summaryrefslogtreecommitdiff
path: root/third_party/webrtc/src/webrtc/modules/audio_processing/aecm
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/webrtc/src/webrtc/modules/audio_processing/aecm')
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core.c1233
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core.h434
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_c.c771
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_mips.c1566
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_neon.c212
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_defines.h87
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aecm/echo_control_mobile.c702
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h218
8 files changed, 5223 insertions, 0 deletions
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core.c b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core.c
new file mode 100644
index 00000000..b801f07a
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core.c
@@ -0,0 +1,1233 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdlib.h>
+
+#include "webrtc/common_audio/ring_buffer.h"
+#include "webrtc/common_audio/signal_processing/include/real_fft.h"
+#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
+#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
+#include "webrtc/system_wrappers/interface/compile_assert_c.h"
+#include "webrtc/system_wrappers/interface/cpu_features_wrapper.h"
+#include "webrtc/typedefs.h"
+
+#ifdef AEC_DEBUG
+FILE *dfile;
+FILE *testfile;
+#endif
+
+const int16_t WebRtcAecm_kCosTable[] = {
+ 8192, 8190, 8187, 8180, 8172, 8160, 8147, 8130, 8112,
+ 8091, 8067, 8041, 8012, 7982, 7948, 7912, 7874, 7834,
+ 7791, 7745, 7697, 7647, 7595, 7540, 7483, 7424, 7362,
+ 7299, 7233, 7164, 7094, 7021, 6947, 6870, 6791, 6710,
+ 6627, 6542, 6455, 6366, 6275, 6182, 6087, 5991, 5892,
+ 5792, 5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930,
+ 4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971, 3845,
+ 3719, 3591, 3462, 3331, 3200, 3068, 2935, 2801, 2667,
+ 2531, 2395, 2258, 2120, 1981, 1842, 1703, 1563, 1422,
+ 1281, 1140, 998, 856, 713, 571, 428, 285, 142,
+ 0, -142, -285, -428, -571, -713, -856, -998, -1140,
+ -1281, -1422, -1563, -1703, -1842, -1981, -2120, -2258, -2395,
+ -2531, -2667, -2801, -2935, -3068, -3200, -3331, -3462, -3591,
+ -3719, -3845, -3971, -4095, -4219, -4341, -4461, -4580, -4698,
+ -4815, -4930, -5043, -5155, -5265, -5374, -5481, -5586, -5690,
+ -5792, -5892, -5991, -6087, -6182, -6275, -6366, -6455, -6542,
+ -6627, -6710, -6791, -6870, -6947, -7021, -7094, -7164, -7233,
+ -7299, -7362, -7424, -7483, -7540, -7595, -7647, -7697, -7745,
+ -7791, -7834, -7874, -7912, -7948, -7982, -8012, -8041, -8067,
+ -8091, -8112, -8130, -8147, -8160, -8172, -8180, -8187, -8190,
+ -8191, -8190, -8187, -8180, -8172, -8160, -8147, -8130, -8112,
+ -8091, -8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834,
+ -7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424, -7362,
+ -7299, -7233, -7164, -7094, -7021, -6947, -6870, -6791, -6710,
+ -6627, -6542, -6455, -6366, -6275, -6182, -6087, -5991, -5892,
+ -5792, -5690, -5586, -5481, -5374, -5265, -5155, -5043, -4930,
+ -4815, -4698, -4580, -4461, -4341, -4219, -4096, -3971, -3845,
+ -3719, -3591, -3462, -3331, -3200, -3068, -2935, -2801, -2667,
+ -2531, -2395, -2258, -2120, -1981, -1842, -1703, -1563, -1422,
+ -1281, -1140, -998, -856, -713, -571, -428, -285, -142,
+ 0, 142, 285, 428, 571, 713, 856, 998, 1140,
+ 1281, 1422, 1563, 1703, 1842, 1981, 2120, 2258, 2395,
+ 2531, 2667, 2801, 2935, 3068, 3200, 3331, 3462, 3591,
+ 3719, 3845, 3971, 4095, 4219, 4341, 4461, 4580, 4698,
+ 4815, 4930, 5043, 5155, 5265, 5374, 5481, 5586, 5690,
+ 5792, 5892, 5991, 6087, 6182, 6275, 6366, 6455, 6542,
+ 6627, 6710, 6791, 6870, 6947, 7021, 7094, 7164, 7233,
+ 7299, 7362, 7424, 7483, 7540, 7595, 7647, 7697, 7745,
+ 7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041, 8067,
+ 8091, 8112, 8130, 8147, 8160, 8172, 8180, 8187, 8190
+};
+
+const int16_t WebRtcAecm_kSinTable[] = {
+ 0, 142, 285, 428, 571, 713, 856, 998,
+ 1140, 1281, 1422, 1563, 1703, 1842, 1981, 2120,
+ 2258, 2395, 2531, 2667, 2801, 2935, 3068, 3200,
+ 3331, 3462, 3591, 3719, 3845, 3971, 4095, 4219,
+ 4341, 4461, 4580, 4698, 4815, 4930, 5043, 5155,
+ 5265, 5374, 5481, 5586, 5690, 5792, 5892, 5991,
+ 6087, 6182, 6275, 6366, 6455, 6542, 6627, 6710,
+ 6791, 6870, 6947, 7021, 7094, 7164, 7233, 7299,
+ 7362, 7424, 7483, 7540, 7595, 7647, 7697, 7745,
+ 7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041,
+ 8067, 8091, 8112, 8130, 8147, 8160, 8172, 8180,
+ 8187, 8190, 8191, 8190, 8187, 8180, 8172, 8160,
+ 8147, 8130, 8112, 8091, 8067, 8041, 8012, 7982,
+ 7948, 7912, 7874, 7834, 7791, 7745, 7697, 7647,
+ 7595, 7540, 7483, 7424, 7362, 7299, 7233, 7164,
+ 7094, 7021, 6947, 6870, 6791, 6710, 6627, 6542,
+ 6455, 6366, 6275, 6182, 6087, 5991, 5892, 5792,
+ 5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930,
+ 4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971,
+ 3845, 3719, 3591, 3462, 3331, 3200, 3068, 2935,
+ 2801, 2667, 2531, 2395, 2258, 2120, 1981, 1842,
+ 1703, 1563, 1422, 1281, 1140, 998, 856, 713,
+ 571, 428, 285, 142, 0, -142, -285, -428,
+ -571, -713, -856, -998, -1140, -1281, -1422, -1563,
+ -1703, -1842, -1981, -2120, -2258, -2395, -2531, -2667,
+ -2801, -2935, -3068, -3200, -3331, -3462, -3591, -3719,
+ -3845, -3971, -4095, -4219, -4341, -4461, -4580, -4698,
+ -4815, -4930, -5043, -5155, -5265, -5374, -5481, -5586,
+ -5690, -5792, -5892, -5991, -6087, -6182, -6275, -6366,
+ -6455, -6542, -6627, -6710, -6791, -6870, -6947, -7021,
+ -7094, -7164, -7233, -7299, -7362, -7424, -7483, -7540,
+ -7595, -7647, -7697, -7745, -7791, -7834, -7874, -7912,
+ -7948, -7982, -8012, -8041, -8067, -8091, -8112, -8130,
+ -8147, -8160, -8172, -8180, -8187, -8190, -8191, -8190,
+ -8187, -8180, -8172, -8160, -8147, -8130, -8112, -8091,
+ -8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834,
+ -7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424,
+ -7362, -7299, -7233, -7164, -7094, -7021, -6947, -6870,
+ -6791, -6710, -6627, -6542, -6455, -6366, -6275, -6182,
+ -6087, -5991, -5892, -5792, -5690, -5586, -5481, -5374,
+ -5265, -5155, -5043, -4930, -4815, -4698, -4580, -4461,
+ -4341, -4219, -4096, -3971, -3845, -3719, -3591, -3462,
+ -3331, -3200, -3068, -2935, -2801, -2667, -2531, -2395,
+ -2258, -2120, -1981, -1842, -1703, -1563, -1422, -1281,
+ -1140, -998, -856, -713, -571, -428, -285, -142
+};
+
+// Initialization table for echo channel in 8 kHz
+static const int16_t kChannelStored8kHz[PART_LEN1] = {
+ 2040, 1815, 1590, 1498, 1405, 1395, 1385, 1418,
+ 1451, 1506, 1562, 1644, 1726, 1804, 1882, 1918,
+ 1953, 1982, 2010, 2025, 2040, 2034, 2027, 2021,
+ 2014, 1997, 1980, 1925, 1869, 1800, 1732, 1683,
+ 1635, 1604, 1572, 1545, 1517, 1481, 1444, 1405,
+ 1367, 1331, 1294, 1270, 1245, 1239, 1233, 1247,
+ 1260, 1282, 1303, 1338, 1373, 1407, 1441, 1470,
+ 1499, 1524, 1549, 1565, 1582, 1601, 1621, 1649,
+ 1676
+};
+
+// Initialization table for echo channel in 16 kHz
+static const int16_t kChannelStored16kHz[PART_LEN1] = {
+ 2040, 1590, 1405, 1385, 1451, 1562, 1726, 1882,
+ 1953, 2010, 2040, 2027, 2014, 1980, 1869, 1732,
+ 1635, 1572, 1517, 1444, 1367, 1294, 1245, 1233,
+ 1260, 1303, 1373, 1441, 1499, 1549, 1582, 1621,
+ 1676, 1741, 1802, 1861, 1921, 1983, 2040, 2102,
+ 2170, 2265, 2375, 2515, 2651, 2781, 2922, 3075,
+ 3253, 3471, 3738, 3976, 4151, 4258, 4308, 4288,
+ 4270, 4253, 4237, 4179, 4086, 3947, 3757, 3484,
+ 3153
+};
+
+// Moves the pointer to the next entry and inserts |far_spectrum| and
+// corresponding Q-domain in its buffer.
