summaryrefslogtreecommitdiff
path: root/third_party/webrtc/src/webrtc/modules/audio_processing/aec/aec_core_neon.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/webrtc/src/webrtc/modules/audio_processing/aec/aec_core_neon.c')
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aec/aec_core_neon.c736
1 files changed, 736 insertions, 0 deletions
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aec/aec_core_neon.c b/third_party/webrtc/src/webrtc/modules/audio_processing/aec/aec_core_neon.c
new file mode 100644
index 00000000..9a677aaa
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aec/aec_core_neon.c
@@ -0,0 +1,736 @@
+/*
+ * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/*
+ * The core AEC algorithm, neon version of speed-critical functions.
+ *
+ * Based on aec_core_sse2.c.
+ */
+
+#include <arm_neon.h>
+#include <math.h>
+#include <string.h> // memset
+
+#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
+#include "webrtc/modules/audio_processing/aec/aec_common.h"
+#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
+#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
+
+enum { kShiftExponentIntoTopMantissa = 8 };
+enum { kFloatExponentShift = 23 };
+
+__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
+ return aRe * bRe - aIm * bIm;
+}
+
+__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
+ return aRe * bIm + aIm * bRe;
+}
+
+static void FilterFarNEON(AecCore* aec, float yf[2][PART_LEN1]) {
+ int i;
+ const int num_partitions = aec->num_partitions;
+ for (i = 0; i < num_partitions; i++) {
+ int j;
+ int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
+ int pos = i * PART_LEN1;
+ // Check for wrap
+ if (i + aec->xfBufBlockPos >= num_partitions) {
+ xPos -= num_partitions * PART_LEN1;
+ }
+
+ // vectorized code (four at once)
+ for (j = 0; j + 3 < PART_LEN1; j += 4) {
+ const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]);
+ const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]);
+ const float32x4_t wfBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]);
+ const float32x4_t wfBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]);
+ const float32x4_t yf_re = vld1q_f32(&yf[0][j]);
+ const float32x4_t yf_im = vld1q_f32(&yf[1][j]);
+ const float32x4_t a = vmulq_f32(xfBuf_re, wfBuf_re);
+ const float32x4_t e = vmlsq_f32(a, xfBuf_im, wfBuf_im);
+ const float32x4_t c = vmulq_f32(xfBuf_re, wfBuf_im);
+ const float32x4_t f = vmlaq_f32(c, xfBuf_im, wfBuf_re);
+ const float32x4_t g = vaddq_f32(yf_re, e);
+ const float32x4_t h = vaddq_f32(yf_im, f);
+ vst1q_f32(&yf[0][j], g);
+ vst1q_f32(&yf[1][j], h);
+ }
+ // scalar code for the remaining items.
+ for (; j < PART_LEN1; j++) {
+ yf[0][j] += MulRe(aec->xfBuf[0][xPos + j],
+ aec->xfBuf[1][xPos + j],
+ aec->wfBuf[0][pos + j],
+ aec->wfBuf[1][pos + j]);
+ yf[1][j] += MulIm(aec->xfBuf[0][xPos + j],
+ aec->xfBuf[1][xPos + j],
+ aec->wfBuf[0][pos + j],
+ aec->wfBuf[1][pos + j]);
+ }
+ }
+}
+
+// ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32.
+#if !defined (WEBRTC_ARCH_ARM64)
+static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) {
+ int i;
+ float32x4_t x = vrecpeq_f32(b);
+ // from arm documentation
+ // The Newton-Raphson iteration:
+ // x[n+1] = x[n] * (2 - d * x[n])
+ // converges to (1/d) if x0 is the result of VRECPE applied to d.
+ //
+ // Note: The precision did not improve after 2 iterations.
+ for (i = 0; i < 2; i++) {
+ x = vmulq_f32(vrecpsq_f32(b, x), x);
+ }
+ // a/b = a*(1/b)
+ return vmulq_f32(a, x);
+}
+
+static float32x4_t vsqrtq_f32(float32x4_t s) {
+ int i;
+ float32x4_t x = vrsqrteq_f32(s);
+
+ // Code to handle sqrt(0).
+ // If the input to sqrtf() is zero, a zero will be returned.
+ // If the input to vrsqrteq_f32() is zero, positive infinity is returned.
+ const uint32x4_t vec_p_inf = vdupq_n_u32(0x7F800000);
+ // check for divide by zero
+ const uint32x4_t div_by_zero = vceqq_u32(vec_p_inf, vreinterpretq_u32_f32(x));
+ // zero out the positive infinity results
+ x = vreinterpretq_f32_u32(vandq_u32(vmvnq_u32(div_by_zero),
+ vreinterpretq_u32_f32(x)));
+ // from arm documentation
+ // The Newton-Raphson iteration:
+ // x[n+1] = x[n] * (3 - d * (x[n] * x[n])) / 2)
+ // converges to (1/√d) if x0 is the result of VRSQRTE applied to d.
