{
	struct b400m *b4 = s->parent;

	b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_ACT_ACTIVATE);

	/* start T1 if in NT mode, T3 if in TE mode */
	if (s->te_mode) {
		/* 500ms wait first time, TIMER_3_MS afterward. */
		s->hfc_timers[XHFC_T3] = b4->ticks + TIMER_3_MS;
		s->hfc_timer_on[XHFC_T3] = 1;
		s->hfc_timer_on[XHFC_T1] = 0;

		s->hfc_timers[XHFC_T4] = b4->ticks + 1000;
		s->hfc_timer_on[XHFC_T4] = 1;

		if (DBG_ST) {
			b4_info(b4, "setting port %d t3 timer to %lu\n",
				 s->port + 1, s->hfc_timers[XHFC_T3]);
		}
	} else {
		static const int TIMER_1_MS = 2000;
		s->hfc_timers[XHFC_T1] = b4->ticks + TIMER_1_MS;
		s->hfc_timer_on[XHFC_T1] = 1;
		s->hfc_timer_on[XHFC_T3] = 0;
		if (DBG_ST) {
			b4_info(b4, "setting port %d t1 timer to %lu\n",
				 s->port + 1, s->hfc_timers[XHFC_T1]);
		}
	}
}

/*
 * read in the HFC GPIO to determine each port's mode (TE or NT).
 * Then, reset and start the port.
 * the flow controller should be set up before this is called.
 */
static int hdlc_start(struct b400m *b4, int fifo);
static void hfc_init_all_st(struct b400m *b4)
{
	int i;
	struct b400m_span *s;

	for (i = 0; i < 4; i++) {
		s = &b4->spans[i];
		s->parent = b4;

#ifdef SWAP_PORTS
		s->port = (1 == i) ? 2 : (2 == i) ? 1 : i;
#else
		s->port = i;
#endif
		s->te_mode = 1;

		hdlc_start(b4, s->fifos[2]);
	}

}

/* NOTE: assumes fifo lock is held */
#define debug_fz(b4, fifo, prefix, buf) \
do { \
	sprintf(buf, "%s: (fifo %d): f1/f2/flen=%d/%d/%d, " \
		"z1/z2/zlen=%d/%d/%d\n", prefix, fifo, f1, f2, flen, z1, \
		z2, zlen); \
} while (0)

/* enable FIFO RX int and reset the FIFO */
static int hdlc_start(struct b400m *b4, int fifo)
{
	b4->fifo_en_txint |= (1 << fifo);
	b4->fifo_en_rxint |= (1 << fifo);

	hfc_reset_fifo_pair(b4, fifo, 1, 0);
	return 0;
}

#ifdef HARDHDLC_RX

/**
 * hdlc_signal_complete() - Signal dahdi that we have a complete frame.
 *
 * @bpan:	The span which received the frame.
 * @stat: 	The frame status from the XHFC controller.
 *
 */
static void hdlc_signal_complete(struct b400m_span *bspan, u8 stat)
{
	struct b400m *b4 = bspan->parent;

	/* if STAT != 0, indicates bad frame */
	if (stat != 0x00) {
		if (DBG_HDLC && DBG_SPANFILTER) {
			b4_info(b4, "(span %d) STAT=0x%02x indicates " \
				 "frame problem: %s\n", bspan->port + 1, stat,
				 (0xff == stat) ? "HDLC Abort" : "Bad FCS");
		}

		dahdi_hdlc_abort(bspan->sigchan, (0xff == stat) ?
				 DAHDI_EVENT_ABORT : DAHDI_EVENT_BADFCS);
	/* STAT == 0, means frame was OK */
	} else {
		if (DBG_HDLC && DBG_SPANFILTER) {
			b4_info(b4, "(span %d) Frame %d is good!\n",
				 bspan->port + 1, bspan->frames_in);
		}
		dahdi_hdlc_finish(bspan->sigchan);
	}
}

/*
 * Inner loop for D-channel receive function.  Retrieves HDLC data from the
 * hardware.  If the hardware indicates that the frame is complete, we check
 * the HDLC engine's STAT byte and update DAHDI as needed.
 *
 * Returns the number of HDLC frames left in the FIFO, or -1 if we couldn't
 * get the lock.
 */
static int hdlc_rx_frame(struct b400m_span *bspan)
{
	int fifo, i, j, x, zleft;
	int z1, z2, zlen, f1, f2, flen, new_flen;
	unsigned char buf[B400M_HDLC_BUF_LEN];
	char debugbuf[256];
	struct b400m *b4 = bspan->parent;

	fifo = bspan->fifos[2];

	if (DBG_HDLC && DBG_SPANFILTER)
		b4_info(b4, "hdlc_rx_frame fifo %d: start\n", fifo);

	if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
		b4_info(b4, "rx_frame: fifo %d 1: couldn't get lock\n",
		       fifo);
		return -1;
	}

	hfc_setreg_waitbusy(b4, R_FIFO,
			    (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
	get_F(f1, f2, flen);
	get_Z(z1, z2, zlen);
	debug_fz(b4, fifo, "hdlc_rx_frame", debugbuf);
	up(&b4->fifosem);

	if (DBG_HDLC && DBG_SPANFILTER)
		pr_info("%s", debugbuf);