+//
+// Inputs:
+// - self : Pointer to the delay estimation instance
+// - far_spectrum : Pointer to the far end spectrum
+// - far_q : Q-domain of far end spectrum
+//
+void WebRtcAecm_UpdateFarHistory(AecmCore* self,
+ uint16_t* far_spectrum,
+ int far_q) {
+ // Get new buffer position
+ self->far_history_pos++;
+ if (self->far_history_pos >= MAX_DELAY) {
+ self->far_history_pos = 0;
+ }
+ // Update Q-domain buffer
+ self->far_q_domains[self->far_history_pos] = far_q;
+ // Update far end spectrum buffer
+ memcpy(&(self->far_history[self->far_history_pos * PART_LEN1]),
+ far_spectrum,
+ sizeof(uint16_t) * PART_LEN1);
+}
+
+// Returns a pointer to the far end spectrum aligned to current near end
+// spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been
+// called before AlignedFarend(...). Otherwise, you get the pointer to the
+// previous frame. The memory is only valid until the next call of
+// WebRtc_DelayEstimatorProcessFix(...).
+//
+// Inputs:
+// - self : Pointer to the AECM instance.
+// - delay : Current delay estimate.
+//
+// Output:
+// - far_q : The Q-domain of the aligned far end spectrum
+//
+// Return value:
+// - far_spectrum : Pointer to the aligned far end spectrum
+// NULL - Error
+//
+const uint16_t* WebRtcAecm_AlignedFarend(AecmCore* self,
+ int* far_q,
+ int delay) {
+ int buffer_position = 0;
+ assert(self != NULL);
+ buffer_position = self->far_history_pos - delay;
+
+ // Check buffer position
+ if (buffer_position < 0) {
+ buffer_position += MAX_DELAY;
+ }
+ // Get Q-domain
+ *far_q = self->far_q_domains[buffer_position];
+ // Return far end spectrum
+ return &(self->far_history[buffer_position * PART_LEN1]);
+}
+
+// Declare function pointers.
+CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
+StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
+ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
+
+AecmCore* WebRtcAecm_CreateCore() {
+ AecmCore* aecm = malloc(sizeof(AecmCore));
+
+ aecm->farFrameBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN,
+ sizeof(int16_t));
+ if (!aecm->farFrameBuf)
+ {
+ WebRtcAecm_FreeCore(aecm);
+ return NULL;
+ }
+
+ aecm->nearNoisyFrameBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN,
+ sizeof(int16_t));
+ if (!aecm->nearNoisyFrameBuf)
+ {
+ WebRtcAecm_FreeCore(aecm);
+ return NULL;
+ }
+
+ aecm->nearCleanFrameBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN,
+ sizeof(int16_t));
+ if (!aecm->nearCleanFrameBuf)
+ {
+ WebRtcAecm_FreeCore(aecm);
+ return NULL;
+ }
+
+ aecm->outFrameBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN,
+ sizeof(int16_t));
+ if (!aecm->outFrameBuf)
+ {
+ WebRtcAecm_FreeCore(aecm);
+ return NULL;
+ }
+
+ aecm->delay_estimator_farend = WebRtc_CreateDelayEstimatorFarend(PART_LEN1,
+ MAX_DELAY);
+ if (aecm->delay_estimator_farend == NULL) {
+ WebRtcAecm_FreeCore(aecm);
+ return NULL;
+ }
+ aecm->delay_estimator =
+ WebRtc_CreateDelayEstimator(aecm->delay_estimator_farend, 0);
+ if (aecm->delay_estimator == NULL) {
+ WebRtcAecm_FreeCore(aecm);
+ return NULL;
+ }
+ // TODO(bjornv): Explicitly disable robust delay validation until no
+ // performance regression has been established. Then remove the line.
+ WebRtc_enable_robust_validation(aecm->delay_estimator, 0);
+
+ aecm->real_fft = WebRtcSpl_CreateRealFFT(PART_LEN_SHIFT);
+ if (aecm->real_fft == NULL) {
+ WebRtcAecm_FreeCore(aecm);
+ return NULL;
+ }
+
+ // Init some aecm pointers. 16 and 32 byte alignment is only necessary
+ // for Neon code currently.
+ aecm->xBuf = (int16_t*) (((uintptr_t)aecm->xBuf_buf + 31) & ~ 31);
+ aecm->dBufClean = (int16_t*) (((uintptr_t)aecm->dBufClean_buf + 31) & ~ 31);
+ aecm->dBufNoisy = (int16_t*) (((uintptr_t)aecm->dBufNoisy_buf + 31) & ~ 31);
+ aecm->outBuf = (int16_t*) (((uintptr_t)aecm->outBuf_buf + 15) & ~ 15);
+ aecm->channelStored = (int16_t*) (((uintptr_t)
+ aecm->channelStored_buf + 15) & ~ 15);
+ aecm->channelAdapt16 = (int16_t*) (((uintptr_t)
+ aecm->channelAdapt16_buf + 15) & ~ 15);
+ aecm->channelAdapt32 = (int32_t*) (((uintptr_t)
+ aecm->channelAdapt32_buf + 31) & ~ 31);
+
+ return aecm;
+}
+
+void WebRtcAecm_InitEchoPathCore(AecmCore* aecm, const int16_t* echo_path) {
+ int i = 0;
+
+ // Reset the stored channel
+ memcpy(aecm->channelStored, echo_path, sizeof(int16_t) * PART_LEN1);
+ // Reset the adapted channels
+ memcpy(aecm->channelAdapt16, echo_path, sizeof(int16_t) * PART_LEN1);
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ aecm->channelAdapt32[i] = (int32_t)aecm->channelAdapt16[i] << 16;
+ }
+
+ // Reset channel storing variables
+ aecm->mseAdaptOld = 1000;
+ aecm->mseStoredOld = 1000;
+ aecm->mseThreshold = WEBRTC_SPL_WORD32_MAX;
+ aecm->mseChannelCount = 0;
+}
+
+static void CalcLinearEnergiesC(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est,
+ uint32_t* far_energy,
+ uint32_t* echo_energy_adapt,
+ uint32_t* echo_energy_stored) {
+ int i;
+
+ // Get energy for the delayed far end signal and estimated
+ // echo using both stored and adapted channels.
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
+ far_spectrum[i]);
+ (*far_energy) += (uint32_t)(far_spectrum[i]);
+ *echo_energy_adapt += aecm->channelAdapt16[i] * far_spectrum[i];
+ (*echo_energy_stored) += (uint32_t)echo_est[i];
+ }
+}
+
+static void StoreAdaptiveChannelC(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est) {
+ int i;
+
+ // During startup we store the channel every block.
+ memcpy(aecm->channelStored, aecm->channelAdapt16, sizeof(int16_t) * PART_LEN1);
+ // Recalculate echo estimate
+ for (i = 0; i < PART_LEN; i += 4)
+ {
+ echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
+ far_spectrum[i]);
+ echo_est[i + 1] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 1],
+ far_spectrum[i + 1]);
+ echo_est[i + 2] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 2],
+ far_spectrum[i + 2]);
+ echo_est[i + 3] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 3],
+ far_spectrum[i + 3]);
+ }
+ echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
+ far_spectrum[i]);
+}
+
+static void ResetAdaptiveChannelC(AecmCore* aecm) {
+ int i;
+
+ // The stored channel has a significantly lower MSE than the adaptive one for
+ // two consecutive calculations. Reset the adaptive channel.
+ memcpy(aecm->channelAdapt16, aecm->channelStored,
+ sizeof(int16_t) * PART_LEN1);
+ // Restore the W32 channel
+ for (i = 0; i < PART_LEN; i += 4)
+ {
+ aecm->channelAdapt32[i] = (int32_t)aecm->channelStored[i] << 16;
+ aecm->channelAdapt32[i + 1] = (int32_t)aecm->channelStored[i + 1] << 16;
+ aecm->channelAdapt32[i + 2] = (int32_t)aecm->channelStored[i + 2] << 16;
+ aecm->channelAdapt32[i + 3] = (int32_t)aecm->channelStored[i + 3] << 16;
+ }
+ aecm->channelAdapt32[i] = (int32_t)aecm->channelStored[i] << 16;
+}
+
+// Initialize function pointers for ARM Neon platform.
+#if (defined WEBRTC_DETECT_NEON || defined WEBRTC_HAS_NEON)
+static void WebRtcAecm_InitNeon(void)
+{
+ WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannelNeon;
+ WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannelNeon;
+ WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergiesNeon;
+}
+#endif
+
+// Initialize function pointers for MIPS platform.
+#if defined(MIPS32_LE)
+static void WebRtcAecm_InitMips(void)
+{
+#if defined(MIPS_DSP_R1_LE)
+ WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannel_mips;
+ WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannel_mips;
+#endif
+ WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergies_mips;
+}
+#endif
+
+// WebRtcAecm_InitCore(...)
+//
+// This function initializes the AECM instant created with WebRtcAecm_CreateCore(...)