+ //
+ // Note: The precision did not improve after 2 iterations.
+ for (i = 0; i < 2; i++) {
+ x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x);
+ }
+ // sqrt(s) = s * 1/sqrt(s)
+ return vmulq_f32(s, x);;
+}
+#endif // WEBRTC_ARCH_ARM64
+
+static void ScaleErrorSignalNEON(AecCore* aec, float ef[2][PART_LEN1]) {
+ const float mu = aec->extended_filter_enabled ? kExtendedMu : aec->normal_mu;
+ const float error_threshold = aec->extended_filter_enabled ?
+ kExtendedErrorThreshold : aec->normal_error_threshold;
+ const float32x4_t k1e_10f = vdupq_n_f32(1e-10f);
+ const float32x4_t kMu = vmovq_n_f32(mu);
+ const float32x4_t kThresh = vmovq_n_f32(error_threshold);
+ int i;
+ // vectorized code (four at once)
+ for (i = 0; i + 3 < PART_LEN1; i += 4) {
+ const float32x4_t xPow = vld1q_f32(&aec->xPow[i]);
+ const float32x4_t ef_re_base = vld1q_f32(&ef[0][i]);
+ const float32x4_t ef_im_base = vld1q_f32(&ef[1][i]);
+ const float32x4_t xPowPlus = vaddq_f32(xPow, k1e_10f);
+ float32x4_t ef_re = vdivq_f32(ef_re_base, xPowPlus);
+ float32x4_t ef_im = vdivq_f32(ef_im_base, xPowPlus);
+ const float32x4_t ef_re2 = vmulq_f32(ef_re, ef_re);
+ const float32x4_t ef_sum2 = vmlaq_f32(ef_re2, ef_im, ef_im);
+ const float32x4_t absEf = vsqrtq_f32(ef_sum2);
+ const uint32x4_t bigger = vcgtq_f32(absEf, kThresh);
+ const float32x4_t absEfPlus = vaddq_f32(absEf, k1e_10f);
+ const float32x4_t absEfInv = vdivq_f32(kThresh, absEfPlus);
+ uint32x4_t ef_re_if = vreinterpretq_u32_f32(vmulq_f32(ef_re, absEfInv));
+ uint32x4_t ef_im_if = vreinterpretq_u32_f32(vmulq_f32(ef_im, absEfInv));
+ uint32x4_t ef_re_u32 = vandq_u32(vmvnq_u32(bigger),
+ vreinterpretq_u32_f32(ef_re));
+ uint32x4_t ef_im_u32 = vandq_u32(vmvnq_u32(bigger),
+ vreinterpretq_u32_f32(ef_im));
+ ef_re_if = vandq_u32(bigger, ef_re_if);
+ ef_im_if = vandq_u32(bigger, ef_im_if);
+ ef_re_u32 = vorrq_u32(ef_re_u32, ef_re_if);
+ ef_im_u32 = vorrq_u32(ef_im_u32, ef_im_if);
+ ef_re = vmulq_f32(vreinterpretq_f32_u32(ef_re_u32), kMu);
+ ef_im = vmulq_f32(vreinterpretq_f32_u32(ef_im_u32), kMu);
+ vst1q_f32(&ef[0][i], ef_re);
+ vst1q_f32(&ef[1][i], ef_im);
+ }
+ // scalar code for the remaining items.
+ for (; i < PART_LEN1; i++) {
+ float abs_ef;
+ ef[0][i] /= (aec->xPow[i] + 1e-10f);
+ ef[1][i] /= (aec->xPow[i] + 1e-10f);
+ abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
+
+ if (abs_ef > error_threshold) {
+ abs_ef = error_threshold / (abs_ef + 1e-10f);
+ ef[0][i] *= abs_ef;
+ ef[1][i] *= abs_ef;
+ }
+
+ // Stepsize factor
+ ef[0][i] *= mu;
+ ef[1][i] *= mu;
+ }
+}
+
+static void FilterAdaptationNEON(AecCore* aec,
+ float* fft,
+ float ef[2][PART_LEN1]) {
+ int i;
+ const int num_partitions = aec->num_partitions;
+ for (i = 0; i < num_partitions; i++) {
+ int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
+ int pos = i * PART_LEN1;
+ int j;
+ // Check for wrap
+ if (i + aec->xfBufBlockPos >= num_partitions) {
+ xPos -= num_partitions * PART_LEN1;
+ }
+
+ // Process the whole array...