	/* if we have at least one complete frame, increment zleft to include
	 * status byte */
	zleft = zlen;
	if (flen)
		zleft++;

	do {
		if (zleft > B400M_HDLC_BUF_LEN)
			j = B400M_HDLC_BUF_LEN;
		else
			j = zleft;

		if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
			b4_info(b4,
			       "rx_frame fifo %d 2: couldn't get lock\n",
			       fifo);
			return -1;
		}
		hfc_setreg_waitbusy(b4, R_FIFO,
				    (fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
		for (i = 0; i < j; i++)
			buf[i] = b400m_getreg(b4, A_FIFO_DATA);
		up(&b4->fifosem);

		/* don't send STAT byte to DAHDI */
		x = j;
		if (bspan->sigchan) {
			if ((j != B400M_HDLC_BUF_LEN) && flen)
				x--;
			if (x)
				dahdi_hdlc_putbuf(bspan->sigchan, buf, x);
		}

		zleft -= j;

		if (DBG_HDLC && DBG_SPANFILTER) {
			b4_info(b4, "transmitted %d bytes to dahdi, " \
			       "zleft=%d\n", x, zleft);
		}

		if (DBG_HDLC && DBG_SPANFILTER) {
			/* !!! */
			b4_info(b4, "hdlc_rx_frame(span %d): " \
				 "z1/z2/zlen=%d/%d/%d, zleft=%d\n",
				 bspan->port + 1, z1, z2, zlen, zleft);
			for (i = 0; i < j; i++) {
				b4_info(b4, "%02x%c", buf[i],
				       (i < (j - 1)) ? ' ' : '\n');
			}
		}
	} while (zleft > 0);

	/* Frame received, increment F2 and get an updated count of frames
	 * left */
	if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
		b4_info(b4, "rx_frame fifo %d 3: couldn't get lock\n",
		       fifo);
		return 0;
	}

	/* go get the F count again, just in case another frame snuck in while
	 * we weren't looking. */
	if (flen) {
		hfc_setreg_waitbusy(b4, A_INC_RES_FIFO, V_INC_F);
		++bspan->frames_in;
		get_F(f1, f2, new_flen);
	} else
		new_flen = flen;

	up(&b4->fifosem);

	/* If this channel is not configured with a signalling span we don't
	 * need to notify the rest of dahdi about this frame. */
	if (!bspan->sigchan) {
		if (DBG_HDLC && DBG_SPANFILTER) {
			b4_info(b4, "hdlc_rx_frame fifo %d: " \
			       "new_flen %d, early end.\n", fifo, new_flen);
		}
		return new_flen;
	}

	if (flen) {
		/*  disable < 3 check for now */
		if (0 && zlen < 3) {
			if (DBG_HDLC && DBG_SPANFILTER)
				b4_info(b4, "odd, zlen less then 3?\n");
			dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_ABORT);
		} else {
			hdlc_signal_complete(bspan, buf[i - 1]);
		}
	}

	if (DBG_HDLC && DBG_SPANFILTER) {
		b4_info(b4, "hdlc_rx_frame fifo %d: new_flen=%d end.\n",
		       fifo, new_flen);
	}

	return new_flen;
}

#endif /* HARDHDLC_RX */


/*
 * Takes one blob of data from DAHDI and shoots it out to the hardware.  The
 * blob may or may not be a complete HDLC frame.  If it isn't, the D-channel
 * FIFO interrupt handler will take care of pulling the rest.  Returns nonzero
 * if there is still data to send in the current HDLC frame.
 */
static int hdlc_tx_frame(struct b400m_span *bspan)
{
	struct b400m *b4 = bspan->parent;
	int res, i, fifo;
	int z1, z2, zlen;
	int f1 = -1, f2 = -1, flen = -1;
	unsigned char buf[B400M_HDLC_BUF_LEN];
	unsigned int size = ARRAY_SIZE(buf);
	char debugbuf[256];