+// Input:
+// - aecm : Pointer to the Echo Suppression instance
+// - samplingFreq : Sampling Frequency
+//
+// Output:
+// - aecm : Initialized instance
+//
+// Return value : 0 - Ok
+// -1 - Error
+//
+int WebRtcAecm_InitCore(AecmCore* const aecm, int samplingFreq) {
+ int i = 0;
+ int32_t tmp32 = PART_LEN1 * PART_LEN1;
+ int16_t tmp16 = PART_LEN1;
+
+ if (samplingFreq != 8000 && samplingFreq != 16000)
+ {
+ samplingFreq = 8000;
+ return -1;
+ }
+ // sanity check of sampling frequency
+ aecm->mult = (int16_t)samplingFreq / 8000;
+
+ aecm->farBufWritePos = 0;
+ aecm->farBufReadPos = 0;
+ aecm->knownDelay = 0;
+ aecm->lastKnownDelay = 0;
+
+ WebRtc_InitBuffer(aecm->farFrameBuf);
+ WebRtc_InitBuffer(aecm->nearNoisyFrameBuf);
+ WebRtc_InitBuffer(aecm->nearCleanFrameBuf);
+ WebRtc_InitBuffer(aecm->outFrameBuf);
+
+ memset(aecm->xBuf_buf, 0, sizeof(aecm->xBuf_buf));
+ memset(aecm->dBufClean_buf, 0, sizeof(aecm->dBufClean_buf));
+ memset(aecm->dBufNoisy_buf, 0, sizeof(aecm->dBufNoisy_buf));
+ memset(aecm->outBuf_buf, 0, sizeof(aecm->outBuf_buf));
+
+ aecm->seed = 666;
+ aecm->totCount = 0;
+
+ if (WebRtc_InitDelayEstimatorFarend(aecm->delay_estimator_farend) != 0) {
+ return -1;
+ }
+ if (WebRtc_InitDelayEstimator(aecm->delay_estimator) != 0) {
+ return -1;
+ }
+ // Set far end histories to zero
+ memset(aecm->far_history, 0, sizeof(uint16_t) * PART_LEN1 * MAX_DELAY);
+ memset(aecm->far_q_domains, 0, sizeof(int) * MAX_DELAY);
+ aecm->far_history_pos = MAX_DELAY;
+
+ aecm->nlpFlag = 1;
+ aecm->fixedDelay = -1;
+
+ aecm->dfaCleanQDomain = 0;
+ aecm->dfaCleanQDomainOld = 0;
+ aecm->dfaNoisyQDomain = 0;
+ aecm->dfaNoisyQDomainOld = 0;
+
+ memset(aecm->nearLogEnergy, 0, sizeof(aecm->nearLogEnergy));
+ aecm->farLogEnergy = 0;
+ memset(aecm->echoAdaptLogEnergy, 0, sizeof(aecm->echoAdaptLogEnergy));
+ memset(aecm->echoStoredLogEnergy, 0, sizeof(aecm->echoStoredLogEnergy));
+
+ // Initialize the echo channels with a stored shape.
+ if (samplingFreq == 8000)
+ {
+ WebRtcAecm_InitEchoPathCore(aecm, kChannelStored8kHz);
+ }
+ else
+ {
+ WebRtcAecm_InitEchoPathCore(aecm, kChannelStored16kHz);
+ }
+
+ memset(aecm->echoFilt, 0, sizeof(aecm->echoFilt));
+ memset(aecm->nearFilt, 0, sizeof(aecm->nearFilt));
+ aecm->noiseEstCtr = 0;
+
+ aecm->cngMode = AecmTrue;
+
+ memset(aecm->noiseEstTooLowCtr, 0, sizeof(aecm->noiseEstTooLowCtr));
+ memset(aecm->noiseEstTooHighCtr, 0, sizeof(aecm->noiseEstTooHighCtr));
+ // Shape the initial noise level to an approximate pink noise.
+ for (i = 0; i < (PART_LEN1 >> 1) - 1; i++)
+ {
+ aecm->noiseEst[i] = (tmp32 << 8);
+ tmp16--;
+ tmp32 -= (int32_t)((tmp16 << 1) + 1);
+ }
+ for (; i < PART_LEN1; i++)
+ {
+ aecm->noiseEst[i] = (tmp32 << 8);
+ }
+
+ aecm->farEnergyMin = WEBRTC_SPL_WORD16_MAX;
+ aecm->farEnergyMax = WEBRTC_SPL_WORD16_MIN;
+ aecm->farEnergyMaxMin = 0;
+ aecm->farEnergyVAD = FAR_ENERGY_MIN; // This prevents false speech detection at the
+ // beginning.
+ aecm->farEnergyMSE = 0;
+ aecm->currentVADValue = 0;
+ aecm->vadUpdateCount = 0;
+ aecm->firstVAD = 1;
+
+ aecm->startupState = 0;
+ aecm->supGain = SUPGAIN_DEFAULT;
+ aecm->supGainOld = SUPGAIN_DEFAULT;
+
+ aecm->supGainErrParamA = SUPGAIN_ERROR_PARAM_A;
+ aecm->supGainErrParamD = SUPGAIN_ERROR_PARAM_D;
+ aecm->supGainErrParamDiffAB = SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B;
+ aecm->supGainErrParamDiffBD = SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D;
+
+ // Assert a preprocessor definition at compile-time. It's an assumption
+ // used in assembly code, so check the assembly files before any change.
+ COMPILE_ASSERT(PART_LEN % 16 == 0);
+
+ // Initialize function pointers.
+ WebRtcAecm_CalcLinearEnergies = CalcLinearEnergiesC;
+ WebRtcAecm_StoreAdaptiveChannel = StoreAdaptiveChannelC;
+ WebRtcAecm_ResetAdaptiveChannel = ResetAdaptiveChannelC;
+
+#ifdef WEBRTC_DETECT_NEON
+ uint64_t features = WebRtc_GetCPUFeaturesARM();
+ if ((features & kCPUFeatureNEON) != 0)
+ {
+ WebRtcAecm_InitNeon();
+ }
+#elif defined(WEBRTC_HAS_NEON)
+ WebRtcAecm_InitNeon();
+#endif
+
+#if defined(MIPS32_LE)
+ WebRtcAecm_InitMips();
+#endif
+ return 0;
+}
+
+// TODO(bjornv): This function is currently not used. Add support for these
+// parameters from a higher level
+int WebRtcAecm_Control(AecmCore* aecm, int delay, int nlpFlag) {
+ aecm->nlpFlag = nlpFlag;
+ aecm->fixedDelay = delay;
+
+ return 0;
+}
+
+void WebRtcAecm_FreeCore(AecmCore* aecm) {
+ if (aecm == NULL) {
+ return;
+ }
+
+ WebRtc_FreeBuffer(aecm->farFrameBuf);
+ WebRtc_FreeBuffer(aecm->nearNoisyFrameBuf);
+ WebRtc_FreeBuffer(aecm->nearCleanFrameBuf);
+ WebRtc_FreeBuffer(aecm->outFrameBuf);
+
+ WebRtc_FreeDelayEstimator(aecm->delay_estimator);
+ WebRtc_FreeDelayEstimatorFarend(aecm->delay_estimator_farend);
+ WebRtcSpl_FreeRealFFT(aecm->real_fft);
+
+ free(aecm);
+}
+
+int WebRtcAecm_ProcessFrame(AecmCore* aecm,
+ const int16_t* farend,
+ const int16_t* nearendNoisy,
+ const int16_t* nearendClean,
+ int16_t* out) {
+ int16_t outBlock_buf[PART_LEN + 8]; // Align buffer to 8-byte boundary.
+ int16_t* outBlock = (int16_t*) (((uintptr_t) outBlock_buf + 15) & ~ 15);
+
+ int16_t farFrame[FRAME_LEN];
+ const int16_t* out_ptr = NULL;
+ int size = 0;
+
+ // Buffer the current frame.
+ // Fetch an older one corresponding to the delay.
+ WebRtcAecm_BufferFarFrame(aecm, farend, FRAME_LEN);
+ WebRtcAecm_FetchFarFrame(aecm, farFrame, FRAME_LEN, aecm->knownDelay);
+
+ // Buffer the synchronized far and near frames,
+ // to pass the smaller blocks individually.
+ WebRtc_WriteBuffer(aecm->farFrameBuf, farFrame, FRAME_LEN);
+ WebRtc_WriteBuffer(aecm->nearNoisyFrameBuf, nearendNoisy, FRAME_LEN);
+ if (nearendClean != NULL)
+ {
+ WebRtc_WriteBuffer(aecm->nearCleanFrameBuf, nearendClean, FRAME_LEN);
+ }
+
+ // Process as many blocks as possible.
+ while (WebRtc_available_read(aecm->farFrameBuf) >= PART_LEN)
+ {
+ int16_t far_block[PART_LEN];
+ const int16_t* far_block_ptr = NULL;
+ int16_t near_noisy_block[PART_LEN];
+ const int16_t* near_noisy_block_ptr = NULL;
+
+ WebRtc_ReadBuffer(aecm->farFrameBuf, (void**) &far_block_ptr, far_block,
+ PART_LEN);
+ WebRtc_ReadBuffer(aecm->nearNoisyFrameBuf,
+ (void**) &near_noisy_block_ptr,
+ near_noisy_block,
+ PART_LEN);
+ if (nearendClean != NULL)
+ {
+ int16_t near_clean_block[PART_LEN];
+ const int16_t* near_clean_block_ptr = NULL;
+
+ WebRtc_ReadBuffer(aecm->nearCleanFrameBuf,
+ (void**) &near_clean_block_ptr,
+ near_clean_block,
+ PART_LEN);
+ if (WebRtcAecm_ProcessBlock(aecm,
+ far_block_ptr,
+ near_noisy_block_ptr,
+ near_clean_block_ptr,
+ outBlock) == -1)
+ {
+ return -1;
+ }
+ } else
+ {
+ if (WebRtcAecm_ProcessBlock(aecm,
+ far_block_ptr,
+ near_noisy_block_ptr,
+ NULL,
+ outBlock) == -1)
+ {
+ return -1;
+ }
+ }
+
+ WebRtc_WriteBuffer(aecm->outFrameBuf, outBlock, PART_LEN);
+ }
+
+ // Stuff the out buffer if we have less than a frame to output.
+ // This should only happen for the first frame.
+ size = (int) WebRtc_available_read(aecm->outFrameBuf);
+ if (size < FRAME_LEN)
+ {
+ WebRtc_MoveReadPtr(aecm->outFrameBuf, size - FRAME_LEN);
+ }
+
+ // Obtain an output frame.
+ WebRtc_ReadBuffer(aecm->outFrameBuf, (void**) &out_ptr, out, FRAME_LEN);
+ if (out_ptr != out) {
+ // ReadBuffer() hasn't copied to |out| in this case.
+ memcpy(out, out_ptr, FRAME_LEN * sizeof(int16_t));
+ }
+
+ return 0;
+}
+
+// WebRtcAecm_AsymFilt(...)
+//
+// Performs asymmetric filtering.
+//
+// Inputs:
+// - filtOld : Previous filtered value.
+// - inVal : New input value.
+// - stepSizePos : Step size when we have a positive contribution.
+// - stepSizeNeg : Step size when we have a negative contribution.
+//
+// Output:
+//
+// Return: - Filtered value.