+ for (j = 0; j < PART_LEN; j += 4) {
+ // Load xfBuf and ef.
+ const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]);
+ const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]);
+ const float32x4_t ef_re = vld1q_f32(&ef[0][j]);
+ const float32x4_t ef_im = vld1q_f32(&ef[1][j]);
+ // Calculate the product of conjugate(xfBuf) by ef.
+ // re(conjugate(a) * b) = aRe * bRe + aIm * bIm
+ // im(conjugate(a) * b)= aRe * bIm - aIm * bRe
+ const float32x4_t a = vmulq_f32(xfBuf_re, ef_re);
+ const float32x4_t e = vmlaq_f32(a, xfBuf_im, ef_im);
+ const float32x4_t c = vmulq_f32(xfBuf_re, ef_im);
+ const float32x4_t f = vmlsq_f32(c, xfBuf_im, ef_re);
+ // Interleave real and imaginary parts.
+ const float32x4x2_t g_n_h = vzipq_f32(e, f);
+ // Store
+ vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]);
+ vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]);
+ }
+ // ... and fixup the first imaginary entry.
+ fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
+ -aec->xfBuf[1][xPos + PART_LEN],
+ ef[0][PART_LEN],
+ ef[1][PART_LEN]);
+
+ aec_rdft_inverse_128(fft);
+ memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
+
+ // fft scaling
+ {
+ const float scale = 2.0f / PART_LEN2;
+ const float32x4_t scale_ps = vmovq_n_f32(scale);
+ for (j = 0; j < PART_LEN; j += 4) {
+ const float32x4_t fft_ps = vld1q_f32(&fft[j]);
+ const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps);
+ vst1q_f32(&fft[j], fft_scale);
+ }
+ }
+ aec_rdft_forward_128(fft);
+
+ {
+ const float wt1 = aec->wfBuf[1][pos];
+ aec->wfBuf[0][pos + PART_LEN] += fft[1];
+ for (j = 0; j < PART_LEN; j += 4) {
+ float32x4_t wtBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]);
+ float32x4_t wtBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]);
+ const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]);
+ const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]);
+ const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4);
+ wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]);
+ wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]);
+
+ vst1q_f32(&aec->wfBuf[0][pos + j], wtBuf_re);
+ vst1q_f32(&aec->wfBuf[1][pos + j], wtBuf_im);
+ }
+ aec->wfBuf[1][pos] = wt1;
+ }
+ }
+}
+
+static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) {
+ // a^b = exp2(b * log2(a))
+ // exp2(x) and log2(x) are calculated using polynomial approximations.
+ float32x4_t log2_a, b_log2_a, a_exp_b;
+
+ // Calculate log2(x), x = a.
+ {
+ // To calculate log2(x), we decompose x like this:
+ // x = y * 2^n
+ // n is an integer
+ // y is in the [1.0, 2.0) range
+ //
+ // log2(x) = log2(y) + n
+ // n can be evaluated by playing with float representation.
+ // log2(y) in a small range can be approximated, this code uses an order
+ // five polynomial approximation. The coefficients have been
+ // estimated with the Remez algorithm and the resulting
+ // polynomial has a maximum relative error of 0.00086%.
+
+ // Compute n.
+ // This is done by masking the exponent, shifting it into the top bit of
+ // the mantissa, putting eight into the biased exponent (to shift/
+ // compensate the fact that the exponent has been shifted in the top/
+ // fractional part and finally getting rid of the implicit leading one
+ // from the mantissa by substracting it out.
+ const uint32x4_t vec_float_exponent_mask = vdupq_n_u32(0x7F800000);
+ const uint32x4_t vec_eight_biased_exponent = vdupq_n_u32(0x43800000);
+ const uint32x4_t vec_implicit_leading_one = vdupq_n_u32(0x43BF8000);
+ const uint32x4_t two_n = vandq_u32(vreinterpretq_u32_f32(a),
+ vec_float_exponent_mask);
+ const uint32x4_t n_1 = vshrq_n_u32(two_n, kShiftExponentIntoTopMantissa);
+ const uint32x4_t n_0 = vorrq_u32(n_1, vec_eight_biased_exponent);
+ const float32x4_t n =
+ vsubq_f32(vreinterpretq_f32_u32(n_0),
+ vreinterpretq_f32_u32(vec_implicit_leading_one));
+ // Compute y.