	/* if we're ignoring TE red alarms and we are in alarm, restart the
	 * S/T state machine */
	if (bspan->te_mode && (bspan->newalarm != 0)) {
		hfc_start_st(bspan);
	}

	fifo = bspan->fifos[2];
	res = dahdi_hdlc_getbuf(bspan->sigchan, buf, &size);

	if (down_interruptible(&b4->fifosem)) {
		static int arg;
		b4_info(b4, "b400m: arg (%d), grabbed data from DAHDI " \
		       "but couldn't grab the lock!\n", ++arg);
		/* TODO: Inform DAHDI that we have grabbed data and can't use
		 * it */
		dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_OVERRUN);
		return 1;		/* return 1 so we keep trying */
	}
	hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));

	get_Z(z1, z2, zlen);
	debug_fz(b4, fifo, __func__, debugbuf);

	/* TODO: check zlen, etc. */
	if ((HFC_ZMAX-zlen) < size) {
		static int arg;
		b4_info(b4, "b400m: arg (%d), zlen (%d) < what we " \
		       "grabbed from DAHDI (%d)!\n", ++arg, zlen, size);
		size = zlen;
		dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_OVERRUN);
	}

	if (size > 0) {
		bspan->sigactive = 1;

		for (i = 0; i < size; i++)
			b400m_setreg(b4, A_FIFO_DATA, buf[i]);
		/*
		 * If we got a full frame from DAHDI, increment F and
		 * decrement our HDLC pending counter.  Otherwise, select the
		 * FIFO again (to start transmission) and make sure the TX IRQ
		 * is enabled so we will get called again to finish off the
		 * data
		 */
		if (res != 0) {
			++bspan->frames_out;
			bspan->sigactive = 0;
			hfc_setreg_waitbusy(b4, A_INC_RES_FIFO, V_INC_F);
			atomic_dec(&bspan->hdlc_pending);
		} else {
			hfc_setreg_waitbusy(b4, R_FIFO,
					    (fifo << V_FIFO_NUM_SHIFT));
		}
	}

	up(&b4->fifosem);

	if (0 && DBG_HDLC && DBG_SPANFILTER) {
		b4_info(b4, "%s", debugbuf);

		b4_info(b4, "hdlc_tx_frame(span %d): DAHDI gave %d " \
			 "bytes for FIFO %d (res = %d)\n",
			 bspan->port + 1, size, fifo, res);

		for (i = 0; i < size; i++)
			b4_info(b4,
				 "%02x%c\n", buf[i],
				 (i < (size - 1)) ? ' ' : '\n');

		if (size && res != 0) {
			pr_info("Transmitted frame %d on span %d\n",
				bspan->frames_out - 1, bspan->port);
		}
	}

	return (res == 0);
}

/*
 * b400m lowlevel functions These are functions which impact more than just
 * the HFC controller.  (those are named hfc_xxx())
 */

/*
 * Performs a total reset of the card, reinitializes GPIO.  The card is
 * initialized enough to have LEDs running, and that's about it.  Anything to
 * do with audio and enabling any kind of processing is done in stage2.
 */
static void xhfc_init_stage1(struct b400m *b4)
{
	int i;

	hfc_reset(b4);
	hfc_gpio_init(b4);

	/* make sure interrupts are disabled */
	b400m_setreg(b4, R_IRQ_CTRL, 0x00);

	/* make sure write hits hardware */
	flush_hw();

	/* disable all FIFO interrupts */
	for (i = 0; i < HFC_NR_FIFOS; i++) {
		hfc_setreg_waitbusy(b4, R_FIFO, (i << V_FIFO_NUM_SHIFT));
		/* disable the interrupt */
		b400m_setreg(b4, A_FIFO_CTRL, 0x00);
		hfc_setreg_waitbusy(b4, R_FIFO,
				    (i << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
		/* disable the interrupt */
		b400m_setreg(b4, A_FIFO_CTRL, 0x00);
		flush_hw();
	}

	/* set fill threshhold to 16 bytes */
	b400m_setreg(b4, R_FIFO_THRES, 0x11);

	/* clear any pending FIFO interrupts */
	b400m_getreg(b4, R_FIFO_BL2_IRQ);
	b400m_getreg(b4, R_FIFO_BL3_IRQ);

	b4->misc_irq_mask = 0x00;
	b400m_setreg(b4, R_MISC_IRQMSK, b4->misc_irq_mask);
	b400m_setreg(b4, R_IRQ_CTRL, 0);
}

/*
 * Stage 2 hardware init.  Sets up the flow controller, PCM and FIFOs.
 * Initializes the echo cancellers.  S/T interfaces are not initialized here,
 * that is done later, in hfc_init_all_st().  Interrupts are enabled and once
 * the s/t interfaces are configured, chip should be pretty much operational.
 */
static void xhfc_init_stage2(struct b400m *b4)
{
	/*
	 * set up PCM bus. XHFC is PCM slave C2IO is the clock, auto sync,
	 * SYNC_O follows SYNC_I.  128 timeslots, long frame sync positive
	 * polarity, sample on falling clock edge. STIO2 is transmit-only,
	 * STIO1 is receive-only.
	 */
	b400m_setreg(b4, R_PCM_MD0, V_PCM_IDX_MD1);
	b400m_setreg(b4, R_PCM_MD1, V_PCM_DR_8192 | (0x3 << 2));
	b400m_setreg(b4, R_PCM_MD0, V_PCM_IDX_MD2);
	b400m_setreg(b4, R_PCM_MD2, V_C2I_EN | V_SYNC_OUT1);
	b400m_setreg(b4, R_SU_SYNC, V_SYNC_SEL_PORT0);