+//
+int16_t WebRtcAecm_AsymFilt(const int16_t filtOld, const int16_t inVal,
+ const int16_t stepSizePos,
+ const int16_t stepSizeNeg)
+{
+ int16_t retVal;
+
+ if ((filtOld == WEBRTC_SPL_WORD16_MAX) | (filtOld == WEBRTC_SPL_WORD16_MIN))
+ {
+ return inVal;
+ }
+ retVal = filtOld;
+ if (filtOld > inVal)
+ {
+ retVal -= (filtOld - inVal) >> stepSizeNeg;
+ } else
+ {
+ retVal += (inVal - filtOld) >> stepSizePos;
+ }
+
+ return retVal;
+}
+
+// ExtractFractionPart(a, zeros)
+//
+// returns the fraction part of |a|, with |zeros| number of leading zeros, as an
+// int16_t scaled to Q8. There is no sanity check of |a| in the sense that the
+// number of zeros match.
+static int16_t ExtractFractionPart(uint32_t a, int zeros) {
+ return (int16_t)(((a << zeros) & 0x7FFFFFFF) >> 23);
+}
+
+// Calculates and returns the log of |energy| in Q8. The input |energy| is
+// supposed to be in Q(|q_domain|).
+static int16_t LogOfEnergyInQ8(uint32_t energy, int q_domain) {
+ static const int16_t kLogLowValue = PART_LEN_SHIFT << 7;
+ int16_t log_energy_q8 = kLogLowValue;
+ if (energy > 0) {
+ int zeros = WebRtcSpl_NormU32(energy);
+ int16_t frac = ExtractFractionPart(energy, zeros);
+ // log2 of |energy| in Q8.
+ log_energy_q8 += ((31 - zeros) << 8) + frac - (q_domain << 8);
+ }
+ return log_energy_q8;
+}
+
+// WebRtcAecm_CalcEnergies(...)
+//
+// This function calculates the log of energies for nearend, farend and estimated
+// echoes. There is also an update of energy decision levels, i.e. internal VAD.
+//
+//
+// @param aecm [i/o] Handle of the AECM instance.
+// @param far_spectrum [in] Pointer to farend spectrum.
+// @param far_q [in] Q-domain of farend spectrum.
+// @param nearEner [in] Near end energy for current block in
+// Q(aecm->dfaQDomain).
+// @param echoEst [out] Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16).
+//
+void WebRtcAecm_CalcEnergies(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ const int16_t far_q,
+ const uint32_t nearEner,
+ int32_t* echoEst) {
+ // Local variables
+ uint32_t tmpAdapt = 0;
+ uint32_t tmpStored = 0;
+ uint32_t tmpFar = 0;
+
+ int i;
+
+ int16_t tmp16;
+ int16_t increase_max_shifts = 4;
+ int16_t decrease_max_shifts = 11;
+ int16_t increase_min_shifts = 11;
+ int16_t decrease_min_shifts = 3;
+
+ // Get log of near end energy and store in buffer
+
+ // Shift buffer
+ memmove(aecm->nearLogEnergy + 1, aecm->nearLogEnergy,
+ sizeof(int16_t) * (MAX_BUF_LEN - 1));
+
+ // Logarithm of integrated magnitude spectrum (nearEner)
+ aecm->nearLogEnergy[0] = LogOfEnergyInQ8(nearEner, aecm->dfaNoisyQDomain);
+
+ WebRtcAecm_CalcLinearEnergies(aecm, far_spectrum, echoEst, &tmpFar, &tmpAdapt, &tmpStored);
+
+ // Shift buffers
+ memmove(aecm->echoAdaptLogEnergy + 1, aecm->echoAdaptLogEnergy,
+ sizeof(int16_t) * (MAX_BUF_LEN - 1));
+ memmove(aecm->echoStoredLogEnergy + 1, aecm->echoStoredLogEnergy,
+ sizeof(int16_t) * (MAX_BUF_LEN - 1));
+
+ // Logarithm of delayed far end energy
+ aecm->farLogEnergy = LogOfEnergyInQ8(tmpFar, far_q);
+
+ // Logarithm of estimated echo energy through adapted channel
+ aecm->echoAdaptLogEnergy[0] = LogOfEnergyInQ8(tmpAdapt,
+ RESOLUTION_CHANNEL16 + far_q);
+
+ // Logarithm of estimated echo energy through stored channel
+ aecm->echoStoredLogEnergy[0] =
+ LogOfEnergyInQ8(tmpStored, RESOLUTION_CHANNEL16 + far_q);
+
+ // Update farend energy levels (min, max, vad, mse)
+ if (aecm->farLogEnergy > FAR_ENERGY_MIN)
+ {
+ if (aecm->startupState == 0)
+ {
+ increase_max_shifts = 2;
+ decrease_min_shifts = 2;
+ increase_min_shifts = 8;
+ }
+
+ aecm->farEnergyMin = WebRtcAecm_AsymFilt(aecm->farEnergyMin, aecm->farLogEnergy,
+ increase_min_shifts, decrease_min_shifts);
+ aecm->farEnergyMax = WebRtcAecm_AsymFilt(aecm->farEnergyMax, aecm->farLogEnergy,
+ increase_max_shifts, decrease_max_shifts);
+ aecm->farEnergyMaxMin = (aecm->farEnergyMax - aecm->farEnergyMin);
+
+ // Dynamic VAD region size
+ tmp16 = 2560 - aecm->farEnergyMin;
+ if (tmp16 > 0)
+ {
+ tmp16 = (int16_t)((tmp16 * FAR_ENERGY_VAD_REGION) >> 9);
+ } else
+ {
+ tmp16 = 0;
+ }
+ tmp16 += FAR_ENERGY_VAD_REGION;
+
+ if ((aecm->startupState == 0) | (aecm->vadUpdateCount > 1024))
+ {
+ // In startup phase or VAD update halted
+ aecm->farEnergyVAD = aecm->farEnergyMin + tmp16;
+ } else
+ {
+ if (aecm->farEnergyVAD > aecm->farLogEnergy)
+ {
+ aecm->farEnergyVAD +=
+ (aecm->farLogEnergy + tmp16 - aecm->farEnergyVAD) >> 6;
+ aecm->vadUpdateCount = 0;
+ } else
+ {
+ aecm->vadUpdateCount++;
+ }
+ }
+ // Put MSE threshold higher than VAD
+ aecm->farEnergyMSE = aecm->farEnergyVAD + (1 << 8);
+ }
+
+ // Update VAD variables
+ if (aecm->farLogEnergy > aecm->farEnergyVAD)
+ {
+ if ((aecm->startupState == 0) | (aecm->farEnergyMaxMin > FAR_ENERGY_DIFF))
+ {
+ // We are in startup or have significant dynamics in input speech level
+ aecm->currentVADValue = 1;
+ }
+ } else
+ {
+ aecm->currentVADValue = 0;
+ }
+ if ((aecm->currentVADValue) && (aecm->firstVAD))
+ {
+ aecm->firstVAD = 0;
+ if (aecm->echoAdaptLogEnergy[0] > aecm->nearLogEnergy[0])
+ {
+ // The estimated echo has higher energy than the near end signal.
+ // This means that the initialization was too aggressive. Scale
+ // down by a factor 8
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ aecm->channelAdapt16[i] >>= 3;
+ }
+ // Compensate the adapted echo energy level accordingly.
+ aecm->echoAdaptLogEnergy[0] -= (3 << 8);
+ aecm->firstVAD = 1;
+ }
+ }
+}
+
+// WebRtcAecm_CalcStepSize(...)
+//
+// This function calculates the step size used in channel estimation
+//
+//
+// @param aecm [in] Handle of the AECM instance.
+// @param mu [out] (Return value) Stepsize in log2(), i.e. number of shifts.
+//
+//
+int16_t WebRtcAecm_CalcStepSize(AecmCore* const aecm) {
+ int32_t tmp32;
+ int16_t tmp16;
+ int16_t mu = MU_MAX;
+
+ // Here we calculate the step size mu used in the
+ // following NLMS based Channel estimation algorithm
+ if (!aecm->currentVADValue)
+ {
+ // Far end energy level too low, no channel update
+ mu = 0;
+ } else if (aecm->startupState > 0)
+ {
+ if (aecm->farEnergyMin >= aecm->farEnergyMax)
+ {
+ mu = MU_MIN;
+ } else
+ {
+ tmp16 = (aecm->farLogEnergy - aecm->farEnergyMin);
+ tmp32 = tmp16 * MU_DIFF;
+ tmp32 = WebRtcSpl_DivW32W16(tmp32, aecm->farEnergyMaxMin);
+ mu = MU_MIN - 1 - (int16_t)(tmp32);
+ // The -1 is an alternative to rounding. This way we get a larger
+ // stepsize, so we in some sense compensate for truncation in NLMS
+ }
+ if (mu < MU_MAX)
+ {
+ mu = MU_MAX; // Equivalent with maximum step size of 2^-MU_MAX
+ }
+ }
+
+ return mu;
+}
+
+// WebRtcAecm_UpdateChannel(...)
+//
+// This function performs channel estimation. NLMS and decision on channel storage.
+//
+//
+// @param aecm [i/o] Handle of the AECM instance.
+// @param far_spectrum [in] Absolute value of the farend signal in Q(far_q)
+// @param far_q [in] Q-domain of the farend signal
+// @param dfa [in] Absolute value of the nearend signal (Q[aecm->dfaQDomain])
+// @param mu [in] NLMS step size.
+// @param echoEst [i/o] Estimated echo in Q(far_q+RESOLUTION_CHANNEL16).
+//
+void WebRtcAecm_UpdateChannel(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ const int16_t far_q,
+ const uint16_t* const dfa,
+ const int16_t mu,
+ int32_t* echoEst) {
+ uint32_t tmpU32no1, tmpU32no2;
+ int32_t tmp32no1, tmp32no2;
+ int32_t mseStored;
+ int32_t mseAdapt;
+
+ int i;
+
+ int16_t zerosFar, zerosNum, zerosCh, zerosDfa;
+ int16_t shiftChFar, shiftNum, shift2ResChan;
+ int16_t tmp16no1;
+ int16_t xfaQ, dfaQ;
+
+ // This is the channel estimation algorithm. It is base on NLMS but has a variable step
+ // length, which was calculated above.
