summaryrefslogtreecommitdiff
path: root/third_party/webrtc/src/webrtc/modules/audio_processing/aec/echo_cancellation.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/webrtc/src/webrtc/modules/audio_processing/aec/echo_cancellation.c')
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aec/echo_cancellation.c923
1 files changed, 923 insertions, 0 deletions
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aec/echo_cancellation.c b/third_party/webrtc/src/webrtc/modules/audio_processing/aec/echo_cancellation.c
new file mode 100644
index 00000000..0f5cd31d
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aec/echo_cancellation.c
@@ -0,0 +1,923 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/*
+ * Contains the API functions for the AEC.
+ */
+#include "webrtc/modules/audio_processing/aec/include/echo_cancellation.h"
+
+#include <math.h>
+#ifdef WEBRTC_AEC_DEBUG_DUMP
+#include <stdio.h>
+#endif
+#include <stdlib.h>
+#include <string.h>
+
+#include "webrtc/common_audio/ring_buffer.h"
+#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
+#include "webrtc/modules/audio_processing/aec/aec_core.h"
+#include "webrtc/modules/audio_processing/aec/aec_resampler.h"
+#include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h"
+#include "webrtc/typedefs.h"
+
+// Measured delays [ms]
+// Device Chrome GTP
+// MacBook Air 10
+// MacBook Retina 10 100
+// MacPro 30?
+//
+// Win7 Desktop 70 80?
+// Win7 T430s 110
+// Win8 T420s 70
+//
+// Daisy 50
+// Pixel (w/ preproc?) 240
+// Pixel (w/o preproc?) 110 110
+
+// The extended filter mode gives us the flexibility to ignore the system's
+// reported delays. We do this for platforms which we believe provide results
+// which are incompatible with the AEC's expectations. Based on measurements
+// (some provided above) we set a conservative (i.e. lower than measured)
+// fixed delay.
+//
+// WEBRTC_UNTRUSTED_DELAY will only have an impact when |extended_filter_mode|
+// is enabled. See the note along with |DelayCorrection| in
+// echo_cancellation_impl.h for more details on the mode.
+//
+// Justification:
+// Chromium/Mac: Here, the true latency is so low (~10-20 ms), that it plays
+// havoc with the AEC's buffering. To avoid this, we set a fixed delay of 20 ms
+// and then compensate by rewinding by 10 ms (in wideband) through
+// kDelayDiffOffsetSamples. This trick does not seem to work for larger rewind
+// values, but fortunately this is sufficient.
+//
+// Chromium/Linux(ChromeOS): The values we get on this platform don't correspond
+// well to reality. The variance doesn't match the AEC's buffer changes, and the
+// bulk values tend to be too low. However, the range across different hardware
+// appears to be too large to choose a single value.
+//
+// GTP/Linux(ChromeOS): TBD, but for the moment we will trust the values.
+#if defined(WEBRTC_CHROMIUM_BUILD) && defined(WEBRTC_MAC)
+#define WEBRTC_UNTRUSTED_DELAY
+#endif
+
+#if defined(WEBRTC_UNTRUSTED_DELAY) && defined(WEBRTC_MAC)
+static const int kDelayDiffOffsetSamples = -160;
+#else
+// Not enabled for now.
