summaryrefslogtreecommitdiff
path: root/third_party/webrtc/src/webrtc/modules/audio_processing/aec/system_delay_unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/webrtc/src/webrtc/modules/audio_processing/aec/system_delay_unittest.cc')
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aec/system_delay_unittest.cc602
1 files changed, 602 insertions, 0 deletions
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aec/system_delay_unittest.cc b/third_party/webrtc/src/webrtc/modules/audio_processing/aec/system_delay_unittest.cc
new file mode 100644
index 00000000..07e3cf8a
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aec/system_delay_unittest.cc
@@ -0,0 +1,602 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "testing/gtest/include/gtest/gtest.h"
+extern "C" {
+#include "webrtc/modules/audio_processing/aec/aec_core.h"
+}
+#include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h"
+#include "webrtc/modules/audio_processing/aec/include/echo_cancellation.h"
+#include "webrtc/test/testsupport/gtest_disable.h"
+#include "webrtc/typedefs.h"
+
+namespace {
+
+class SystemDelayTest : public ::testing::Test {
+ protected:
+ SystemDelayTest();
+ virtual void SetUp();
+ virtual void TearDown();
+
+ // Initialization of AEC handle with respect to |sample_rate_hz|. Since the
+ // device sample rate is unimportant we set that value to 48000 Hz.
+ void Init(int sample_rate_hz);
+
+ // Makes one render call and one capture call in that specific order.
+ void RenderAndCapture(int device_buffer_ms);
+
+ // Fills up the far-end buffer with respect to the default device buffer size.
+ size_t BufferFillUp();
+
+ // Runs and verifies the behavior in a stable startup procedure.
+ void RunStableStartup();
+
+ // Maps buffer size in ms into samples, taking the unprocessed frame into
+ // account.
+ int MapBufferSizeToSamples(int size_in_ms, bool extended_filter);
+
+ void* handle_;
+ Aec* self_;
+ size_t samples_per_frame_;
+ // Dummy input/output speech data.
+ static const int kSamplesPerChunk = 160;
+ float far_[kSamplesPerChunk];
+ float near_[kSamplesPerChunk];
+ float out_[kSamplesPerChunk];
+ const float* near_ptr_;
+ float* out_ptr_;
+};
+
+SystemDelayTest::SystemDelayTest()
+ : handle_(NULL), self_(NULL), samples_per_frame_(0) {
+ // Dummy input data are set with more or less arbitrary non-zero values.
+ for (int i = 0; i < kSamplesPerChunk; i++) {
+ far_[i] = 257.0;
+ near_[i] = 514.0;
+ }
+ memset(out_, 0, sizeof(out_));
+ near_ptr_ = near_;
+ out_ptr_ = out_;
+}
+
+void SystemDelayTest::SetUp() {
+ handle_ = WebRtcAec_Create();
+ ASSERT_TRUE(handle_);
+ self_ = reinterpret_cast<Aec*>(handle_);
+}
+
+void SystemDelayTest::TearDown() {
+ // Free AEC
+ WebRtcAec_Free(handle_);
+ handle_ = NULL;
+}
+
+// In SWB mode nothing is added to the buffer handling with respect to
+// functionality compared to WB. We therefore only verify behavior in NB and WB.
+static const int kSampleRateHz[] = {8000, 16000};
+static const size_t kNumSampleRates =
+ sizeof(kSampleRateHz) / sizeof(*kSampleRateHz);
+
+// Default audio device buffer size used.
+static const int kDeviceBufMs = 100;
+
+// Requirement for a stable device convergence time in ms. Should converge in
+// less than |kStableConvergenceMs|.
+static const int kStableConvergenceMs = 100;
+
+// Maximum convergence time in ms. This means that we should leave the startup
+// phase after |kMaxConvergenceMs| independent of device buffer stability
+// conditions.