+ if (mu)
+ {
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ // Determine norm of channel and farend to make sure we don't get overflow in
+ // multiplication
+ zerosCh = WebRtcSpl_NormU32(aecm->channelAdapt32[i]);
+ zerosFar = WebRtcSpl_NormU32((uint32_t)far_spectrum[i]);
+ if (zerosCh + zerosFar > 31)
+ {
+ // Multiplication is safe
+ tmpU32no1 = WEBRTC_SPL_UMUL_32_16(aecm->channelAdapt32[i],
+ far_spectrum[i]);
+ shiftChFar = 0;
+ } else
+ {
+ // We need to shift down before multiplication
+ shiftChFar = 32 - zerosCh - zerosFar;
+ tmpU32no1 = (aecm->channelAdapt32[i] >> shiftChFar) *
+ far_spectrum[i];
+ }
+ // Determine Q-domain of numerator
+ zerosNum = WebRtcSpl_NormU32(tmpU32no1);
+ if (dfa[i])
+ {
+ zerosDfa = WebRtcSpl_NormU32((uint32_t)dfa[i]);
+ } else
+ {
+ zerosDfa = 32;
+ }
+ tmp16no1 = zerosDfa - 2 + aecm->dfaNoisyQDomain -
+ RESOLUTION_CHANNEL32 - far_q + shiftChFar;
+ if (zerosNum > tmp16no1 + 1)
+ {
+ xfaQ = tmp16no1;
+ dfaQ = zerosDfa - 2;
+ } else
+ {
+ xfaQ = zerosNum - 2;
+ dfaQ = RESOLUTION_CHANNEL32 + far_q - aecm->dfaNoisyQDomain -
+ shiftChFar + xfaQ;
+ }
+ // Add in the same Q-domain
+ tmpU32no1 = WEBRTC_SPL_SHIFT_W32(tmpU32no1, xfaQ);
+ tmpU32no2 = WEBRTC_SPL_SHIFT_W32((uint32_t)dfa[i], dfaQ);
+ tmp32no1 = (int32_t)tmpU32no2 - (int32_t)tmpU32no1;
+ zerosNum = WebRtcSpl_NormW32(tmp32no1);
+ if ((tmp32no1) && (far_spectrum[i] > (CHANNEL_VAD << far_q)))
+ {
+ //
+ // Update is needed
+ //
+ // This is what we would like to compute
+ //
+ // tmp32no1 = dfa[i] - (aecm->channelAdapt[i] * far_spectrum[i])
+ // tmp32norm = (i + 1)
+ // aecm->channelAdapt[i] += (2^mu) * tmp32no1
+ // / (tmp32norm * far_spectrum[i])
+ //
+
+ // Make sure we don't get overflow in multiplication.
+ if (zerosNum + zerosFar > 31)
+ {
+ if (tmp32no1 > 0)
+ {
+ tmp32no2 = (int32_t)WEBRTC_SPL_UMUL_32_16(tmp32no1,
+ far_spectrum[i]);
+ } else
+ {
+ tmp32no2 = -(int32_t)WEBRTC_SPL_UMUL_32_16(-tmp32no1,
+ far_spectrum[i]);
+ }
+ shiftNum = 0;
+ } else
+ {
+ shiftNum = 32 - (zerosNum + zerosFar);
+ if (tmp32no1 > 0)
+ {
+ tmp32no2 = (tmp32no1 >> shiftNum) * far_spectrum[i];
+ } else
+ {
+ tmp32no2 = -((-tmp32no1 >> shiftNum) * far_spectrum[i]);
+ }
+ }
+ // Normalize with respect to frequency bin
+ tmp32no2 = WebRtcSpl_DivW32W16(tmp32no2, i + 1);
+ // Make sure we are in the right Q-domain
+ shift2ResChan = shiftNum + shiftChFar - xfaQ - mu - ((30 - zerosFar) << 1);
+ if (WebRtcSpl_NormW32(tmp32no2) < shift2ResChan)
+ {
+ tmp32no2 = WEBRTC_SPL_WORD32_MAX;
+ } else
+ {
+ tmp32no2 = WEBRTC_SPL_SHIFT_W32(tmp32no2, shift2ResChan);
+ }
+ aecm->channelAdapt32[i] =
+ WebRtcSpl_AddSatW32(aecm->channelAdapt32[i], tmp32no2);
+ if (aecm->channelAdapt32[i] < 0)
+ {
+ // We can never have negative channel gain
+ aecm->channelAdapt32[i] = 0;
+ }
+ aecm->channelAdapt16[i] =
+ (int16_t)(aecm->channelAdapt32[i] >> 16);
+ }
+ }
+ }
+ // END: Adaptive channel update
+
+ // Determine if we should store or restore the channel
+ if ((aecm->startupState == 0) & (aecm->currentVADValue))
+ {
+ // During startup we store the channel every block,
+ // and we recalculate echo estimate
+ WebRtcAecm_StoreAdaptiveChannel(aecm, far_spectrum, echoEst);
+ } else
+ {
+ if (aecm->farLogEnergy < aecm->farEnergyMSE)
+ {
+ aecm->mseChannelCount = 0;
+ } else
+ {
+ aecm->mseChannelCount++;
+ }
+ // Enough data for validation. Store channel if we can.
+ if (aecm->mseChannelCount >= (MIN_MSE_COUNT + 10))
+ {
+ // We have enough data.
+ // Calculate MSE of "Adapt" and "Stored" versions.
+ // It is actually not MSE, but average absolute error.
+ mseStored = 0;
+ mseAdapt = 0;
+ for (i = 0; i < MIN_MSE_COUNT; i++)
+ {
+ tmp32no1 = ((int32_t)aecm->echoStoredLogEnergy[i]
+ - (int32_t)aecm->nearLogEnergy[i]);
+ tmp32no2 = WEBRTC_SPL_ABS_W32(tmp32no1);
+ mseStored += tmp32no2;
+
+ tmp32no1 = ((int32_t)aecm->echoAdaptLogEnergy[i]
+ - (int32_t)aecm->nearLogEnergy[i]);
+ tmp32no2 = WEBRTC_SPL_ABS_W32(tmp32no1);
+ mseAdapt += tmp32no2;
+ }
+ if (((mseStored << MSE_RESOLUTION) < (MIN_MSE_DIFF * mseAdapt))
+ & ((aecm->mseStoredOld << MSE_RESOLUTION) < (MIN_MSE_DIFF
+ * aecm->mseAdaptOld)))
+ {
+ // The stored channel has a significantly lower MSE than the adaptive one for
+ // two consecutive calculations. Reset the adaptive channel.
+ WebRtcAecm_ResetAdaptiveChannel(aecm);
+ } else if (((MIN_MSE_DIFF * mseStored) > (mseAdapt << MSE_RESOLUTION)) & (mseAdapt
+ < aecm->mseThreshold) & (aecm->mseAdaptOld < aecm->mseThreshold))
+ {
+ // The adaptive channel has a significantly lower MSE than the stored one.
+ // The MSE for the adaptive channel has also been low for two consecutive
+ // calculations. Store the adaptive channel.
+ WebRtcAecm_StoreAdaptiveChannel(aecm, far_spectrum, echoEst);
+
+ // Update threshold
+ if (aecm->mseThreshold == WEBRTC_SPL_WORD32_MAX)
+ {
+ aecm->mseThreshold = (mseAdapt + aecm->mseAdaptOld);
+ } else
+ {
+ int scaled_threshold = aecm->mseThreshold * 5 / 8;
+ aecm->mseThreshold +=
+ ((mseAdapt - scaled_threshold) * 205) >> 8;
+ }
+
+ }
+
+ // Reset counter
+ aecm->mseChannelCount = 0;
+
+ // Store the MSE values.
+ aecm->mseStoredOld = mseStored;
+ aecm->mseAdaptOld = mseAdapt;
+ }
+ }
+ // END: Determine if we should store or reset channel estimate.
+}
+
+// CalcSuppressionGain(...)
+//
+// This function calculates the suppression gain that is used in the Wiener filter.
+//
+//
+// @param aecm [i/n] Handle of the AECM instance.
+// @param supGain [out] (Return value) Suppression gain with which to scale the noise
+// level (Q14).
+//
+//
+int16_t WebRtcAecm_CalcSuppressionGain(AecmCore* const aecm) {
+ int32_t tmp32no1;
+
+ int16_t supGain = SUPGAIN_DEFAULT;
+ int16_t tmp16no1;
+ int16_t dE = 0;
+
+ // Determine suppression gain used in the Wiener filter. The gain is based on a mix of far
+ // end energy and echo estimation error.
+ // Adjust for the far end signal level. A low signal level indicates no far end signal,
+ // hence we set the suppression gain to 0
+ if (!aecm->currentVADValue)
+ {
+ supGain = 0;
+ } else
+ {
+ // Adjust for possible double talk. If we have large variations in estimation error we
+ // likely have double talk (or poor channel).
+ tmp16no1 = (aecm->nearLogEnergy[0] - aecm->echoStoredLogEnergy[0] - ENERGY_DEV_OFFSET);
+ dE = WEBRTC_SPL_ABS_W16(tmp16no1);
+
+ if (dE < ENERGY_DEV_TOL)
+ {
+ // Likely no double talk. The better estimation, the more we can suppress signal.