	/* Now set up the flow controller. */
	hfc_setup_fsm(b4);

	/*
	 * At this point, everything's set up and ready to go.  Don't actually
	 * enable the global interrupt pin.  DAHDI still needs to start up the
	 * spans, and we don't know exactly when.
	 */
}

static inline struct b400m_span *bspan_from_dspan(struct dahdi_span *span)
{
	return container_of(span, struct wctdm_span, span)->bspan;
}

static int xhfc_startup(struct dahdi_span *span)
{
	struct b400m_span *bspan = bspan_from_dspan(span);
	struct b400m *b4 = bspan->parent;
	if (!b4->running)
		hfc_enable_interrupts(bspan->parent);

	return 0;
}

/* resets all the FIFOs for a given span. Disables IRQs for the span FIFOs */
static void xhfc_reset_span(struct b400m_span *bspan)
{
	int i;
	struct b400m *b4 = bspan->parent;

	/* b4_info(b4, "xhfc_reset_span()\n"); */
	for (i = 0; i < 3; i++)
		hfc_reset_fifo_pair(b4, bspan->fifos[i], (i == 2) ? 1 : 0, 1);
}

static void b400m_enable_workqueues(struct wctdm *wc)
{
	struct b400m *b4s[2];
	int i, numb4s = 0;
	unsigned long flags;

	spin_lock_irqsave(&wc->reglock, flags);
	for (i = 0; i < wc->mods_per_board; i += 4) {
		if (wc->mods[i].type == BRI)
			b4s[numb4s++] = wc->mods[i].mod.bri;
	}
	spin_unlock_irqrestore(&wc->reglock, flags);

	for (i = 0; i < numb4s; i++) {
		if (b4s[i])
			b4s[i]->shutdown = 0;
	}

}

static void b400m_disable_workqueues(struct wctdm *wc)
{
	struct b400m *b4s[2];
	int i, numb4s = 0;
	unsigned long flags;

	spin_lock_irqsave(&wc->reglock, flags);
	for (i = 0; i < wc->mods_per_board; i += 4) {
		if (wc->mods[i].type == BRI)
			b4s[numb4s++] = wc->mods[i].mod.bri;
	}
	spin_unlock_irqrestore(&wc->reglock, flags);

	for (i = 0; i < numb4s; i++) {
		if (b4s[i]) {
			down(&wc->syncsem);
			b4s[i]->shutdown = 1;
			up(&wc->syncsem);
			flush_workqueue(b4s[i]->xhfc_ws);
		}
	}
}
/*
 * Software selectable NT and TE mode settings on the B400M.
 *
 * mode - bitwise selection of NT vs TE mode
 *        1 = NT; 0 = TE;
 *        bit 0 is port 0
 *        bit 1 is port 1
 *        ...
 * term - termination resistance
 *        0 = no termination resistance
 *        1 = 390 ohm termination resistance switched on
 */
static int b400m_set_ntte(struct b400m_span *bspan, int te_mode, int term_on)
{
	struct b400m *b4 = bspan->parent;
	unsigned char data;
	unsigned char addr;
	int all_modes = 0, all_terms = 0;
	int i;

	bspan->wspan->span.spantype = (te_mode > 0)
		? SPANTYPE_DIGITAL_BRI_TE
		: SPANTYPE_DIGITAL_BRI_NT;

	bspan->te_mode = te_mode;
	bspan->term_on = term_on;

	for (i = 0; i < 4; i++) {
		if (!b4->spans[i].te_mode)
			all_modes |= (1 << i);
		if (b4->spans[i].term_on)
			all_terms |= (1 << i);
	}

	data = 0x10 | ((all_terms << 4) & 0xc0) | ((all_terms << 2) & 0x0c);
	addr = 0x10 | all_modes;

	msleep(voicebus_current_latency(&b4->wc->vb) + 2);
	wctdm_setreg(b4->wc, get_mod(b4), addr, data);

	b4->lastreg = 0xff;
	msleep(voicebus_current_latency(&b4->wc->vb) + 2);

	hfc_reset_st(bspan);

	if (bri_persistentlayer1)
		hfc_start_st(bspan);