+ const uint32x4_t vec_mantissa_mask = vdupq_n_u32(0x007FFFFF);
+ const uint32x4_t vec_zero_biased_exponent_is_one = vdupq_n_u32(0x3F800000);
+ const uint32x4_t mantissa = vandq_u32(vreinterpretq_u32_f32(a),
+ vec_mantissa_mask);
+ const float32x4_t y =
+ vreinterpretq_f32_u32(vorrq_u32(mantissa,
+ vec_zero_biased_exponent_is_one));
+ // Approximate log2(y) ~= (y - 1) * pol5(y).
+ // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
+ const float32x4_t C5 = vdupq_n_f32(-3.4436006e-2f);
+ const float32x4_t C4 = vdupq_n_f32(3.1821337e-1f);
+ const float32x4_t C3 = vdupq_n_f32(-1.2315303f);
+ const float32x4_t C2 = vdupq_n_f32(2.5988452f);
+ const float32x4_t C1 = vdupq_n_f32(-3.3241990f);
+ const float32x4_t C0 = vdupq_n_f32(3.1157899f);
+ float32x4_t pol5_y = C5;
+ pol5_y = vmlaq_f32(C4, y, pol5_y);
+ pol5_y = vmlaq_f32(C3, y, pol5_y);
+ pol5_y = vmlaq_f32(C2, y, pol5_y);
+ pol5_y = vmlaq_f32(C1, y, pol5_y);
+ pol5_y = vmlaq_f32(C0, y, pol5_y);
+ const float32x4_t y_minus_one =
+ vsubq_f32(y, vreinterpretq_f32_u32(vec_zero_biased_exponent_is_one));
+ const float32x4_t log2_y = vmulq_f32(y_minus_one, pol5_y);
+
+ // Combine parts.
+ log2_a = vaddq_f32(n, log2_y);
+ }
+
+ // b * log2(a)
+ b_log2_a = vmulq_f32(b, log2_a);
+
+ // Calculate exp2(x), x = b * log2(a).
+ {
+ // To calculate 2^x, we decompose x like this:
+ // x = n + y
+ // n is an integer, the value of x - 0.5 rounded down, therefore
+ // y is in the [0.5, 1.5) range
+ //
+ // 2^x = 2^n * 2^y
+ // 2^n can be evaluated by playing with float representation.
+ // 2^y in a small range can be approximated, this code uses an order two
+ // polynomial approximation. The coefficients have been estimated
+ // with the Remez algorithm and the resulting polynomial has a
+ // maximum relative error of 0.17%.
+ // To avoid over/underflow, we reduce the range of input to ]-127, 129].
+ const float32x4_t max_input = vdupq_n_f32(129.f);
+ const float32x4_t min_input = vdupq_n_f32(-126.99999f);
+ const float32x4_t x_min = vminq_f32(b_log2_a, max_input);
+ const float32x4_t x_max = vmaxq_f32(x_min, min_input);
+ // Compute n.
+ const float32x4_t half = vdupq_n_f32(0.5f);
+ const float32x4_t x_minus_half = vsubq_f32(x_max, half);
+ const int32x4_t x_minus_half_floor = vcvtq_s32_f32(x_minus_half);
+
+ // Compute 2^n.
+ const int32x4_t float_exponent_bias = vdupq_n_s32(127);
+ const int32x4_t two_n_exponent =
+ vaddq_s32(x_minus_half_floor, float_exponent_bias);
+ const float32x4_t two_n =
+ vreinterpretq_f32_s32(vshlq_n_s32(two_n_exponent, kFloatExponentShift));
+ // Compute y.
+ const float32x4_t y = vsubq_f32(x_max, vcvtq_f32_s32(x_minus_half_floor));
+
+ // Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
+ const float32x4_t C2 = vdupq_n_f32(3.3718944e-1f);
+ const float32x4_t C1 = vdupq_n_f32(6.5763628e-1f);
+ const float32x4_t C0 = vdupq_n_f32(1.0017247f);
+ float32x4_t exp2_y = C2;
+ exp2_y = vmlaq_f32(C1, y, exp2_y);
+ exp2_y = vmlaq_f32(C0, y, exp2_y);
+
+ // Combine parts.