+ // Update counters
+ if (dE < SUPGAIN_EPC_DT)
+ {
+ tmp32no1 = aecm->supGainErrParamDiffAB * dE;
+ tmp32no1 += (SUPGAIN_EPC_DT >> 1);
+ tmp16no1 = (int16_t)WebRtcSpl_DivW32W16(tmp32no1, SUPGAIN_EPC_DT);
+ supGain = aecm->supGainErrParamA - tmp16no1;
+ } else
+ {
+ tmp32no1 = aecm->supGainErrParamDiffBD * (ENERGY_DEV_TOL - dE);
+ tmp32no1 += ((ENERGY_DEV_TOL - SUPGAIN_EPC_DT) >> 1);
+ tmp16no1 = (int16_t)WebRtcSpl_DivW32W16(tmp32no1, (ENERGY_DEV_TOL
+ - SUPGAIN_EPC_DT));
+ supGain = aecm->supGainErrParamD + tmp16no1;
+ }
+ } else
+ {
+ // Likely in double talk. Use default value
+ supGain = aecm->supGainErrParamD;
+ }
+ }
+
+ if (supGain > aecm->supGainOld)
+ {
+ tmp16no1 = supGain;
+ } else
+ {
+ tmp16no1 = aecm->supGainOld;
+ }
+ aecm->supGainOld = supGain;
+ if (tmp16no1 < aecm->supGain)
+ {
+ aecm->supGain += (int16_t)((tmp16no1 - aecm->supGain) >> 4);
+ } else
+ {
+ aecm->supGain += (int16_t)((tmp16no1 - aecm->supGain) >> 4);
+ }
+
+ // END: Update suppression gain
+
+ return aecm->supGain;
+}
+
+void WebRtcAecm_BufferFarFrame(AecmCore* const aecm,
+ const int16_t* const farend,
+ const int farLen) {
+ int writeLen = farLen, writePos = 0;
+
+ // Check if the write position must be wrapped
+ while (aecm->farBufWritePos + writeLen > FAR_BUF_LEN)
+ {
+ // Write to remaining buffer space before wrapping
+ writeLen = FAR_BUF_LEN - aecm->farBufWritePos;
+ memcpy(aecm->farBuf + aecm->farBufWritePos, farend + writePos,
+ sizeof(int16_t) * writeLen);
+ aecm->farBufWritePos = 0;
+ writePos = writeLen;
+ writeLen = farLen - writeLen;
+ }
+
+ memcpy(aecm->farBuf + aecm->farBufWritePos, farend + writePos,
+ sizeof(int16_t) * writeLen);
+ aecm->farBufWritePos += writeLen;
+}
+
+void WebRtcAecm_FetchFarFrame(AecmCore* const aecm,
+ int16_t* const farend,
+ const int farLen,
+ const int knownDelay) {
+ int readLen = farLen;
+ int readPos = 0;
+ int delayChange = knownDelay - aecm->lastKnownDelay;
+
+ aecm->farBufReadPos -= delayChange;
+
+ // Check if delay forces a read position wrap
+ while (aecm->farBufReadPos < 0)
+ {
+ aecm->farBufReadPos += FAR_BUF_LEN;
+ }
+ while (aecm->farBufReadPos > FAR_BUF_LEN - 1)
+ {
+ aecm->farBufReadPos -= FAR_BUF_LEN;
+ }
+
+ aecm->lastKnownDelay = knownDelay;
+
+ // Check if read position must be wrapped
+ while (aecm->farBufReadPos + readLen > FAR_BUF_LEN)
+ {
+
+ // Read from remaining buffer space before wrapping
+ readLen = FAR_BUF_LEN - aecm->farBufReadPos;
+ memcpy(farend + readPos, aecm->farBuf + aecm->farBufReadPos,
+ sizeof(int16_t) * readLen);
+ aecm->farBufReadPos = 0;
+ readPos = readLen;
+ readLen = farLen - readLen;
+ }
+ memcpy(farend + readPos, aecm->farBuf + aecm->farBufReadPos,
+ sizeof(int16_t) * readLen);
+ aecm->farBufReadPos += readLen;
+}
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core.h b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core.h
new file mode 100644
index 00000000..b52bb62d
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core.h
@@ -0,0 +1,434 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+// Performs echo control (suppression) with fft routines in fixed-point.
+
+#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
+#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
+
+#include "webrtc/common_audio/ring_buffer.h"
+#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
+#include "webrtc/modules/audio_processing/aecm/aecm_defines.h"
+#include "webrtc/typedefs.h"
+
+#ifdef _MSC_VER // visual c++
+#define ALIGN8_BEG __declspec(align(8))
+#define ALIGN8_END
+#else // gcc or icc
+#define ALIGN8_BEG
+#define ALIGN8_END __attribute__((aligned(8)))
+#endif
+
+typedef struct {
+ int16_t real;
+ int16_t imag;
+} ComplexInt16;
+
+typedef struct {
+ int farBufWritePos;
+ int farBufReadPos;
+ int knownDelay;
+ int lastKnownDelay;
+ int firstVAD; // Parameter to control poorly initialized channels
+
+ RingBuffer* farFrameBuf;
+ RingBuffer* nearNoisyFrameBuf;
+ RingBuffer* nearCleanFrameBuf;
+ RingBuffer* outFrameBuf;
+
+ int16_t farBuf[FAR_BUF_LEN];
+
+ int16_t mult;
+ uint32_t seed;
+
+ // Delay estimation variables
+ void* delay_estimator_farend;
+ void* delay_estimator;
+ uint16_t currentDelay;
+ // Far end history variables
+ // TODO(bjornv): Replace |far_history| with ring_buffer.
+ uint16_t far_history[PART_LEN1 * MAX_DELAY];
+ int far_history_pos;
+ int far_q_domains[MAX_DELAY];
+
+ int16_t nlpFlag;
+ int16_t fixedDelay;
+
+ uint32_t totCount;
+
+ int16_t dfaCleanQDomain;
+ int16_t dfaCleanQDomainOld;
+ int16_t dfaNoisyQDomain;
+ int16_t dfaNoisyQDomainOld;
+
+ int16_t nearLogEnergy[MAX_BUF_LEN];
+ int16_t farLogEnergy;
+ int16_t echoAdaptLogEnergy[MAX_BUF_LEN];
+ int16_t echoStoredLogEnergy[MAX_BUF_LEN];
+
+ // The extra 16 or 32 bytes in the following buffers are for alignment based
+ // Neon code.
+ // It's designed this way since the current GCC compiler can't align a
+ // buffer in 16 or 32 byte boundaries properly.
+ int16_t channelStored_buf[PART_LEN1 + 8];
+ int16_t channelAdapt16_buf[PART_LEN1 + 8];
+ int32_t channelAdapt32_buf[PART_LEN1 + 8];
+ int16_t xBuf_buf[PART_LEN2 + 16]; // farend
+ int16_t dBufClean_buf[PART_LEN2 + 16]; // nearend
+ int16_t dBufNoisy_buf[PART_LEN2 + 16]; // nearend
+ int16_t outBuf_buf[PART_LEN + 8];
+
+ // Pointers to the above buffers
+ int16_t *channelStored;
+ int16_t *channelAdapt16;
+ int32_t *channelAdapt32;
+ int16_t *xBuf;
+ int16_t *dBufClean;
+ int16_t *dBufNoisy;
+ int16_t *outBuf;
+
+ int32_t echoFilt[PART_LEN1];
+ int16_t nearFilt[PART_LEN1];
+ int32_t noiseEst[PART_LEN1];
+ int noiseEstTooLowCtr[PART_LEN1];
+ int noiseEstTooHighCtr[PART_LEN1];
+ int16_t noiseEstCtr;
+ int16_t cngMode;
+
+ int32_t mseAdaptOld;
+ int32_t mseStoredOld;
+ int32_t mseThreshold;
+
+ int16_t farEnergyMin;
+ int16_t farEnergyMax;
+ int16_t farEnergyMaxMin;
+ int16_t farEnergyVAD;
+ int16_t farEnergyMSE;
+ int currentVADValue;
+ int16_t vadUpdateCount;
+
+ int16_t startupState;
+ int16_t mseChannelCount;
+ int16_t supGain;
+ int16_t supGainOld;
+
+ int16_t supGainErrParamA;
+ int16_t supGainErrParamD;
+ int16_t supGainErrParamDiffAB;
+ int16_t supGainErrParamDiffBD;
+
+ struct RealFFT* real_fft;
+
+#ifdef AEC_DEBUG
+ FILE *farFile;
+ FILE *nearFile;
+ FILE *outFile;
+#endif
+} AecmCore;
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_CreateCore()
+//
+// Allocates the memory needed by the AECM. The memory needs to be
+// initialized separately using the WebRtcAecm_InitCore() function.
+// Returns a pointer to the instance and a nullptr at failure.
+AecmCore* WebRtcAecm_CreateCore();
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_InitCore(...)
+//
+// This function initializes the AECM instant created with
+// WebRtcAecm_CreateCore()
+// Input:
+// - aecm : Pointer to the AECM instance
+// - samplingFreq : Sampling Frequency
+//
+// Output:
+// - aecm : Initialized instance
+//
+// Return value : 0 - Ok
+// -1 - Error
+//
+int WebRtcAecm_InitCore(AecmCore* const aecm, int samplingFreq);
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_FreeCore(...)
+//
+// This function releases the memory allocated by WebRtcAecm_CreateCore()
+// Input:
+// - aecm : Pointer to the AECM instance
+//
+void WebRtcAecm_FreeCore(AecmCore* aecm);
+
+int WebRtcAecm_Control(AecmCore* aecm, int delay, int nlpFlag);
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_InitEchoPathCore(...)
+//
+// This function resets the echo channel adaptation with the specified channel.
+// Input:
+// - aecm : Pointer to the AECM instance
+// - echo_path : Pointer to the data that should initialize the echo
+// path
+//
+// Output:
+// - aecm : Initialized instance
+//
+void WebRtcAecm_InitEchoPathCore(AecmCore* aecm, const int16_t* echo_path);
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_ProcessFrame(...)
+//
+// This function processes frames and sends blocks to
+// WebRtcAecm_ProcessBlock(...)
+//
+// Inputs:
+// - aecm : Pointer to the AECM instance
+// - farend : In buffer containing one frame of echo signal
+// - nearendNoisy : In buffer containing one frame of nearend+echo signal
+// without NS
+// - nearendClean : In buffer containing one frame of nearend+echo signal
+// with NS
+//
+// Output:
+// - out : Out buffer, one frame of nearend signal :
+//
+//
+int WebRtcAecm_ProcessFrame(AecmCore* aecm,
+ const int16_t* farend,
+ const int16_t* nearendNoisy,
+ const int16_t* nearendClean,
+ int16_t* out);
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_ProcessBlock(...)