+static const int kDelayDiffOffsetSamples = 0;
+#endif
+
+#if defined(WEBRTC_MAC)
+static const int kFixedDelayMs = 20;
+#else
+static const int kFixedDelayMs = 50;
+#endif
+#if !defined(WEBRTC_UNTRUSTED_DELAY)
+static const int kMinTrustedDelayMs = 20;
+#endif
+static const int kMaxTrustedDelayMs = 500;
+
+// Maximum length of resampled signal. Must be an integer multiple of frames
+// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
+// The factor of 2 handles wb, and the + 1 is as a safety margin
+// TODO(bjornv): Replace with kResamplerBufferSize
+#define MAX_RESAMP_LEN (5 * FRAME_LEN)
+
+static const int kMaxBufSizeStart = 62; // In partitions
+static const int sampMsNb = 8; // samples per ms in nb
+static const int initCheck = 42;
+
+#ifdef WEBRTC_AEC_DEBUG_DUMP
+int webrtc_aec_instance_count = 0;
+#endif
+
+// Estimates delay to set the position of the far-end buffer read pointer
+// (controlled by knownDelay)
+static void EstBufDelayNormal(Aec* aecInst);
+static void EstBufDelayExtended(Aec* aecInst);
+static int ProcessNormal(Aec* self,
+ const float* const* near,
+ size_t num_bands,
+ float* const* out,
+ size_t num_samples,
+ int16_t reported_delay_ms,
+ int32_t skew);
+static void ProcessExtended(Aec* self,
+ const float* const* near,
+ size_t num_bands,
+ float* const* out,
+ size_t num_samples,
+ int16_t reported_delay_ms,
+ int32_t skew);
+
+void* WebRtcAec_Create() {
+ Aec* aecpc = malloc(sizeof(Aec));
+
+ if (!aecpc) {
+ return NULL;
+ }
+
+ aecpc->aec = WebRtcAec_CreateAec();
+ if (!aecpc->aec) {
+ WebRtcAec_Free(aecpc);
+ return NULL;
+ }
+ aecpc->resampler = WebRtcAec_CreateResampler();
+ if (!aecpc->resampler) {
+ WebRtcAec_Free(aecpc);
+ return NULL;
+ }
+ // Create far-end pre-buffer. The buffer size has to be large enough for
+ // largest possible drift compensation (kResamplerBufferSize) + "almost" an
+ // FFT buffer (PART_LEN2 - 1).
+ aecpc->far_pre_buf =
+ WebRtc_CreateBuffer(PART_LEN2 + kResamplerBufferSize, sizeof(float));
+ if (!aecpc->far_pre_buf) {
+ WebRtcAec_Free(aecpc);
+ return NULL;
+ }
+
+ aecpc->initFlag = 0;
+ aecpc->lastError = 0;
+
+#ifdef WEBRTC_AEC_DEBUG_DUMP
+ {
+ char filename[64];
+ sprintf(filename, "aec_buf%d.dat", webrtc_aec_instance_count);
+ aecpc->bufFile = fopen(filename, "wb");
+ sprintf(filename, "aec_skew%d.dat", webrtc_aec_instance_count);
+ aecpc->skewFile = fopen(filename, "wb");
+ sprintf(filename, "aec_delay%d.dat", webrtc_aec_instance_count);
+ aecpc->delayFile = fopen(filename, "wb");
+ webrtc_aec_instance_count++;
+ }
+#endif
+
+ return aecpc;
+}
+
+void WebRtcAec_Free(void* aecInst) {
+ Aec* aecpc = aecInst;
+
+ if (aecpc == NULL) {
+ return;
+ }
+
+ WebRtc_FreeBuffer(aecpc->far_pre_buf);
+
+#ifdef WEBRTC_AEC_DEBUG_DUMP
+ fclose(aecpc->bufFile);
+ fclose(aecpc->skewFile);
+ fclose(aecpc->delayFile);
+#endif
+
+ WebRtcAec_FreeAec(aecpc->aec);
+ WebRtcAec_FreeResampler(aecpc->resampler);
+ free(aecpc);
+}
+
+int32_t WebRtcAec_Init(void* aecInst, int32_t sampFreq, int32_t scSampFreq) {
+ Aec* aecpc = aecInst;
+ AecConfig aecConfig;
+
+ if (sampFreq != 8000 &&
+ sampFreq != 16000 &&
+ sampFreq != 32000 &&
+ sampFreq != 48000) {
+ aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+ aecpc->sampFreq = sampFreq;
+
+ if (scSampFreq < 1 || scSampFreq > 96000) {
+ aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+ aecpc->scSampFreq = scSampFreq;
+
+ // Initialize echo canceller core
+ if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) {
+ aecpc->lastError = AEC_UNSPECIFIED_ERROR;
+ return -1;
+ }
+
+ if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) {
+ aecpc->lastError = AEC_UNSPECIFIED_ERROR;
+ return -1;
+ }
+
+ WebRtc_InitBuffer(aecpc->far_pre_buf);
+ WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); // Start overlap.