	return 0;
}

/* spanconfig for us means ...? */
int b400m_spanconfig(struct file *file, struct dahdi_span *span,
		     struct dahdi_lineconfig *lc)
{
	struct b400m_span *bspan;
	struct b400m *b4;
	struct wctdm *wc;
	int te_mode, term;
	int pos;
	int res;

	bspan = bspan_from_dspan(span);
	b4 = bspan->parent;
	wc = b4->wc;

	if ((file->f_flags & O_NONBLOCK) && !is_initialized(wc))
		return -EAGAIN;

	res = wctdm_wait_for_ready(wc);
	if (res)
		return res;

	b400m_disable_workqueues(b4->wc);

	te_mode = (lc->lineconfig & DAHDI_CONFIG_NTTE) ? 0 : 1;

	term = (lc->lineconfig & DAHDI_CONFIG_TERM) ? 1 : 0;

	b4_info(b4, "xhfc: Configuring port %d span %d in %s " \
		 "mode with termination resistance %s\n", bspan->port,
		 span->spanno, (te_mode) ? "TE" : "NT",
		 (term) ? "ENABLED" : "DISABLED");

	b400m_set_ntte(bspan, te_mode, term);
	if (lc->sync < 0) {
		b4_info(b4, "Span %d has invalid sync priority (%d), " \
			 "removing from sync source list\n", span->spanno,
			 lc->sync);
		lc->sync = 0;
	}

	if (span->offset >= 4) {
		pos = span->offset;
	} else {
		/* This is tricky.  Have to figure out if we're slot 1 or slot
		 * 2 */
		pos = span->offset + b4->position;
	}

	if (!te_mode && lc->sync) {
		b4_info(b4, "NT Spans cannot be timing sources.  " \
			 "Span %d requested to be timing source of " \
			 "priority %d.  Changing priority to 0\n", pos,
			 lc->sync);
		lc->sync = 0;
	}

	wc->spans[pos]->timing_priority = lc->sync;

	bspan->wspan = container_of(span, struct wctdm_span, span);
	xhfc_reset_span(bspan);

	/* call startup() manually here, because DAHDI won't call the startup
	 * function unless it receives an IOCTL to do so, and dahdi_cfg
	 * doesn't. */
	xhfc_startup(span);

	span->flags |= DAHDI_FLAG_RUNNING;

	set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);

	b400m_enable_workqueues(b4->wc);

	return 0;
}

/* chanconfig for us means to configure the HDLC controller, if appropriate
 *
 * NOTE: apparently the DAHDI ioctl function calls us with a interrupts
 * disabled.  This means we cannot actually touch the hardware, because all
 * register accesses are wrapped up in a mutex that can sleep.
 *
 * The solution to that is to simply increment the span's "restart" flag, and
 * the driver's workqueue will do the dirty work on our behalf.
 */
int b400m_chanconfig(struct file *file, struct dahdi_chan *chan, int sigtype)
{
	int alreadyrunning;
	struct b400m_span *bspan = bspan_from_dspan(chan->span);
	struct b400m *b4 = bspan->parent;
	int res;

	if ((file->f_flags & O_NONBLOCK) && !is_initialized(b4->wc))
		return -EAGAIN;

	res = wctdm_wait_for_ready(b4->wc);
	if (res)
		return res;

	alreadyrunning = bspan->wspan->span.flags & DAHDI_FLAG_RUNNING;

	if (DBG_FOPS) {
		b4_info(b4, "%s channel %d (%s) sigtype %08x\n",
			 alreadyrunning ? "Reconfigured" : "Configured",
			 chan->channo, chan->name, sigtype);
	}

	switch (sigtype) {
	case DAHDI_SIG_HARDHDLC:
		if (DBG_FOPS) {
			b4_info(b4, "%sonfiguring hardware HDLC on %s\n",
				 ((sigtype == DAHDI_SIG_HARDHDLC) ? "C" :
				 "Unc"), chan->name);
		}
		bspan->sigchan = chan;
		bspan->sigactive = 0;
		atomic_set(&bspan->hdlc_pending, 0);
		res = 0;
		break;
	case DAHDI_SIG_HDLCFCS:
	case DAHDI_SIG_HDLCNET:
	case DAHDI_SIG_HDLCRAW:
		/* Only HARDHDLC is supported for the signalling channel on BRI
		 * spans. */
		res = -EINVAL;
		break;
	default:
		res = 0;
		break;
	};

	return res;
}

int b400m_dchan(struct dahdi_span *span)
{
	struct b400m_span *bspan;
	struct b400m *b4;
	unsigned char *rxb;
	int res;
	int i;

	bspan = bspan_from_dspan(span);
	b4 = bspan->parent;
#ifdef HARDHDLC_RX
	return 0;
#else
#endif

	if (!bspan->sigchan)
		return 0;

	rxb = bspan->sigchan->readchunk;

	if (!rxb) {
		b4_info(b4, "No RXB!\n");
		return 0;
	}

	for (i = 0; i < DAHDI_CHUNKSIZE; i++) {
		fasthdlc_rx_load_nocheck(&bspan->rxhdlc, *(rxb++));
		res = fasthdlc_rx_run(&bspan->rxhdlc);
		/* If there is nothing there, continue */
		if (res & RETURN_EMPTY_FLAG)
			continue;
		else if (res & RETURN_COMPLETE_FLAG) {

			if (!bspan->f_sz)
				continue;