+static const int kMaxConvergenceMs = 500;
+
+void SystemDelayTest::Init(int sample_rate_hz) {
+ // Initialize AEC
+ EXPECT_EQ(0, WebRtcAec_Init(handle_, sample_rate_hz, 48000));
+ EXPECT_EQ(0, WebRtcAec_system_delay(self_->aec));
+
+ // One frame equals 10 ms of data.
+ samples_per_frame_ = static_cast<size_t>(sample_rate_hz / 100);
+}
+
+void SystemDelayTest::RenderAndCapture(int device_buffer_ms) {
+ EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
+ EXPECT_EQ(0,
+ WebRtcAec_Process(handle_,
+ &near_ptr_,
+ 1,
+ &out_ptr_,
+ samples_per_frame_,
+ device_buffer_ms,
+ 0));
+}
+
+size_t SystemDelayTest::BufferFillUp() {
+ // To make sure we have a full buffer when we verify stability we first fill
+ // up the far-end buffer with the same amount as we will report in through
+ // Process().
+ size_t buffer_size = 0;
+ for (int i = 0; i < kDeviceBufMs / 10; i++) {
+ EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
+ buffer_size += samples_per_frame_;
+ EXPECT_EQ(static_cast<int>(buffer_size),
+ WebRtcAec_system_delay(self_->aec));
+ }
+ return buffer_size;
+}
+
+void SystemDelayTest::RunStableStartup() {
+ // To make sure we have a full buffer when we verify stability we first fill
+ // up the far-end buffer with the same amount as we will report in through
+ // Process().
+ size_t buffer_size = BufferFillUp();
+
+ if (WebRtcAec_delay_agnostic_enabled(self_->aec) == 1) {
+ // In extended_filter mode we set the buffer size after the first processed
+ // 10 ms chunk. Hence, we don't need to wait for the reported system delay
+ // values to become stable.
+ RenderAndCapture(kDeviceBufMs);
+ buffer_size += samples_per_frame_;
+ EXPECT_EQ(0, self_->startup_phase);
+ } else {
+ // A stable device should be accepted and put in a regular process mode
+ // within |kStableConvergenceMs|.
+ int process_time_ms = 0;
+ for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
+ RenderAndCapture(kDeviceBufMs);
+ buffer_size += samples_per_frame_;
+ if (self_->startup_phase == 0) {
+ // We have left the startup phase.
+ break;
+ }
+ }
+ // Verify convergence time.
+ EXPECT_GT(kStableConvergenceMs, process_time_ms);
+ }
+ // Verify that the buffer has been flushed.
+ EXPECT_GE(static_cast<int>(buffer_size),
+ WebRtcAec_system_delay(self_->aec));
+}
+
+ int SystemDelayTest::MapBufferSizeToSamples(int size_in_ms,
+ bool extended_filter) {
+ // If extended_filter is disabled we add an extra 10 ms for the unprocessed
+ // frame. That is simply how the algorithm is constructed.
+ return static_cast<int>(
+ (size_in_ms + (extended_filter ? 0 : 10)) * samples_per_frame_ / 10);
+}
+
+// The tests should meet basic requirements and not be adjusted to what is
+// actually implemented. If we don't get good code coverage this way we either
+// lack in tests or have unnecessary code.
+// General requirements:
+// 1) If we add far-end data the system delay should be increased with the same
+// amount we add.
+// 2) If the far-end buffer is full we should flush the oldest data to make room
+// for the new. In this case the system delay is unaffected.
+// 3) There should exist a startup phase in which the buffer size is to be
+// determined. In this phase no cancellation should be performed.
+// 4) Under stable conditions (small variations in device buffer sizes) the AEC
+// should determine an appropriate local buffer size within
+// |kStableConvergenceMs| ms.
+// 5) Under unstable conditions the AEC should make a decision within
+// |kMaxConvergenceMs| ms.
+// 6) If the local buffer runs out of data we should stuff the buffer with older
+// frames.
+// 7) The system delay should within |kMaxConvergenceMs| ms heal from
+// disturbances like drift, data glitches, toggling events and outliers.