+
+ aecpc->initFlag = initCheck; // indicates that initialization has been done
+
+ if (aecpc->sampFreq == 32000 || aecpc->sampFreq == 48000) {
+ aecpc->splitSampFreq = 16000;
+ } else {
+ aecpc->splitSampFreq = sampFreq;
+ }
+
+ aecpc->delayCtr = 0;
+ aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq;
+ // Sampling frequency multiplier (SWB is processed as 160 frame size).
+ aecpc->rate_factor = aecpc->splitSampFreq / 8000;
+
+ aecpc->sum = 0;
+ aecpc->counter = 0;
+ aecpc->checkBuffSize = 1;
+ aecpc->firstVal = 0;
+
+ // We skip the startup_phase completely (setting to 0) if DA-AEC is enabled,
+ // but not extended_filter mode.
+ aecpc->startup_phase = WebRtcAec_extended_filter_enabled(aecpc->aec) ||
+ !WebRtcAec_delay_agnostic_enabled(aecpc->aec);
+ aecpc->bufSizeStart = 0;
+ aecpc->checkBufSizeCtr = 0;
+ aecpc->msInSndCardBuf = 0;
+ aecpc->filtDelay = -1; // -1 indicates an initialized state.
+ aecpc->timeForDelayChange = 0;
+ aecpc->knownDelay = 0;
+ aecpc->lastDelayDiff = 0;
+
+ aecpc->skewFrCtr = 0;
+ aecpc->resample = kAecFalse;
+ aecpc->highSkewCtr = 0;
+ aecpc->skew = 0;
+
+ aecpc->farend_started = 0;
+
+ // Default settings.
+ aecConfig.nlpMode = kAecNlpModerate;
+ aecConfig.skewMode = kAecFalse;
+ aecConfig.metricsMode = kAecFalse;
+ aecConfig.delay_logging = kAecFalse;
+
+ if (WebRtcAec_set_config(aecpc, aecConfig) == -1) {
+ aecpc->lastError = AEC_UNSPECIFIED_ERROR;
+ return -1;
+ }
+
+ return 0;
+}
+
+// only buffer L band for farend
+int32_t WebRtcAec_BufferFarend(void* aecInst,
+ const float* farend,
+ size_t nrOfSamples) {
+ Aec* aecpc = aecInst;
+ size_t newNrOfSamples = nrOfSamples;
+ float new_farend[MAX_RESAMP_LEN];
+ const float* farend_ptr = farend;
+
+ if (farend == NULL) {
+ aecpc->lastError = AEC_NULL_POINTER_ERROR;
+ return -1;
+ }
+
+ if (aecpc->initFlag != initCheck) {
+ aecpc->lastError = AEC_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ // number of samples == 160 for SWB input
+ if (nrOfSamples != 80 && nrOfSamples != 160) {
+ aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+
+ if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
+ // Resample and get a new number of samples
+ WebRtcAec_ResampleLinear(aecpc->resampler,
+ farend,
+ nrOfSamples,
+ aecpc->skew,
+ new_farend,
+ &newNrOfSamples);
+ farend_ptr = new_farend;
+ }
+
+ aecpc->farend_started = 1;
+ WebRtcAec_SetSystemDelay(
+ aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + (int)newNrOfSamples);
+
+ // Write the time-domain data to |far_pre_buf|.
+ WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples);
+
+ // Transform to frequency domain if we have enough data.
+ while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
+ // We have enough data to pass to the FFT, hence read PART_LEN2 samples.