			/* Only count this if it's a non-empty frame */
			if (bspan->infcs != PPP_GOODFCS) {
				dahdi_hdlc_abort(bspan->sigchan,
						 DAHDI_EVENT_BADFCS);
			} else {
				dahdi_hdlc_finish(bspan->sigchan);
			}
			bspan->infcs = PPP_INITFCS;
			bspan->f_sz = 0;
			continue;
		} else if (res & RETURN_DISCARD_FLAG) {

			if (!bspan->f_sz)
				continue;

			dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_ABORT);
			bspan->infcs = PPP_INITFCS;
			bspan->f_sz = 0;
			break;
		} else {
			unsigned char rxc = res;
			bspan->infcs = PPP_FCS(bspan->infcs, rxc);
			bspan->f_sz++;
			dahdi_hdlc_putbuf(bspan->sigchan, &rxc, 1);
		}
	}

	return 0;
}

/* internal functions, not specific to the hardware or DAHDI */

/*
 */
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void xhfc_work(void *data)
{
	struct b400m *b4 = data;
#else
static void xhfc_work(struct work_struct *work)
{
	struct b400m *b4 = container_of(work, struct b400m, xhfc_wq);
#endif
	int i, j, k, fifo;
	unsigned char b, b2;

	if (b4->shutdown || !is_initialized(b4->wc))
		return;

	b4->irq_oview = b400m_getreg(b4, R_IRQ_OVIEW);
	b4->fifo_fill = b400m_getreg(b4, R_FILL_BL0);

	if (b4->irq_oview & V_FIFO_BL0_IRQ) {
		b4->fifo_irqstatus |= b400m_getreg(b4, R_FIFO_BL0_IRQ);
		b4->irq_oview &= ~V_FIFO_BL0_IRQ;
	}

	/* only look at BL0, we put all D channel FIFOs in the first block. */
	b = b2 = b4->fifo_irqstatus;

	for (j = 0; j < 4; j++) {
#ifdef SWAP_PORTS
		fifo = (1 == j) ? 2 : (2 == j) ? 1 : j;
#else
		fifo = j;
#endif

#ifdef HARDHDLC_RX
		if (b & V_FIFOx_RX_IRQ) {
			if (fifo < 4) {		/* d-channel FIFO */

				/*
				 * I have to loop here until hdlc_rx_frame
				 * says there are no more frames waiting.  for
				 * whatever reason, the HFC will not generate
				 * another interrupt if there are still HDLC
				 * frames waiting to be received.  i.e. I get
				 * an int when F1 changes, not when F1 != F2.
				 *
				 */
				do {
					k = hdlc_rx_frame(&b4->spans[fifo]);
				} while (k);
			}
		}

#endif
		b >>= 2;
	}

	/* zero the bits we just processed */
	b4->fifo_irqstatus &= ~b2;
	b4->fifo_fill &= ~b2;


#if 1
	/* All four D channel FIFOs are in BL0. */
	b = b2 = b4->fifo_fill;

	for (j = 0; j < 4; j++) {
#ifdef SWAP_PORTS
		fifo = (1 == j) ? 2 : (2 == j) ? 1 : j;
#else
		fifo = j;
#endif
		if (b4->spans[fifo].sigactive && (b & V_FIFOx_TX_IRQ))
			hdlc_tx_frame(&b4->spans[fifo]);

#ifdef HARDHDLC_RX
		if (b & V_FIFOx_RX_IRQ)
			hdlc_rx_frame(&b4->spans[fifo]);
#endif

		b >>= 2;
	}
#endif

	/* Check for outgoing HDLC frame requests The HFC does not generate TX
	 * interrupts when there is room to send, so I use an atomic counter
	 * that is incremented every time DAHDI wants to send a frame, and
	 * decremented every time I send a frame.  It'd be better if I could
	 * just use the interrupt handler, but the HFC seems to trigger a FIFO
	 * TX IRQ only when it has finished sending a frame, not when one can
	 * be sent.
	 */
	for (i = 0; i < ARRAY_SIZE(b4->spans); i++) {
		struct b400m_span *bspan = &b4->spans[i];

		if (atomic_read(&bspan->hdlc_pending)) {
			do {
				k = hdlc_tx_frame(bspan);
			}  while (k);
		}
	}

	b = b400m_getreg(b4, R_SU_IRQ);

	if (b) {
		for (i = 0; i < ARRAY_SIZE(b4->spans); i++) {
			int physport;