+// 8) The system delay should never become negative.
+
+TEST_F(SystemDelayTest, CorrectIncreaseWhenBufferFarend) {
+ // When we add data to the AEC buffer the internal system delay should be
+ // incremented with the same amount as the size of data.
+ // This process should be independent of DA-AEC and extended_filter mode.
+ for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
+ WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
+ EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
+ for (int da_aec = 0; da_aec <= 1; ++da_aec) {
+ WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
+ EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+ // Loop through a couple of calls to make sure the system delay
+ // increments correctly.
+ for (int j = 1; j <= 5; j++) {
+ EXPECT_EQ(0,
+ WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
+ EXPECT_EQ(static_cast<int>(j * samples_per_frame_),
+ WebRtcAec_system_delay(self_->aec));
+ }
+ }
+ }
+ }
+}
+
+// TODO(bjornv): Add a test to verify behavior if the far-end buffer is full
+// when adding new data.
+
+TEST_F(SystemDelayTest, CorrectDelayAfterStableStartup) {
+ // We run the system in a stable startup. After that we verify that the system
+ // delay meets the requirements.
+ // This process should be independent of DA-AEC and extended_filter mode.
+ for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
+ WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
+ EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
+ for (int da_aec = 0; da_aec <= 1; ++da_aec) {
+ WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
+ EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+ RunStableStartup();
+
+ // Verify system delay with respect to requirements, i.e., the
+ // |system_delay| is in the interval [75%, 100%] of what's reported on
+ // the average.
+ // In extended_filter mode we target 50% and measure after one processed
+ // 10 ms chunk.
+ int average_reported_delay =
+ static_cast<int>(kDeviceBufMs * samples_per_frame_ / 10);
+ EXPECT_GE(average_reported_delay, WebRtcAec_system_delay(self_->aec));
+ int lower_bound = WebRtcAec_extended_filter_enabled(self_->aec)
+ ? average_reported_delay / 2 - samples_per_frame_
+ : average_reported_delay * 3 / 4;
+ EXPECT_LE(lower_bound, WebRtcAec_system_delay(self_->aec));
+ }
+ }
+ }
+}
+
+TEST_F(SystemDelayTest, CorrectDelayAfterUnstableStartup) {
+ // This test does not apply in extended_filter mode, since we only use the
+ // the first 10 ms chunk to determine a reasonable buffer size. Neither does
+ // it apply if DA-AEC is on because that overrides the startup procedure.
+ WebRtcAec_enable_extended_filter(self_->aec, 0);
+ EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(self_->aec));
+ WebRtcAec_enable_delay_agnostic(self_->aec, 0);
+ EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(self_->aec));
+
+ // In an unstable system we would start processing after |kMaxConvergenceMs|.
+ // On the last frame the AEC buffer is adjusted to 60% of the last reported
+ // device buffer size.
+ // We construct an unstable system by altering the device buffer size between
+ // two values |kDeviceBufMs| +- 25 ms.
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+
+ // To make sure we have a full buffer when we verify stability we first fill
+ // up the far-end buffer with the same amount as we will report in on the
+ // average through Process().
+ size_t buffer_size = BufferFillUp();
+
+ int buffer_offset_ms = 25;
+ int reported_delay_ms = 0;
+ int process_time_ms = 0;
+ for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
+ reported_delay_ms = kDeviceBufMs + buffer_offset_ms;
+ RenderAndCapture(reported_delay_ms);
+ buffer_size += samples_per_frame_;
+ buffer_offset_ms = -buffer_offset_ms;
+ if (self_->startup_phase == 0) {
+ // We have left the startup phase.
+ break;
+ }
+ }
+ // Verify convergence time.
+ EXPECT_GE(kMaxConvergenceMs, process_time_ms);
+ // Verify that the buffer has been flushed.