+ {
+ float* ptmp = NULL;
+ float tmp[PART_LEN2];
+ WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**)&ptmp, tmp, PART_LEN2);
+ WebRtcAec_BufferFarendPartition(aecpc->aec, ptmp);
+#ifdef WEBRTC_AEC_DEBUG_DUMP
+ WebRtc_WriteBuffer(
+ WebRtcAec_far_time_buf(aecpc->aec), &ptmp[PART_LEN], 1);
+#endif
+ }
+
+ // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
+ WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
+ }
+
+ return 0;
+}
+
+int32_t WebRtcAec_Process(void* aecInst,
+ const float* const* nearend,
+ size_t num_bands,
+ float* const* out,
+ size_t nrOfSamples,
+ int16_t msInSndCardBuf,
+ int32_t skew) {
+ Aec* aecpc = aecInst;
+ int32_t retVal = 0;
+
+ if (out == NULL) {
+ aecpc->lastError = AEC_NULL_POINTER_ERROR;
+ return -1;
+ }
+
+ if (aecpc->initFlag != initCheck) {
+ aecpc->lastError = AEC_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ // number of samples == 160 for SWB input
+ if (nrOfSamples != 80 && nrOfSamples != 160) {
+ aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+
+ if (msInSndCardBuf < 0) {
+ msInSndCardBuf = 0;
+ aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
+ retVal = -1;
+ } else if (msInSndCardBuf > kMaxTrustedDelayMs) {
+ // The clamping is now done in ProcessExtended/Normal().
+ aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
+ retVal = -1;
+ }
+
+ // This returns the value of aec->extended_filter_enabled.
+ if (WebRtcAec_extended_filter_enabled(aecpc->aec)) {
+ ProcessExtended(aecpc,
+ nearend,
+ num_bands,
+ out,
+ nrOfSamples,
+ msInSndCardBuf,
+ skew);
+ } else {
+ if (ProcessNormal(aecpc,
+ nearend,
+ num_bands,
+ out,
+ nrOfSamples,
+ msInSndCardBuf,
+ skew) != 0) {
+ retVal = -1;
+ }
+ }
+
+#ifdef WEBRTC_AEC_DEBUG_DUMP
+ {
+ int16_t far_buf_size_ms = (int16_t)(WebRtcAec_system_delay(aecpc->aec) /
+ (sampMsNb * aecpc->rate_factor));
+ (void)fwrite(&far_buf_size_ms, 2, 1, aecpc->bufFile);
+ (void)fwrite(
+ &aecpc->knownDelay, sizeof(aecpc->knownDelay), 1, aecpc->delayFile);
+ }
+#endif
+
+ return retVal;
+}
+
+int WebRtcAec_set_config(void* handle, AecConfig config) {
+ Aec* self = (Aec*)handle;
+ if (self->initFlag != initCheck) {
+ self->lastError = AEC_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) {
+ self->lastError = AEC_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+ self->skewMode = config.skewMode;
+
+ if (config.nlpMode != kAecNlpConservative &&
+ config.nlpMode != kAecNlpModerate &&
+ config.nlpMode != kAecNlpAggressive) {
+ self->lastError = AEC_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+
+ if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) {
+ self->lastError = AEC_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+
+ if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) {
+ self->lastError = AEC_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+
+ WebRtcAec_SetConfigCore(
+ self->aec, config.nlpMode, config.metricsMode, config.delay_logging);
+ return 0;
+}
+
+int WebRtcAec_get_echo_status(void* handle, int* status) {
+ Aec* self = (Aec*)handle;
+ if (status == NULL) {
+ self->lastError = AEC_NULL_POINTER_ERROR;
+ return -1;
+ }
+ if (self->initFlag != initCheck) {
+ self->lastError = AEC_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ *status = WebRtcAec_echo_state(self->aec);
+
+ return 0;
+}
+
+int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics) {
+ const float kUpWeight = 0.7f;
+ float dtmp;
+ int stmp;
+ Aec* self = (Aec*)handle;
+ Stats erl;
+ Stats erle;
+ Stats a_nlp;
+
+ if (handle == NULL) {
+ return -1;
+ }
+ if (metrics == NULL) {
+ self->lastError = AEC_NULL_POINTER_ERROR;
+ return -1;
+ }
+ if (self->initFlag != initCheck) {
+ self->lastError = AEC_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ WebRtcAec_GetEchoStats(self->aec, &erl, &erle, &a_nlp);
+
+ // ERL
+ metrics->erl.instant = (int)erl.instant;
+
+ if ((erl.himean > kOffsetLevel) && (erl.average > kOffsetLevel)) {
+ // Use a mix between regular average and upper part average.