#ifdef SWAP_PORTS
			if (i == 1)
				physport = 2;
			else if (i == 2)
				physport = 1;
			else
				physport = i;
#else
			physport = i;
#endif
			if (b & (1 << i))
				hfc_handle_state(&b4->spans[physport]);
		}
	}

	hfc_update_st_timers(b4);
}

void wctdm_bri_checkisr(struct wctdm *wc, struct wctdm_module *const mod,
			int offset)
{
	struct b400m *b4 = mod->mod.bri;

	/* don't do anything for non-base card slots */
	if (mod->card & 0x03)
		return;

	/* DEFINITELY don't do anything if our structures aren't ready! */
	if (!is_initialized(wc) || !b4 || !b4->inited)
		return;

	if (offset == 0) {
		if (!b4->shutdown)
			queue_work(b4->xhfc_ws, &b4->xhfc_wq);
		b4->ticks++;
	}
	return;
}

/* DAHDI calls this when it has data it wants to send to the HDLC controller */
void wctdm_hdlc_hard_xmit(struct dahdi_chan *chan)
{
	struct b400m *b4;
	struct b400m_span *bspan;
	struct dahdi_span *dspan;
	int span;

	dspan = chan->span;
	bspan = bspan_from_dspan(dspan);
	b4 = bspan->parent;
	span = bspan->port;

	if ((DBG_FOPS || DBG_HDLC) && DBG_SPANFILTER) {
		b4_info(b4, "hdlc_hard_xmit on chan %s (%i/%i), " \
			 "span=%i (sigchan=%p, chan=%p)\n", chan->name,
			 chan->channo, chan->chanpos, span + 1,
			 bspan->sigchan, chan);
	}

	/* Increment the hdlc_pending counter and trigger the bottom-half so
	 * it will be picked up and sent.  */
	if (bspan->sigchan == chan)
		atomic_inc(&bspan->hdlc_pending);
}

static int b400m_probe(struct wctdm *wc, int modpos)
{
	unsigned char id, x;
	struct b400m *b4;
	unsigned long flags;
	int chiprev;

	wctdm_setreg(wc, &wc->mods[modpos], 0x10, 0x10);
	id = xhfc_getreg(wc, &wc->mods[modpos], R_CHIP_ID, &x);

	/* chip ID high 7 bits must be 0x62, see datasheet */
	if ((id & 0xfe) != 0x62)
		return -2;

	b4 = kzalloc(sizeof(struct b400m), GFP_KERNEL);
	if (!b4) {
		dev_err(&wc->vb.pdev->dev,
			"Couldn't allocate memory for b400m structure!\n");
		return -ENOMEM;
	}

	/* card found, enabled and main struct allocated.  Fill it out. */
	b4->wc = wc;
	b4->position = modpos;

	/* which B400M in the system is this one? count all of them found so
	 * far */
	for (x = 0; x < modpos; x += 4) {
		if (wc->mods[x].type == BRI)
			++b4->b400m_no;
	}

	spin_lock_init(&b4->reglock);
	sema_init(&b4->regsem, 1);
	sema_init(&b4->fifosem, 1);

	for (x = 0; x < 4; x++) {
		fasthdlc_init(&b4->spans[x].rxhdlc, FASTHDLC_MODE_16);
		b4->spans[x].infcs = PPP_INITFCS;
	}

	b4->lastreg = 0xff; /* a register we won't hit right off the bat */

	chiprev = b400m_getreg(b4, R_CHIP_RV);

	b4->setsyncspan = -1;		/* sync span is unknown */
	b4->reportedsyncspan = -1;	/* sync span is unknown */

	if (DBG) {
		b4_info(b4, "Identified controller rev %d in module %d.\n",
			chiprev, b4->position);
	}

	xhfc_init_stage1(b4);

	xhfc_init_stage2(b4);
	hfc_init_all_st(b4);

	hfc_enable_interrupts(b4);

	spin_lock_irqsave(&wc->reglock, flags);
	wc->mods[modpos].mod.bri = (void *)b4;
	spin_unlock_irqrestore(&wc->reglock, flags);

	return 0;
}

void b400m_post_init(struct b400m *b4)
{
	snprintf(b4->name, sizeof(b4->name) - 1, "b400m-%d",
		 b4->b400m_no);
	b4->xhfc_ws = create_singlethread_workqueue(b4->name);
#	if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
	INIT_WORK(&b4->xhfc_wq, xhfc_work, b4);
#	else
	INIT_WORK(&b4->xhfc_wq, xhfc_work);
#	endif
	b4->inited = 1;
}