+ a_exp_b = vmulq_f32(exp2_y, two_n);
+ }
+
+ return a_exp_b;
+}
+
+static void OverdriveAndSuppressNEON(AecCore* aec,
+ float hNl[PART_LEN1],
+ const float hNlFb,
+ float efw[2][PART_LEN1]) {
+ int i;
+ const float32x4_t vec_hNlFb = vmovq_n_f32(hNlFb);
+ const float32x4_t vec_one = vdupq_n_f32(1.0f);
+ const float32x4_t vec_minus_one = vdupq_n_f32(-1.0f);
+ const float32x4_t vec_overDriveSm = vmovq_n_f32(aec->overDriveSm);
+
+ // vectorized code (four at once)
+ for (i = 0; i + 3 < PART_LEN1; i += 4) {
+ // Weight subbands
+ float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
+ const float32x4_t vec_weightCurve = vld1q_f32(&WebRtcAec_weightCurve[i]);
+ const uint32x4_t bigger = vcgtq_f32(vec_hNl, vec_hNlFb);
+ const float32x4_t vec_weightCurve_hNlFb = vmulq_f32(vec_weightCurve,
+ vec_hNlFb);
+ const float32x4_t vec_one_weightCurve = vsubq_f32(vec_one, vec_weightCurve);
+ const float32x4_t vec_one_weightCurve_hNl = vmulq_f32(vec_one_weightCurve,
+ vec_hNl);
+ const uint32x4_t vec_if0 = vandq_u32(vmvnq_u32(bigger),
+ vreinterpretq_u32_f32(vec_hNl));
+ const float32x4_t vec_one_weightCurve_add =
+ vaddq_f32(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl);
+ const uint32x4_t vec_if1 =
+ vandq_u32(bigger, vreinterpretq_u32_f32(vec_one_weightCurve_add));
+
+ vec_hNl = vreinterpretq_f32_u32(vorrq_u32(vec_if0, vec_if1));
+
+ {
+ const float32x4_t vec_overDriveCurve =
+ vld1q_f32(&WebRtcAec_overDriveCurve[i]);
+ const float32x4_t vec_overDriveSm_overDriveCurve =
+ vmulq_f32(vec_overDriveSm, vec_overDriveCurve);
+ vec_hNl = vpowq_f32(vec_hNl, vec_overDriveSm_overDriveCurve);
+ vst1q_f32(&hNl[i], vec_hNl);
+ }
+
+ // Suppress error signal
+ {
+ float32x4_t vec_efw_re = vld1q_f32(&efw[0][i]);
+ float32x4_t vec_efw_im = vld1q_f32(&efw[1][i]);
+ vec_efw_re = vmulq_f32(vec_efw_re, vec_hNl);
+ vec_efw_im = vmulq_f32(vec_efw_im, vec_hNl);
+
+ // Ooura fft returns incorrect sign on imaginary component. It matters
+ // here because we are making an additive change with comfort noise.
+ vec_efw_im = vmulq_f32(vec_efw_im, vec_minus_one);
+ vst1q_f32(&efw[0][i], vec_efw_re);
+ vst1q_f32(&efw[1][i], vec_efw_im);
+ }
+ }
+
+ // scalar code for the remaining items.
+ for (; i < PART_LEN1; i++) {
+ // Weight subbands
+ if (hNl[i] > hNlFb) {
+ hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
+ (1 - WebRtcAec_weightCurve[i]) * hNl[i];
+ }
+
+ hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
+
+ // Suppress error signal
+ efw[0][i] *= hNl[i];
+ efw[1][i] *= hNl[i];
+
+ // Ooura fft returns incorrect sign on imaginary component. It matters
+ // here because we are making an additive change with comfort noise.
+ efw[1][i] *= -1;
+ }
+}
+
+static int PartitionDelay(const AecCore* aec) {
+ // Measures the energy in each filter partition and returns the partition with
+ // highest energy.
+ // TODO(bjornv): Spread computational cost by computing one partition per
+ // block?
+ float wfEnMax = 0;
+ int i;
+ int delay = 0;
+
+ for (i = 0; i < aec->num_partitions; i++) {
+ int j;
+ int pos = i * PART_LEN1;
+ float wfEn = 0;
+ float32x4_t vec_wfEn = vdupq_n_f32(0.0f);
+ // vectorized code (four at once)
+ for (j = 0; j + 3 < PART_LEN1; j += 4) {
+ const float32x4_t vec_wfBuf0 = vld1q_f32(&aec->wfBuf[0][pos + j]);
+ const float32x4_t vec_wfBuf1 = vld1q_f32(&aec->wfBuf[1][pos + j]);
+ vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf0, vec_wfBuf0);
+ vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf1, vec_wfBuf1);
+ }
+ {
+ float32x2_t vec_total;
+ // A B C D
+ vec_total = vpadd_f32(vget_low_f32(vec_wfEn), vget_high_f32(vec_wfEn));
+ // A+B C+D
+ vec_total = vpadd_f32(vec_total, vec_total);
+ // A+B+C+D A+B+C+D
+ wfEn = vget_lane_f32(vec_total, 0);
+ }
+
+ // scalar code for the remaining items.