+ dtmp = kUpWeight * erl.himean + (1 - kUpWeight) * erl.average;
+ metrics->erl.average = (int)dtmp;
+ } else {
+ metrics->erl.average = kOffsetLevel;
+ }
+
+ metrics->erl.max = (int)erl.max;
+
+ if (erl.min < (kOffsetLevel * (-1))) {
+ metrics->erl.min = (int)erl.min;
+ } else {
+ metrics->erl.min = kOffsetLevel;
+ }
+
+ // ERLE
+ metrics->erle.instant = (int)erle.instant;
+
+ if ((erle.himean > kOffsetLevel) && (erle.average > kOffsetLevel)) {
+ // Use a mix between regular average and upper part average.
+ dtmp = kUpWeight * erle.himean + (1 - kUpWeight) * erle.average;
+ metrics->erle.average = (int)dtmp;
+ } else {
+ metrics->erle.average = kOffsetLevel;
+ }
+
+ metrics->erle.max = (int)erle.max;
+
+ if (erle.min < (kOffsetLevel * (-1))) {
+ metrics->erle.min = (int)erle.min;
+ } else {
+ metrics->erle.min = kOffsetLevel;
+ }
+
+ // RERL
+ if ((metrics->erl.average > kOffsetLevel) &&
+ (metrics->erle.average > kOffsetLevel)) {
+ stmp = metrics->erl.average + metrics->erle.average;
+ } else {
+ stmp = kOffsetLevel;
+ }
+ metrics->rerl.average = stmp;
+
+ // No other statistics needed, but returned for completeness.
+ metrics->rerl.instant = stmp;
+ metrics->rerl.max = stmp;
+ metrics->rerl.min = stmp;
+
+ // A_NLP
+ metrics->aNlp.instant = (int)a_nlp.instant;
+
+ if ((a_nlp.himean > kOffsetLevel) && (a_nlp.average > kOffsetLevel)) {
+ // Use a mix between regular average and upper part average.
+ dtmp = kUpWeight * a_nlp.himean + (1 - kUpWeight) * a_nlp.average;
+ metrics->aNlp.average = (int)dtmp;
+ } else {
+ metrics->aNlp.average = kOffsetLevel;
+ }
+
+ metrics->aNlp.max = (int)a_nlp.max;
+
+ if (a_nlp.min < (kOffsetLevel * (-1))) {
+ metrics->aNlp.min = (int)a_nlp.min;
+ } else {
+ metrics->aNlp.min = kOffsetLevel;
+ }
+
+ return 0;
+}
+
+int WebRtcAec_GetDelayMetrics(void* handle,
+ int* median,
+ int* std,
+ float* fraction_poor_delays) {
+ Aec* self = handle;
+ if (median == NULL) {
+ self->lastError = AEC_NULL_POINTER_ERROR;
+ return -1;
+ }
+ if (std == NULL) {
+ self->lastError = AEC_NULL_POINTER_ERROR;
+ return -1;
+ }
+ if (self->initFlag != initCheck) {
+ self->lastError = AEC_UNINITIALIZED_ERROR;
+ return -1;
+ }
+ if (WebRtcAec_GetDelayMetricsCore(self->aec, median, std,
+ fraction_poor_delays) ==
+ -1) {
+ // Logging disabled.
+ self->lastError = AEC_UNSUPPORTED_FUNCTION_ERROR;
+ return -1;
+ }
+
+ return 0;
+}
+
+int32_t WebRtcAec_get_error_code(void* aecInst) {
+ Aec* aecpc = aecInst;
+ return aecpc->lastError;
+}
+
+AecCore* WebRtcAec_aec_core(void* handle) {
+ if (!handle) {
+ return NULL;
+ }
+ return ((Aec*)handle)->aec;
+}
+
+static int ProcessNormal(Aec* aecpc,
+ const float* const* nearend,
+ size_t num_bands,
+ float* const* out,
+ size_t nrOfSamples,
+ int16_t msInSndCardBuf,
+ int32_t skew) {
+ int retVal = 0;
+ size_t i;
+ size_t nBlocks10ms;
+ // Limit resampling to doubling/halving of signal
+ const float minSkewEst = -0.5f;
+ const float maxSkewEst = 1.0f;
+
+ msInSndCardBuf =
+ msInSndCardBuf > kMaxTrustedDelayMs ? kMaxTrustedDelayMs : msInSndCardBuf;
+ // TODO(andrew): we need to investigate if this +10 is really wanted.