/* functions called from the wctdm code */
int wctdm_init_b400m(struct wctdm *wc, int card)
{
	int ret = 0;
	unsigned long flags;

	if (wc->mods[card & 0xfc].type == QRV)
		return -2;

	if (!(card & 0x03)) { /* only init if at lowest port in module */
		spin_lock_irqsave(&wc->reglock, flags);
		wc->mods[card + 0].type = BRI;
		wc->mods[card + 0].mod.bri = NULL;
		wc->mods[card + 1].type = BRI;
		wc->mods[card + 1].mod.bri = NULL;
		wc->mods[card + 2].type = BRI;
		wc->mods[card + 2].mod.bri = NULL;
		wc->mods[card + 3].type = BRI;
		wc->mods[card + 3].mod.bri = NULL;
		spin_unlock_irqrestore(&wc->reglock, flags);

		msleep(20);

		if (b400m_probe(wc, card) != 0) {
			spin_lock_irqsave(&wc->reglock, flags);
			wc->mods[card + 0].type = NONE;
			wc->mods[card + 1].type = NONE;
			wc->mods[card + 2].type = NONE;
			wc->mods[card + 3].type = NONE;
			spin_unlock_irqrestore(&wc->reglock, flags);
			ret = -2;
		}
	} else {	/* for the "sub-cards" */
		if (wc->mods[card & 0xfc].type == BRI) {
			spin_lock_irqsave(&wc->reglock, flags);
			wc->mods[card].type = BRI;
			wc->mods[card].mod.bri = wc->mods[card & 0xfc].mod.bri;
			spin_unlock_irqrestore(&wc->reglock, flags);
		} else {
			ret = -2;
		}
	}

	return ret;
}

void wctdm_unload_b400m(struct wctdm *wc, int card)
{
	struct b400m *b4 = wc->mods[card].mod.bri;
	int i;

	/* TODO: shutdown once won't work if just a single card is hotswapped
	 * out.  But since most of the time this is called because the entire
	 * driver is in the process of unloading, I'll leave it here. */
	static int shutdown_once;


	/* only really unload with the 'base' card number.  base+1/2/3 aren't
	 * real. */
	if (card & 0x03)
		return;

	if (timingcable && !shutdown_once) {
		b4_info(b4, "Disabling all workqueues for B400Ms\n");
		/* Gotta shut down timing change potential during this */
		for (i = 0; i < WC_MAX_IFACES; i++) {
			if (ifaces[i])
				b400m_disable_workqueues(ifaces[i]);
		}
		b4_info(b4, "Forcing sync to card 0\n");
		/* Put the timing configuration in a known state: card 0 is
		 * master */
		wctdm_change_system_sync_src(synccard, syncspan, -1, -1);
		/* Change all other cards in the system to self time before
		 * card 0 is removed */
		b4_info(b4, "Setting all cards to return to self sync\n");
		for (i = 1; i < WC_MAX_IFACES; i++) {
			if (ifaces[i])
				wctdm_change_card_sync_src(ifaces[i], 0, 0);
		}

		b4_info(b4,
			 "Finished preparing timing linked cards for "
			 "shutdown\n");

		shutdown_once = 1;
	}

	if (b4) {
		b4->inited = 0;

		msleep(100);

		/* TODO: wait for tdm24xx driver to unregister the spans */
		/* 	do { ... } while(not_unregistered); */

		/* Change sync source back to base board so we don't freeze up
		 * when we reset the XHFC */
		b400m_disable_workqueues(wc);

		for (i = 0; i < (MAX_SPANS - 1); i++) {
			if (wc->spans[i])
				wc->spans[i]->timing_priority = 0;
		}

		for (i = 0; i < ARRAY_SIZE(b4->spans); i++)
			b4->spans[i].wspan->span.flags &= ~DAHDI_FLAG_RUNNING;

		wctdm_change_card_sync_src(b4->wc, 0, 0);

		xhfc_init_stage1(b4);

		destroy_workqueue(b4->xhfc_ws);

		/* Set these to NONE to ensure that our checkisr
		 * routines are not entered */
		wc->mods[card].type = NONE;
		wc->mods[card + 1].type = NONE;
		wc->mods[card + 2].type = NONE;
		wc->mods[card + 3].type = NONE;

		wc->mods[card].mod.bri = NULL;
		wc->mods[card + 1].mod.bri = NULL;
		wc->mods[card + 2].mod.bri = NULL;
		wc->mods[card + 3].mod.bri = NULL;

		msleep(voicebus_current_latency(&wc->vb) << 1);
		b4_info(b4, "Driver unloaded.\n");
		kfree(b4);
	}

}

void b400m_module_init(void)
{
	fasthdlc_precalc();
}

void b400m_module_cleanup(void)
{
}