+ EXPECT_GE(static_cast<int>(buffer_size),
+ WebRtcAec_system_delay(self_->aec));
+
+ // Verify system delay with respect to requirements, i.e., the
+ // |system_delay| is in the interval [60%, 100%] of what's last reported.
+ EXPECT_GE(static_cast<int>(reported_delay_ms * samples_per_frame_ / 10),
+ WebRtcAec_system_delay(self_->aec));
+ EXPECT_LE(
+ static_cast<int>(reported_delay_ms * samples_per_frame_ / 10 * 3 / 5),
+ WebRtcAec_system_delay(self_->aec));
+ }
+}
+
+TEST_F(SystemDelayTest, CorrectDelayAfterStableBufferBuildUp) {
+ // This test does not apply in extended_filter mode, since we only use the
+ // the first 10 ms chunk to determine a reasonable buffer size. Neither does
+ // it apply if DA-AEC is on because that overrides the startup procedure.
+ WebRtcAec_enable_extended_filter(self_->aec, 0);
+ EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(self_->aec));
+ WebRtcAec_enable_delay_agnostic(self_->aec, 0);
+ EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(self_->aec));
+
+ // In this test we start by establishing the device buffer size during stable
+ // conditions, but with an empty internal far-end buffer. Once that is done we
+ // verify that the system delay is increased correctly until we have reach an
+ // internal buffer size of 75% of what's been reported.
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+
+ // We assume that running |kStableConvergenceMs| calls will put the
+ // algorithm in a state where the device buffer size has been determined. We
+ // can make that assumption since we have a separate stability test.
+ int process_time_ms = 0;
+ for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
+ EXPECT_EQ(0,
+ WebRtcAec_Process(handle_,
+ &near_ptr_,
+ 1,
+ &out_ptr_,
+ samples_per_frame_,
+ kDeviceBufMs,
+ 0));
+ }
+ // Verify that a buffer size has been established.
+ EXPECT_EQ(0, self_->checkBuffSize);
+
+ // We now have established the required buffer size. Let us verify that we
+ // fill up before leaving the startup phase for normal processing.
+ size_t buffer_size = 0;
+ size_t target_buffer_size = kDeviceBufMs * samples_per_frame_ / 10 * 3 / 4;
+ process_time_ms = 0;
+ for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
+ RenderAndCapture(kDeviceBufMs);
+ buffer_size += samples_per_frame_;
+ if (self_->startup_phase == 0) {
+ // We have left the startup phase.
+ break;
+ }
+ }
+ // Verify convergence time.
+ EXPECT_GT(kMaxConvergenceMs, process_time_ms);
+ // Verify that the buffer has reached the desired size.
+ EXPECT_LE(static_cast<int>(target_buffer_size),
+ WebRtcAec_system_delay(self_->aec));
+
+ // Verify normal behavior (system delay is kept constant) after startup by
+ // running a couple of calls to BufferFarend() and Process().
+ for (int j = 0; j < 6; j++) {
+ int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
+ RenderAndCapture(kDeviceBufMs);
+ EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
+ }
+ }
+}
+
+TEST_F(SystemDelayTest, CorrectDelayWhenBufferUnderrun) {
+ // Here we test a buffer under run scenario. If we keep on calling
+ // WebRtcAec_Process() we will finally run out of data, but should
+ // automatically stuff the buffer. We verify this behavior by checking if the
+ // system delay goes negative.
+ // This process should be independent of DA-AEC and extended_filter mode.
+ for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
+ WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
+ EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
+ for (int da_aec = 0; da_aec <= 1; ++da_aec) {
+ WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
+ EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+ RunStableStartup();
+
+ // The AEC has now left the Startup phase. We now have at most
+ // |kStableConvergenceMs| in the buffer. Keep on calling Process() until
+ // we run out of data and verify that the system delay is non-negative.