+ msInSndCardBuf += 10;
+ aecpc->msInSndCardBuf = msInSndCardBuf;
+
+ if (aecpc->skewMode == kAecTrue) {
+ if (aecpc->skewFrCtr < 25) {
+ aecpc->skewFrCtr++;
+ } else {
+ retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew);
+ if (retVal == -1) {
+ aecpc->skew = 0;
+ aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
+ }
+
+ aecpc->skew /= aecpc->sampFactor * nrOfSamples;
+
+ if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) {
+ aecpc->resample = kAecFalse;
+ } else {
+ aecpc->resample = kAecTrue;
+ }
+
+ if (aecpc->skew < minSkewEst) {
+ aecpc->skew = minSkewEst;
+ } else if (aecpc->skew > maxSkewEst) {
+ aecpc->skew = maxSkewEst;
+ }
+
+#ifdef WEBRTC_AEC_DEBUG_DUMP
+ (void)fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile);
+#endif
+ }
+ }
+
+ nBlocks10ms = nrOfSamples / (FRAME_LEN * aecpc->rate_factor);
+
+ if (aecpc->startup_phase) {
+ for (i = 0; i < num_bands; ++i) {
+ // Only needed if they don't already point to the same place.
+ if (nearend[i] != out[i]) {
+ memcpy(out[i], nearend[i], sizeof(nearend[i][0]) * nrOfSamples);
+ }
+ }
+
+ // The AEC is in the start up mode
+ // AEC is disabled until the system delay is OK
+
+ // Mechanism to ensure that the system delay is reasonably stable.
+ if (aecpc->checkBuffSize) {
+ aecpc->checkBufSizeCtr++;
+ // Before we fill up the far-end buffer we require the system delay
+ // to be stable (+/-8 ms) compared to the first value. This
+ // comparison is made during the following 6 consecutive 10 ms
+ // blocks. If it seems to be stable then we start to fill up the
+ // far-end buffer.
+ if (aecpc->counter == 0) {
+ aecpc->firstVal = aecpc->msInSndCardBuf;
+ aecpc->sum = 0;
+ }
+
+ if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) <
+ WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) {
+ aecpc->sum += aecpc->msInSndCardBuf;
+ aecpc->counter++;
+ } else {
+ aecpc->counter = 0;
+ }
+
+ if (aecpc->counter * nBlocks10ms >= 6) {
+ // The far-end buffer size is determined in partitions of
+ // PART_LEN samples. Use 75% of the average value of the system
+ // delay as buffer size to start with.
+ aecpc->bufSizeStart =
+ WEBRTC_SPL_MIN((3 * aecpc->sum * aecpc->rate_factor * 8) /
+ (4 * aecpc->counter * PART_LEN),
+ kMaxBufSizeStart);
+ // Buffer size has now been determined.
+ aecpc->checkBuffSize = 0;
+ }
+
+ if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) {
+ // For really bad systems, don't disable the echo canceller for
+ // more than 0.5 sec.
+ aecpc->bufSizeStart = WEBRTC_SPL_MIN(
+ (aecpc->msInSndCardBuf * aecpc->rate_factor * 3) / 40,
+ kMaxBufSizeStart);
+ aecpc->checkBuffSize = 0;
+ }
+ }
+
+ // If |checkBuffSize| changed in the if-statement above.
+ if (!aecpc->checkBuffSize) {
+ // The system delay is now reasonably stable (or has been unstable
+ // for too long). When the far-end buffer is filled with
+ // approximately the same amount of data as reported by the system
+ // we end the startup phase.
+ int overhead_elements =
+ WebRtcAec_system_delay(aecpc->aec) / PART_LEN - aecpc->bufSizeStart;
+ if (overhead_elements == 0) {
+ // Enable the AEC
+ aecpc->startup_phase = 0;
+ } else if (overhead_elements > 0) {
+ // TODO(bjornv): Do we need a check on how much we actually
+ // moved the read pointer? It should always be possible to move
+ // the pointer |overhead_elements| since we have only added data
+ // to the buffer and no delay compensation nor AEC processing
+ // has been done.