+ for (; j < PART_LEN1; j++) {
+ wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
+ aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
+ }
+
+ if (wfEn > wfEnMax) {
+ wfEnMax = wfEn;
+ delay = i;
+ }
+ }
+ return delay;
+}
+
+// Updates the following smoothed Power Spectral Densities (PSD):
+// - sd : near-end
+// - se : residual echo
+// - sx : far-end
+// - sde : cross-PSD of near-end and residual echo
+// - sxd : cross-PSD of near-end and far-end
+//
+// In addition to updating the PSDs, also the filter diverge state is determined
+// upon actions are taken.
+static void SmoothedPSD(AecCore* aec,
+ float efw[2][PART_LEN1],
+ float dfw[2][PART_LEN1],
+ float xfw[2][PART_LEN1]) {
+ // Power estimate smoothing coefficients.
+ const float* ptrGCoh = aec->extended_filter_enabled
+ ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1]
+ : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1];
+ int i;
+ float sdSum = 0, seSum = 0;
+ const float32x4_t vec_15 = vdupq_n_f32(WebRtcAec_kMinFarendPSD);
+ float32x4_t vec_sdSum = vdupq_n_f32(0.0f);
+ float32x4_t vec_seSum = vdupq_n_f32(0.0f);
+
+ for (i = 0; i + 3 < PART_LEN1; i += 4) {
+ const float32x4_t vec_dfw0 = vld1q_f32(&dfw[0][i]);
+ const float32x4_t vec_dfw1 = vld1q_f32(&dfw[1][i]);
+ const float32x4_t vec_efw0 = vld1q_f32(&efw[0][i]);
+ const float32x4_t vec_efw1 = vld1q_f32(&efw[1][i]);
+ const float32x4_t vec_xfw0 = vld1q_f32(&xfw[0][i]);
+ const float32x4_t vec_xfw1 = vld1q_f32(&xfw[1][i]);
+ float32x4_t vec_sd = vmulq_n_f32(vld1q_f32(&aec->sd[i]), ptrGCoh[0]);
+ float32x4_t vec_se = vmulq_n_f32(vld1q_f32(&aec->se[i]), ptrGCoh[0]);
+ float32x4_t vec_sx = vmulq_n_f32(vld1q_f32(&aec->sx[i]), ptrGCoh[0]);
+ float32x4_t vec_dfw_sumsq = vmulq_f32(vec_dfw0, vec_dfw0);
+ float32x4_t vec_efw_sumsq = vmulq_f32(vec_efw0, vec_efw0);
+ float32x4_t vec_xfw_sumsq = vmulq_f32(vec_xfw0, vec_xfw0);
+
+ vec_dfw_sumsq = vmlaq_f32(vec_dfw_sumsq, vec_dfw1, vec_dfw1);
+ vec_efw_sumsq = vmlaq_f32(vec_efw_sumsq, vec_efw1, vec_efw1);
+ vec_xfw_sumsq = vmlaq_f32(vec_xfw_sumsq, vec_xfw1, vec_xfw1);
+ vec_xfw_sumsq = vmaxq_f32(vec_xfw_sumsq, vec_15);
+ vec_sd = vmlaq_n_f32(vec_sd, vec_dfw_sumsq, ptrGCoh[1]);
+ vec_se = vmlaq_n_f32(vec_se, vec_efw_sumsq, ptrGCoh[1]);
+ vec_sx = vmlaq_n_f32(vec_sx, vec_xfw_sumsq, ptrGCoh[1]);
+
+ vst1q_f32(&aec->sd[i], vec_sd);
+ vst1q_f32(&aec->se[i], vec_se);
+ vst1q_f32(&aec->sx[i], vec_sx);
+
+ {
+ float32x4x2_t vec_sde = vld2q_f32(&aec->sde[i][0]);
+ float32x4_t vec_dfwefw0011 = vmulq_f32(vec_dfw0, vec_efw0);
+ float32x4_t vec_dfwefw0110 = vmulq_f32(vec_dfw0, vec_efw1);
+ vec_sde.val[0] = vmulq_n_f32(vec_sde.val[0], ptrGCoh[0]);
+ vec_sde.val[1] = vmulq_n_f32(vec_sde.val[1], ptrGCoh[0]);
+ vec_dfwefw0011 = vmlaq_f32(vec_dfwefw0011, vec_dfw1, vec_efw1);
+ vec_dfwefw0110 = vmlsq_f32(vec_dfwefw0110, vec_dfw1, vec_efw0);
+ vec_sde.val[0] = vmlaq_n_f32(vec_sde.val[0], vec_dfwefw0011, ptrGCoh[1]);
+ vec_sde.val[1] = vmlaq_n_f32(vec_sde.val[1], vec_dfwefw0110, ptrGCoh[1]);
+ vst2q_f32(&aec->sde[i][0], vec_sde);
+ }
+
+ {
+ float32x4x2_t vec_sxd = vld2q_f32(&aec->sxd[i][0]);
+ float32x4_t vec_dfwxfw0011 = vmulq_f32(vec_dfw0, vec_xfw0);
+ float32x4_t vec_dfwxfw0110 = vmulq_f32(vec_dfw0, vec_xfw1);
+ vec_sxd.val[0] = vmulq_n_f32(vec_sxd.val[0], ptrGCoh[0]);
+ vec_sxd.val[1] = vmulq_n_f32(vec_sxd.val[1], ptrGCoh[0]);