+ for (int j = 0; j <= kStableConvergenceMs; j += 10) {
+ EXPECT_EQ(0, WebRtcAec_Process(handle_, &near_ptr_, 1, &out_ptr_,
+ samples_per_frame_, kDeviceBufMs, 0));
+ EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
+ }
+ }
+ }
+ }
+}
+
+TEST_F(SystemDelayTest, CorrectDelayDuringDrift) {
+ // This drift test should verify that the system delay is never exceeding the
+ // device buffer. The drift is simulated by decreasing the reported device
+ // buffer size by 1 ms every 100 ms. If the device buffer size goes below 30
+ // ms we jump (add) 10 ms to give a repeated pattern.
+
+ // This process should be independent of DA-AEC and extended_filter mode.
+ for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
+ WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
+ EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
+ for (int da_aec = 0; da_aec <= 1; ++da_aec) {
+ WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
+ EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+ RunStableStartup();
+
+ // We have left the startup phase and proceed with normal processing.
+ int jump = 0;
+ for (int j = 0; j < 1000; j++) {
+ // Drift = -1 ms per 100 ms of data.
+ int device_buf_ms = kDeviceBufMs - (j / 10) + jump;
+ int device_buf = MapBufferSizeToSamples(device_buf_ms,
+ extended_filter == 1);
+
+ if (device_buf_ms < 30) {
+ // Add 10 ms data, taking affect next frame.
+ jump += 10;
+ }
+ RenderAndCapture(device_buf_ms);
+
+ // Verify that the system delay does not exceed the device buffer.
+ EXPECT_GE(device_buf, WebRtcAec_system_delay(self_->aec));
+
+ // Verify that the system delay is non-negative.
+ EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
+ }
+ }
+ }
+ }
+}
+
+TEST_F(SystemDelayTest, ShouldRecoverAfterGlitch) {
+ // This glitch test should verify that the system delay recovers if there is
+ // a glitch in data. The data glitch is constructed as 200 ms of buffering
+ // after which the stable procedure continues. The glitch is never reported by
+ // the device.
+ // The system is said to be in a non-causal state if the difference between
+ // the device buffer and system delay is less than a block (64 samples).
+
+ // This process should be independent of DA-AEC and extended_filter mode.
+ for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
+ WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
+ EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
+ for (int da_aec = 0; da_aec <= 1; ++da_aec) {
+ WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
+ EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+ RunStableStartup();
+ int device_buf = MapBufferSizeToSamples(kDeviceBufMs,
+ extended_filter == 1);
+ // Glitch state.
+ for (int j = 0; j < 20; j++) {
+ EXPECT_EQ(0,
+ WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
+ // No need to verify system delay, since that is done in a separate
+ // test.
+ }
+ // Verify that we are in a non-causal state, i.e.,
+ // |system_delay| > |device_buf|.
+ EXPECT_LT(device_buf, WebRtcAec_system_delay(self_->aec));
+
+ // Recover state. Should recover at least 4 ms of data per 10 ms, hence
+ // a glitch of 200 ms will take at most 200 * 10 / 4 = 500 ms to recover
+ // from.
+ bool non_causal = true; // We are currently in a non-causal state.
+ for (int j = 0; j < 50; j++) {
+ int system_delay_before = WebRtcAec_system_delay(self_->aec);
+ RenderAndCapture(kDeviceBufMs);
+ int system_delay_after = WebRtcAec_system_delay(self_->aec);
+ // We have recovered if
+ // |device_buf| - |system_delay_after| >= PART_LEN (1 block).
+ // During recovery, |system_delay_after| < |system_delay_before|,
+ // otherwise they are equal.
+ if (non_causal) {
+ EXPECT_LT(system_delay_after, system_delay_before);
+ if (device_buf - system_delay_after >= PART_LEN) {
+ non_causal = false;
+ }
+ } else {
+ EXPECT_EQ(system_delay_before, system_delay_after);
+ }
+ // Verify that the system delay is non-negative.
+ EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
+ }
+ // Check that we have recovered.