+ WebRtcAec_MoveFarReadPtr(aecpc->aec, overhead_elements);
+
+ // Enable the AEC
+ aecpc->startup_phase = 0;
+ }
+ }
+ } else {
+ // AEC is enabled.
+ EstBufDelayNormal(aecpc);
+
+ // Call the AEC.
+ // TODO(bjornv): Re-structure such that we don't have to pass
+ // |aecpc->knownDelay| as input. Change name to something like
+ // |system_buffer_diff|.
+ WebRtcAec_ProcessFrames(aecpc->aec,
+ nearend,
+ num_bands,
+ nrOfSamples,
+ aecpc->knownDelay,
+ out);
+ }
+
+ return retVal;
+}
+
+static void ProcessExtended(Aec* self,
+ const float* const* near,
+ size_t num_bands,
+ float* const* out,
+ size_t num_samples,
+ int16_t reported_delay_ms,
+ int32_t skew) {
+ size_t i;
+ const int delay_diff_offset = kDelayDiffOffsetSamples;
+#if defined(WEBRTC_UNTRUSTED_DELAY)
+ reported_delay_ms = kFixedDelayMs;
+#else
+ // This is the usual mode where we trust the reported system delay values.
+ // Due to the longer filter, we no longer add 10 ms to the reported delay
+ // to reduce chance of non-causality. Instead we apply a minimum here to avoid
+ // issues with the read pointer jumping around needlessly.
+ reported_delay_ms = reported_delay_ms < kMinTrustedDelayMs
+ ? kMinTrustedDelayMs
+ : reported_delay_ms;
+ // If the reported delay appears to be bogus, we attempt to recover by using
+ // the measured fixed delay values. We use >= here because higher layers
+ // may already clamp to this maximum value, and we would otherwise not
+ // detect it here.
+ reported_delay_ms = reported_delay_ms >= kMaxTrustedDelayMs
+ ? kFixedDelayMs
+ : reported_delay_ms;
+#endif
+ self->msInSndCardBuf = reported_delay_ms;
+
+ if (!self->farend_started) {
+ for (i = 0; i < num_bands; ++i) {
+ // Only needed if they don't already point to the same place.
+ if (near[i] != out[i]) {
+ memcpy(out[i], near[i], sizeof(near[i][0]) * num_samples);
+ }
+ }
+ return;
+ }
+ if (self->startup_phase) {
+ // In the extended mode, there isn't a startup "phase", just a special
+ // action on the first frame. In the trusted delay case, we'll take the
+ // current reported delay, unless it's less then our conservative
+ // measurement.
+ int startup_size_ms =
+ reported_delay_ms < kFixedDelayMs ? kFixedDelayMs : reported_delay_ms;
+#if defined(WEBRTC_ANDROID)
+ int target_delay = startup_size_ms * self->rate_factor * 8;
+#else
+ // To avoid putting the AEC in a non-causal state we're being slightly
+ // conservative and scale by 2. On Android we use a fixed delay and
+ // therefore there is no need to scale the target_delay.
+ int target_delay = startup_size_ms * self->rate_factor * 8 / 2;
+#endif
+ int overhead_elements =
+ (WebRtcAec_system_delay(self->aec) - target_delay) / PART_LEN;
+ WebRtcAec_MoveFarReadPtr(self->aec, overhead_elements);
+ self->startup_phase = 0;
+ }
+
+ EstBufDelayExtended(self);
+
+ {
+ // |delay_diff_offset| gives us the option to manually rewind the delay on
+ // very low delay platforms which can't be expressed purely through
+ // |reported_delay_ms|.
+ const int adjusted_known_delay =
+ WEBRTC_SPL_MAX(0, self->knownDelay + delay_diff_offset);
+
+ WebRtcAec_ProcessFrames(self->aec,
+ near,
+ num_bands,
+ num_samples,
+ adjusted_known_delay,
+ out);
+ }
+}
+
+static void EstBufDelayNormal(Aec* aecpc) {
+ int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->rate_factor;
+ int current_delay = nSampSndCard - WebRtcAec_system_delay(aecpc->aec);
+ int delay_difference = 0;
+
+ // Before we proceed with the delay estimate filtering we:
+ // 1) Compensate for the frame that will be read.