+ vec_dfwxfw0011 = vmlaq_f32(vec_dfwxfw0011, vec_dfw1, vec_xfw1);
+ vec_dfwxfw0110 = vmlsq_f32(vec_dfwxfw0110, vec_dfw1, vec_xfw0);
+ vec_sxd.val[0] = vmlaq_n_f32(vec_sxd.val[0], vec_dfwxfw0011, ptrGCoh[1]);
+ vec_sxd.val[1] = vmlaq_n_f32(vec_sxd.val[1], vec_dfwxfw0110, ptrGCoh[1]);
+ vst2q_f32(&aec->sxd[i][0], vec_sxd);
+ }
+
+ vec_sdSum = vaddq_f32(vec_sdSum, vec_sd);
+ vec_seSum = vaddq_f32(vec_seSum, vec_se);
+ }
+ {
+ float32x2_t vec_sdSum_total;
+ float32x2_t vec_seSum_total;
+ // A B C D
+ vec_sdSum_total = vpadd_f32(vget_low_f32(vec_sdSum),
+ vget_high_f32(vec_sdSum));
+ vec_seSum_total = vpadd_f32(vget_low_f32(vec_seSum),
+ vget_high_f32(vec_seSum));
+ // A+B C+D
+ vec_sdSum_total = vpadd_f32(vec_sdSum_total, vec_sdSum_total);
+ vec_seSum_total = vpadd_f32(vec_seSum_total, vec_seSum_total);
+ // A+B+C+D A+B+C+D
+ sdSum = vget_lane_f32(vec_sdSum_total, 0);
+ seSum = vget_lane_f32(vec_seSum_total, 0);
+ }
+
+ // scalar code for the remaining items.
+ for (; i < PART_LEN1; i++) {
+ aec->sd[i] = ptrGCoh[0] * aec->sd[i] +
+ ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
+ aec->se[i] = ptrGCoh[0] * aec->se[i] +
+ ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
+ // We threshold here to protect against the ill-effects of a zero farend.
+ // The threshold is not arbitrarily chosen, but balances protection and
+ // adverse interaction with the algorithm's tuning.
+ // TODO(bjornv): investigate further why this is so sensitive.
+ aec->sx[i] =
+ ptrGCoh[0] * aec->sx[i] +
+ ptrGCoh[1] * WEBRTC_SPL_MAX(
+ xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
+ WebRtcAec_kMinFarendPSD);
+
+ aec->sde[i][0] =
+ ptrGCoh[0] * aec->sde[i][0] +
+ ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
+ aec->sde[i][1] =
+ ptrGCoh[0] * aec->sde[i][1] +
+ ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
+
+ aec->sxd[i][0] =
+ ptrGCoh[0] * aec->sxd[i][0] +
+ ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
+ aec->sxd[i][1] =
+ ptrGCoh[0] * aec->sxd[i][1] +
+ ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
+
+ sdSum += aec->sd[i];
+ seSum += aec->se[i];
+ }
+
+ // Divergent filter safeguard.
+ aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum;
+
+ if (aec->divergeState)
+ memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1);
+
+ // Reset if error is significantly larger than nearend (13 dB).
+ if (!aec->extended_filter_enabled && seSum > (19.95f * sdSum))
+ memset(aec->wfBuf, 0, sizeof(aec->wfBuf));
+}
+
+// Window time domain data to be used by the fft.
+__inline static void WindowData(float* x_windowed, const float* x) {
+ int i;
+ for (i = 0; i < PART_LEN; i += 4) {
+ const float32x4_t vec_Buf1 = vld1q_f32(&x[i]);
+ const float32x4_t vec_Buf2 = vld1q_f32(&x[PART_LEN + i]);
+ const float32x4_t vec_sqrtHanning = vld1q_f32(&WebRtcAec_sqrtHanning[i]);
+ // A B C D
+ float32x4_t vec_sqrtHanning_rev =
+ vld1q_f32(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
+ // B A D C
+ vec_sqrtHanning_rev = vrev64q_f32(vec_sqrtHanning_rev);
+ // D C B A
+ vec_sqrtHanning_rev = vcombine_f32(vget_high_f32(vec_sqrtHanning_rev),
+ vget_low_f32(vec_sqrtHanning_rev));
+ vst1q_f32(&x_windowed[i], vmulq_f32(vec_Buf1, vec_sqrtHanning));
+ vst1q_f32(&x_windowed[PART_LEN + i],
+ vmulq_f32(vec_Buf2, vec_sqrtHanning_rev));
+ }
+}
+
+// Puts fft output data into a complex valued array.