+ EXPECT_FALSE(non_causal);
+ }
+ }
+ }
+}
+
+TEST_F(SystemDelayTest, UnaffectedWhenSpuriousDeviceBufferValues) {
+ // This test does not apply in extended_filter mode, since we only use the
+ // the first 10 ms chunk to determine a reasonable buffer size.
+ const int extended_filter = 0;
+ WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
+ EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
+
+ // Should be DA-AEC independent.
+ for (int da_aec = 0; da_aec <= 1; ++da_aec) {
+ WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
+ EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
+ // This spurious device buffer data test aims at verifying that the system
+ // delay is unaffected by large outliers.
+ // The system is said to be in a non-causal state if the difference between
+ // the device buffer and system delay is less than a block (64 samples).
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+ RunStableStartup();
+ int device_buf = MapBufferSizeToSamples(kDeviceBufMs,
+ extended_filter == 1);
+
+ // Normal state. We are currently not in a non-causal state.
+ bool non_causal = false;
+
+ // Run 1 s and replace device buffer size with 500 ms every 100 ms.
+ for (int j = 0; j < 100; j++) {
+ int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
+ int device_buf_ms = j % 10 == 0 ? 500 : kDeviceBufMs;
+ RenderAndCapture(device_buf_ms);
+
+ // Check for non-causality.
+ if (device_buf - WebRtcAec_system_delay(self_->aec) < PART_LEN) {
+ non_causal = true;
+ }
+ EXPECT_FALSE(non_causal);
+ EXPECT_EQ(system_delay_before_calls,
+ WebRtcAec_system_delay(self_->aec));
+
+ // Verify that the system delay is non-negative.
+ EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
+ }
+ }
+ }
+}
+
+TEST_F(SystemDelayTest, CorrectImpactWhenTogglingDeviceBufferValues) {
+ // This test aims at verifying that the system delay is "unaffected" by
+ // toggling values reported by the device.
+ // The test is constructed such that every other device buffer value is zero
+ // and then 2 * |kDeviceBufMs|, hence the size is constant on the average. The
+ // zero values will force us into a non-causal state and thereby lowering the
+ // system delay until we basically run out of data. Once that happens the
+ // buffer will be stuffed.
+ // TODO(bjornv): This test will have a better impact if we verified that the
+ // delay estimate goes up when the system delay goes down to meet the average
+ // device buffer size.
+
+ // This test does not apply if DA-AEC is enabled and extended_filter mode
+ // disabled.
+ for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
+ WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
+ EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
+ for (int da_aec = 0; da_aec <= 1; ++da_aec) {
+ WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
+ EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
+ if (extended_filter == 0 && da_aec == 1) {
+ continue;
+ }
+ for (size_t i = 0; i < kNumSampleRates; i++) {
+ Init(kSampleRateHz[i]);
+ RunStableStartup();
+ const int device_buf = MapBufferSizeToSamples(kDeviceBufMs,
+ extended_filter == 1);
+
+ // Normal state. We are currently not in a non-causal state.
+ bool non_causal = false;
+
+ // Loop through 100 frames (both render and capture), which equals 1 s
+ // of data. Every odd frame we set the device buffer size to
+ // 2 * |kDeviceBufMs| and even frames we set the device buffer size to
+ // zero.
+ for (int j = 0; j < 100; j++) {
+ int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
+ int device_buf_ms = 2 * (j % 2) * kDeviceBufMs;
+ RenderAndCapture(device_buf_ms);
+
+ // Check for non-causality, compared with the average device buffer
+ // size.
+ non_causal |= (device_buf - WebRtcAec_system_delay(self_->aec) < 64);
+ EXPECT_GE(system_delay_before_calls,
+ WebRtcAec_system_delay(self_->aec));
+
+ // Verify that the system delay is non-negative.
+ EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
+ }
+ // Verify we are not in a non-causal state.
+ EXPECT_FALSE(non_causal);
+ }
+ }
+ }
+}
+
+} // namespace