+ // 2) Compensate for drift resampling.
+ // 3) Compensate for non-causality if needed, since the estimated delay can't
+ // be negative.
+
+ // 1) Compensating for the frame(s) that will be read/processed.
+ current_delay += FRAME_LEN * aecpc->rate_factor;
+
+ // 2) Account for resampling frame delay.
+ if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
+ current_delay -= kResamplingDelay;
+ }
+
+ // 3) Compensate for non-causality, if needed, by flushing one block.
+ if (current_delay < PART_LEN) {
+ current_delay += WebRtcAec_MoveFarReadPtr(aecpc->aec, 1) * PART_LEN;
+ }
+
+ // We use -1 to signal an initialized state in the "extended" implementation;
+ // compensate for that.
+ aecpc->filtDelay = aecpc->filtDelay < 0 ? 0 : aecpc->filtDelay;
+ aecpc->filtDelay =
+ WEBRTC_SPL_MAX(0, (short)(0.8 * aecpc->filtDelay + 0.2 * current_delay));
+
+ delay_difference = aecpc->filtDelay - aecpc->knownDelay;
+ if (delay_difference > 224) {
+ if (aecpc->lastDelayDiff < 96) {
+ aecpc->timeForDelayChange = 0;
+ } else {
+ aecpc->timeForDelayChange++;
+ }
+ } else if (delay_difference < 96 && aecpc->knownDelay > 0) {
+ if (aecpc->lastDelayDiff > 224) {
+ aecpc->timeForDelayChange = 0;
+ } else {
+ aecpc->timeForDelayChange++;
+ }
+ } else {
+ aecpc->timeForDelayChange = 0;
+ }
+ aecpc->lastDelayDiff = delay_difference;
+
+ if (aecpc->timeForDelayChange > 25) {
+ aecpc->knownDelay = WEBRTC_SPL_MAX((int)aecpc->filtDelay - 160, 0);
+ }
+}
+
+static void EstBufDelayExtended(Aec* self) {
+ int reported_delay = self->msInSndCardBuf * sampMsNb * self->rate_factor;
+ int current_delay = reported_delay - WebRtcAec_system_delay(self->aec);
+ int delay_difference = 0;
+
+ // Before we proceed with the delay estimate filtering we:
+ // 1) Compensate for the frame that will be read.
+ // 2) Compensate for drift resampling.
+ // 3) Compensate for non-causality if needed, since the estimated delay can't
+ // be negative.
+
+ // 1) Compensating for the frame(s) that will be read/processed.
+ current_delay += FRAME_LEN * self->rate_factor;
+
+ // 2) Account for resampling frame delay.
+ if (self->skewMode == kAecTrue && self->resample == kAecTrue) {
+ current_delay -= kResamplingDelay;
+ }
+
+ // 3) Compensate for non-causality, if needed, by flushing two blocks.
+ if (current_delay < PART_LEN) {
+ current_delay += WebRtcAec_MoveFarReadPtr(self->aec, 2) * PART_LEN;
+ }
+
+ if (self->filtDelay == -1) {
+ self->filtDelay = WEBRTC_SPL_MAX(0, 0.5 * current_delay);
+ } else {
+ self->filtDelay = WEBRTC_SPL_MAX(
+ 0, (short)(0.95 * self->filtDelay + 0.05 * current_delay));
+ }
+
+ delay_difference = self->filtDelay - self->knownDelay;
+ if (delay_difference > 384) {
+ if (self->lastDelayDiff < 128) {
+ self->timeForDelayChange = 0;
+ } else {
+ self->timeForDelayChange++;
+ }
+ } else if (delay_difference < 128 && self->knownDelay > 0) {
+ if (self->lastDelayDiff > 384) {
+ self->timeForDelayChange = 0;
+ } else {
+ self->timeForDelayChange++;
+ }
+ } else {
+ self->timeForDelayChange = 0;
+ }
+ self->lastDelayDiff = delay_difference;
+
+ if (self->timeForDelayChange > 25) {
+ self->knownDelay = WEBRTC_SPL_MAX((int)self->filtDelay - 256, 0);
+ }
+}