+__inline static void StoreAsComplex(const float* data,
+ float data_complex[2][PART_LEN1]) {
+ int i;
+ for (i = 0; i < PART_LEN; i += 4) {
+ const float32x4x2_t vec_data = vld2q_f32(&data[2 * i]);
+ vst1q_f32(&data_complex[0][i], vec_data.val[0]);
+ vst1q_f32(&data_complex[1][i], vec_data.val[1]);
+ }
+ // fix beginning/end values
+ data_complex[1][0] = 0;
+ data_complex[1][PART_LEN] = 0;
+ data_complex[0][0] = data[0];
+ data_complex[0][PART_LEN] = data[1];
+}
+
+static void SubbandCoherenceNEON(AecCore* aec,
+ float efw[2][PART_LEN1],
+ float xfw[2][PART_LEN1],
+ float* fft,
+ float* cohde,
+ float* cohxd) {
+ float dfw[2][PART_LEN1];
+ int i;
+
+ if (aec->delayEstCtr == 0)
+ aec->delayIdx = PartitionDelay(aec);
+
+ // Use delayed far.
+ memcpy(xfw,
+ aec->xfwBuf + aec->delayIdx * PART_LEN1,
+ sizeof(xfw[0][0]) * 2 * PART_LEN1);
+
+ // Windowed near fft
+ WindowData(fft, aec->dBuf);
+ aec_rdft_forward_128(fft);
+ StoreAsComplex(fft, dfw);
+
+ // Windowed error fft
+ WindowData(fft, aec->eBuf);
+ aec_rdft_forward_128(fft);
+ StoreAsComplex(fft, efw);
+
+ SmoothedPSD(aec, efw, dfw, xfw);
+
+ {
+ const float32x4_t vec_1eminus10 = vdupq_n_f32(1e-10f);
+
+ // Subband coherence
+ for (i = 0; i + 3 < PART_LEN1; i += 4) {
+ const float32x4_t vec_sd = vld1q_f32(&aec->sd[i]);
+ const float32x4_t vec_se = vld1q_f32(&aec->se[i]);
+ const float32x4_t vec_sx = vld1q_f32(&aec->sx[i]);
+ const float32x4_t vec_sdse = vmlaq_f32(vec_1eminus10, vec_sd, vec_se);
+ const float32x4_t vec_sdsx = vmlaq_f32(vec_1eminus10, vec_sd, vec_sx);
+ float32x4x2_t vec_sde = vld2q_f32(&aec->sde[i][0]);
+ float32x4x2_t vec_sxd = vld2q_f32(&aec->sxd[i][0]);
+ float32x4_t vec_cohde = vmulq_f32(vec_sde.val[0], vec_sde.val[0]);
+ float32x4_t vec_cohxd = vmulq_f32(vec_sxd.val[0], vec_sxd.val[0]);
+ vec_cohde = vmlaq_f32(vec_cohde, vec_sde.val[1], vec_sde.val[1]);
+ vec_cohde = vdivq_f32(vec_cohde, vec_sdse);
+ vec_cohxd = vmlaq_f32(vec_cohxd, vec_sxd.val[1], vec_sxd.val[1]);
+ vec_cohxd = vdivq_f32(vec_cohxd, vec_sdsx);
+
+ vst1q_f32(&cohde[i], vec_cohde);
+ vst1q_f32(&cohxd[i], vec_cohxd);
+ }
+ }
+ // scalar code for the remaining items.
+ for (; i < PART_LEN1; i++) {
+ cohde[i] =
+ (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
+ (aec->sd[i] * aec->se[i] + 1e-10f);
+ cohxd[i] =
+ (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
+ (aec->sx[i] * aec->sd[i] + 1e-10f);
+ }
+}
+
+void WebRtcAec_InitAec_neon(void) {
+ WebRtcAec_FilterFar = FilterFarNEON;
+ WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON;
+ WebRtcAec_FilterAdaptation = FilterAdaptationNEON;
+ WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressNEON;
+ WebRtcAec_SubbandCoherence = SubbandCoherenceNEON;
+}
+