+//
+// This function is called for every block within one frame
+// This function is called by WebRtcAecm_ProcessFrame(...)
+//
+// Inputs:
+// - aecm : Pointer to the AECM instance
+// - farend : In buffer containing one block of echo signal
+// - nearendNoisy : In buffer containing one frame of nearend+echo signal
+// without NS
+// - nearendClean : In buffer containing one frame of nearend+echo signal
+// with NS
+//
+// Output:
+// - out : Out buffer, one block of nearend signal :
+//
+//
+int WebRtcAecm_ProcessBlock(AecmCore* aecm,
+ const int16_t* farend,
+ const int16_t* nearendNoisy,
+ const int16_t* noisyClean,
+ int16_t* out);
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_BufferFarFrame()
+//
+// Inserts a frame of data into farend buffer.
+//
+// Inputs:
+// - aecm : Pointer to the AECM instance
+// - farend : In buffer containing one frame of farend signal
+// - farLen : Length of frame
+//
+void WebRtcAecm_BufferFarFrame(AecmCore* const aecm,
+ const int16_t* const farend,
+ const int farLen);
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_FetchFarFrame()
+//
+// Read the farend buffer to account for known delay
+//
+// Inputs:
+// - aecm : Pointer to the AECM instance
+// - farend : In buffer containing one frame of farend signal
+// - farLen : Length of frame
+// - knownDelay : known delay
+//
+void WebRtcAecm_FetchFarFrame(AecmCore* const aecm,
+ int16_t* const farend,
+ const int farLen,
+ const int knownDelay);
+
+// All the functions below are intended to be private
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_UpdateFarHistory()
+//
+// Moves the pointer to the next entry and inserts |far_spectrum| and
+// corresponding Q-domain in its buffer.
+//
+// Inputs:
+// - self : Pointer to the delay estimation instance
+// - far_spectrum : Pointer to the far end spectrum
+// - far_q : Q-domain of far end spectrum
+//
+void WebRtcAecm_UpdateFarHistory(AecmCore* self,
+ uint16_t* far_spectrum,
+ int far_q);
+
+////////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_AlignedFarend()
+//
+// Returns a pointer to the far end spectrum aligned to current near end
+// spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been
+// called before AlignedFarend(...). Otherwise, you get the pointer to the
+// previous frame. The memory is only valid until the next call of
+// WebRtc_DelayEstimatorProcessFix(...).
+//
+// Inputs:
+// - self : Pointer to the AECM instance.
+// - delay : Current delay estimate.
+//
+// Output:
+// - far_q : The Q-domain of the aligned far end spectrum
+//
+// Return value:
+// - far_spectrum : Pointer to the aligned far end spectrum
+// NULL - Error
+//
+const uint16_t* WebRtcAecm_AlignedFarend(AecmCore* self, int* far_q, int delay);
+
+///////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_CalcSuppressionGain()
+//
+// This function calculates the suppression gain that is used in the
+// Wiener filter.
+//
+// Inputs:
+// - aecm : Pointer to the AECM instance.
+//
+// Return value:
+// - supGain : Suppression gain with which to scale the noise
+// level (Q14).
+//
+int16_t WebRtcAecm_CalcSuppressionGain(AecmCore* const aecm);
+
+///////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_CalcEnergies()
+//
+// This function calculates the log of energies for nearend, farend and
+// estimated echoes. There is also an update of energy decision levels,
+// i.e. internal VAD.
+//
+// Inputs:
+// - aecm : Pointer to the AECM instance.
+// - far_spectrum : Pointer to farend spectrum.
+// - far_q : Q-domain of farend spectrum.
+// - nearEner : Near end energy for current block in
+// Q(aecm->dfaQDomain).
+//
+// Output:
+// - echoEst : Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16).
+//
+void WebRtcAecm_CalcEnergies(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ const int16_t far_q,
+ const uint32_t nearEner,
+ int32_t* echoEst);
+
+///////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_CalcStepSize()
+//
+// This function calculates the step size used in channel estimation
+//
+// Inputs:
+// - aecm : Pointer to the AECM instance.
+//
+// Return value:
+// - mu : Stepsize in log2(), i.e. number of shifts.
+//
+int16_t WebRtcAecm_CalcStepSize(AecmCore* const aecm);
+
+///////////////////////////////////////////////////////////////////////////////
+// WebRtcAecm_UpdateChannel(...)
+//
+// This function performs channel estimation.
+// NLMS and decision on channel storage.
+//
+// Inputs:
+// - aecm : Pointer to the AECM instance.
+// - far_spectrum : Absolute value of the farend signal in Q(far_q)
+// - far_q : Q-domain of the farend signal
+// - dfa : Absolute value of the nearend signal
+// (Q[aecm->dfaQDomain])
+// - mu : NLMS step size.
+// Input/Output:
+// - echoEst : Estimated echo in Q(far_q+RESOLUTION_CHANNEL16).
+//
+void WebRtcAecm_UpdateChannel(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ const int16_t far_q,
+ const uint16_t* const dfa,
+ const int16_t mu,
+ int32_t* echoEst);
+
+extern const int16_t WebRtcAecm_kCosTable[];
+extern const int16_t WebRtcAecm_kSinTable[];
+
+///////////////////////////////////////////////////////////////////////////////
+// Some function pointers, for internal functions shared by ARM NEON and
+// generic C code.
+//
+typedef void (*CalcLinearEnergies)(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echoEst,
+ uint32_t* far_energy,
+ uint32_t* echo_energy_adapt,
+ uint32_t* echo_energy_stored);
+extern CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
+
+typedef void (*StoreAdaptiveChannel)(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est);
+extern StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
+
+typedef void (*ResetAdaptiveChannel)(AecmCore* aecm);
+extern ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
+
+// For the above function pointers, functions for generic platforms are declared
+// and defined as static in file aecm_core.c, while those for ARM Neon platforms
+// are declared below and defined in file aecm_core_neon.c.
+#if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON)
+void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est,
+ uint32_t* far_energy,
+ uint32_t* echo_energy_adapt,
+ uint32_t* echo_energy_stored);
+
+void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est);
+
+void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm);
+#endif
+
+#if defined(MIPS32_LE)
+void WebRtcAecm_CalcLinearEnergies_mips(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est,
+ uint32_t* far_energy,
+ uint32_t* echo_energy_adapt,
+ uint32_t* echo_energy_stored);
+#if defined(MIPS_DSP_R1_LE)
+void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est);
+
+void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore* aecm);
+#endif
+#endif
+
+#endif
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_c.c b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_c.c
new file mode 100644
index 00000000..eb2bd918
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_c.c
@@ -0,0 +1,771 @@
+/*
+ * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdlib.h>
+
+#include "webrtc/common_audio/ring_buffer.h"
+#include "webrtc/common_audio/signal_processing/include/real_fft.h"
+#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
+#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
+#include "webrtc/system_wrappers/interface/compile_assert_c.h"
+#include "webrtc/system_wrappers/interface/cpu_features_wrapper.h"
+#include "webrtc/typedefs.h"
+
+// Square root of Hanning window in Q14.
+#if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON)
+// Table is defined in an ARM assembly file.
+extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END;
+#else
+static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
+ 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
+ 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
+ 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
+ 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
+ 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
+ 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
+ 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
+ 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
+};
+#endif
+
+#ifdef AECM_WITH_ABS_APPROX
+//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
+static const uint16_t kAlpha1 = 32584;
+//Q15 beta = 0.12967166976970 const Factor for magnitude approximation
+static const uint16_t kBeta1 = 4249;
+//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
+static const uint16_t kAlpha2 = 30879;
+//Q15 beta = 0.33787806009150 const Factor for magnitude approximation
+static const uint16_t kBeta2 = 11072;
+//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
+static const uint16_t kAlpha3 = 26951;
+//Q15 beta = 0.57762063060713 const Factor for magnitude approximation
+static const uint16_t kBeta3 = 18927;
+#endif
+
+static const int16_t kNoiseEstQDomain = 15;
+static const int16_t kNoiseEstIncCount = 5;
+
+static void ComfortNoise(AecmCore* aecm,
+ const uint16_t* dfa,
+ ComplexInt16* out,
+ const int16_t* lambda);
+
+static void WindowAndFFT(AecmCore* aecm,
+ int16_t* fft,
+ const int16_t* time_signal,
+ ComplexInt16* freq_signal,
+ int time_signal_scaling) {
+ int i = 0;
+
+ // FFT of signal
+ for (i = 0; i < PART_LEN; i++) {
+ // Window time domain signal and insert into real part of
+ // transformation array |fft|
+ int16_t scaled_time_signal = time_signal[i] << time_signal_scaling;
+ fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14);
+ scaled_time_signal = time_signal[i + PART_LEN] << time_signal_scaling;
+ fft[PART_LEN + i] = (int16_t)((
+ scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
+ }
+
+ // Do forward FFT, then take only the first PART_LEN complex samples,
+ // and change signs of the imaginary parts.
+ WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
+ for (i = 0; i < PART_LEN; i++) {
+ freq_signal[i].imag = -freq_signal[i].imag;
+ }
+}
+
+static void InverseFFTAndWindow(AecmCore* aecm,
+ int16_t* fft,
+ ComplexInt16* efw,
+ int16_t* output,
+ const int16_t* nearendClean) {
+ int i, j, outCFFT;
+ int32_t tmp32no1;
+ // Reuse |efw| for the inverse FFT output after transferring
+ // the contents to |fft|.
+ int16_t* ifft_out = (int16_t*)efw;
+
+ // Synthesis
+ for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
+ fft[j] = efw[i].real;
+ fft[j + 1] = -efw[i].imag;
+ }
+ fft[0] = efw[0].real;
+ fft[1] = -efw[0].imag;
+
+ fft[PART_LEN2] = efw[PART_LEN].real;
+ fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
+
+ // Inverse FFT. Keep outCFFT to scale the samples in the next block.
+ outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
+ for (i = 0; i < PART_LEN; i++) {
+ ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
+ ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
+ tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
+ outCFFT - aecm->dfaCleanQDomain);
+ output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
+ tmp32no1 + aecm->outBuf[i],
+ WEBRTC_SPL_WORD16_MIN);
+
+ tmp32no1 = (ifft_out[PART_LEN + i] *
+ WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
+ tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
+ outCFFT - aecm->dfaCleanQDomain);
+ aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
+ tmp32no1,
+ WEBRTC_SPL_WORD16_MIN);
+ }
+
+ // Copy the current block to the old position
+ // (aecm->outBuf is shifted elsewhere)
+ memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
+ memcpy(aecm->dBufNoisy,
+ aecm->dBufNoisy + PART_LEN,
+ sizeof(int16_t) * PART_LEN);
+ if (nearendClean != NULL)
+ {
+ memcpy(aecm->dBufClean,
+ aecm->dBufClean + PART_LEN,
+ sizeof(int16_t) * PART_LEN);
+ }
+}
+
+// Transforms a time domain signal into the frequency domain, outputting the
+// complex valued signal, absolute value and sum of absolute values.
+//
+// time_signal [in] Pointer to time domain signal
+// freq_signal_real [out] Pointer to real part of frequency domain array
+// freq_signal_imag [out] Pointer to imaginary part of frequency domain
+// array
+// freq_signal_abs [out] Pointer to absolute value of frequency domain
+// array
+// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
+// the frequency domain array
+// return value The Q-domain of current frequency values
+//
+static int TimeToFrequencyDomain(AecmCore* aecm,
+ const int16_t* time_signal,
+ ComplexInt16* freq_signal,
+ uint16_t* freq_signal_abs,
+ uint32_t* freq_signal_sum_abs) {
+ int i = 0;
+ int time_signal_scaling = 0;
+
+ int32_t tmp32no1 = 0;
+ int32_t tmp32no2 = 0;
+
+ // In fft_buf, +16 for 32-byte alignment.
+ int16_t fft_buf[PART_LEN4 + 16];
+ int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
+
+ int16_t tmp16no1;
+#ifndef WEBRTC_ARCH_ARM_V7
+ int16_t tmp16no2;
+#endif
+#ifdef AECM_WITH_ABS_APPROX
+ int16_t max_value = 0;
+ int16_t min_value = 0;
+ uint16_t alpha = 0;
+ uint16_t beta = 0;
+#endif
+
+#ifdef AECM_DYNAMIC_Q
+ tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
+ time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
+#endif
+
+ WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
+
+ // Extract imaginary and real part, calculate the magnitude for
+ // all frequency bins
+ freq_signal[0].imag = 0;
+ freq_signal[PART_LEN].imag = 0;
+ freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
+ freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
+ freq_signal[PART_LEN].real);
+ (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
+ (uint32_t)(freq_signal_abs[PART_LEN]);
+
+ for (i = 1; i < PART_LEN; i++)
+ {
+ if (freq_signal[i].real == 0)
+ {
+ freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
+ }
+ else if (freq_signal[i].imag == 0)
+ {
+ freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
+ }
+ else
+ {
+ // Approximation for magnitude of complex fft output
+ // magn = sqrt(real^2 + imag^2)
+ // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
+ //
+ // The parameters alpha and beta are stored in Q15
+
+#ifdef AECM_WITH_ABS_APPROX
+ tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
+ tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
+
+ if(tmp16no1 > tmp16no2)
+ {
+ max_value = tmp16no1;
+ min_value = tmp16no2;
+ } else
+ {
+ max_value = tmp16no2;
+ min_value = tmp16no1;
+ }
+
+ // Magnitude in Q(-6)
+ if ((max_value >> 2) > min_value)
+ {
+ alpha = kAlpha1;
+ beta = kBeta1;
+ } else if ((max_value >> 1) > min_value)
+ {
+ alpha = kAlpha2;
+ beta = kBeta2;
+ } else
+ {
+ alpha = kAlpha3;
+ beta = kBeta3;
+ }
+ tmp16no1 = (int16_t)((max_value * alpha) >> 15);
+ tmp16no2 = (int16_t)((min_value * beta) >> 15);
+ freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2;
+#else
+#ifdef WEBRTC_ARCH_ARM_V7
+ __asm __volatile(
+ "smulbb %[tmp32no1], %[real], %[real]\n\t"
+ "smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
+ :[tmp32no1]"+&r"(tmp32no1),
+ [tmp32no2]"=r"(tmp32no2)
+ :[real]"r"(freq_signal[i].real),
+ [imag]"r"(freq_signal[i].imag)
+ );
+#else
+ tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
+ tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
+ tmp32no1 = tmp16no1 * tmp16no1;
+ tmp32no2 = tmp16no2 * tmp16no2;
+ tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
+#endif // WEBRTC_ARCH_ARM_V7
+ tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
+
+ freq_signal_abs[i] = (uint16_t)tmp32no1;
+#endif // AECM_WITH_ABS_APPROX
+ }
+ (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
+ }
+
+ return time_signal_scaling;
+}
+
+int WebRtcAecm_ProcessBlock(AecmCore* aecm,
+ const int16_t* farend,
+ const int16_t* nearendNoisy,
+ const int16_t* nearendClean,
+ int16_t* output) {
+ int i;
+
+ uint32_t xfaSum;
+ uint32_t dfaNoisySum;
+ uint32_t dfaCleanSum;
+ uint32_t echoEst32Gained;
+ uint32_t tmpU32;
+
+ int32_t tmp32no1;
+
+ uint16_t xfa[PART_LEN1];
+ uint16_t dfaNoisy[PART_LEN1];
+ uint16_t dfaClean[PART_LEN1];
+ uint16_t* ptrDfaClean = dfaClean;
+ const uint16_t* far_spectrum_ptr = NULL;
+
+ // 32 byte aligned buffers (with +8 or +16).
+ // TODO(kma): define fft with ComplexInt16.
+ int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
+ int32_t echoEst32_buf[PART_LEN1 + 8];
+ int32_t dfw_buf[PART_LEN2 + 8];
+ int32_t efw_buf[PART_LEN2 + 8];
+
+ int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31);
+ int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
+ ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31);
+ ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31);
+
+ int16_t hnl[PART_LEN1];
+ int16_t numPosCoef = 0;
+ int16_t nlpGain = ONE_Q14;
+ int delay;
+ int16_t tmp16no1;
+ int16_t tmp16no2;
+ int16_t mu;
+ int16_t supGain;
+ int16_t zeros32, zeros16;
+ int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
+ int far_q;
+ int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff;
+
+ const int kMinPrefBand = 4;
+ const int kMaxPrefBand = 24;
+ int32_t avgHnl32 = 0;
+
+ // Determine startup state. There are three states:
+ // (0) the first CONV_LEN blocks
+ // (1) another CONV_LEN blocks
+ // (2) the rest
+
+ if (aecm->startupState < 2)
+ {
+ aecm->startupState = (aecm->totCount >= CONV_LEN) +
+ (aecm->totCount >= CONV_LEN2);
+ }
+ // END: Determine startup state
+
+ // Buffer near and far end signals
+ memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
+ memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
+ if (nearendClean != NULL)
+ {
+ memcpy(aecm->dBufClean + PART_LEN,
+ nearendClean,
+ sizeof(int16_t) * PART_LEN);
+ }
+
+ // Transform far end signal from time domain to frequency domain.
+ far_q = TimeToFrequencyDomain(aecm,
+ aecm->xBuf,
+ dfw,
+ xfa,
+ &xfaSum);
+
+ // Transform noisy near end signal from time domain to frequency domain.
+ zerosDBufNoisy = TimeToFrequencyDomain(aecm,
+ aecm->dBufNoisy,
+ dfw,
+ dfaNoisy,
+ &dfaNoisySum);
+ aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
+ aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
+
+
+ if (nearendClean == NULL)
+ {
+ ptrDfaClean = dfaNoisy;
+ aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
+ aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
+ dfaCleanSum = dfaNoisySum;
+ } else
+ {
+ // Transform clean near end signal from time domain to frequency domain.
+ zerosDBufClean = TimeToFrequencyDomain(aecm,
+ aecm->dBufClean,
+ dfw,
+ dfaClean,
+ &dfaCleanSum);
+ aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
+ aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
+ }
+
+ // Get the delay
+ // Save far-end history and estimate delay
+ WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
+ if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend,
+ xfa,
+ PART_LEN1,
+ far_q) == -1) {
+ return -1;
+ }
+ delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
+ dfaNoisy,
+ PART_LEN1,
+ zerosDBufNoisy);
+ if (delay == -1)
+ {
+ return -1;
+ }
+ else if (delay == -2)
+ {
+ // If the delay is unknown, we assume zero.
+ // NOTE: this will have to be adjusted if we ever add lookahead.
+ delay = 0;
+ }
+
+ if (aecm->fixedDelay >= 0)
+ {
+ // Use fixed delay
+ delay = aecm->fixedDelay;
+ }
+
+ // Get aligned far end spectrum
+ far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
+ zerosXBuf = (int16_t) far_q;
+ if (far_spectrum_ptr == NULL)
+ {
+ return -1;
+ }
+
+ // Calculate log(energy) and update energy threshold levels
+ WebRtcAecm_CalcEnergies(aecm,
+ far_spectrum_ptr,
+ zerosXBuf,
+ dfaNoisySum,
+ echoEst32);
+
+ // Calculate stepsize
+ mu = WebRtcAecm_CalcStepSize(aecm);
+
+ // Update counters
+ aecm->totCount++;
+
+ // This is the channel estimation algorithm.
+ // It is base on NLMS but has a variable step length,
+ // which was calculated above.
+ WebRtcAecm_UpdateChannel(aecm,
+ far_spectrum_ptr,
+ zerosXBuf,
+ dfaNoisy,
+ mu,
+ echoEst32);
+ supGain = WebRtcAecm_CalcSuppressionGain(aecm);
+
+
+ // Calculate Wiener filter hnl[]
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ // Far end signal through channel estimate in Q8
+ // How much can we shift right to preserve resolution
+ tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
+ aecm->echoFilt[i] += (tmp32no1 * 50) >> 8;
+
+ zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
+ zeros16 = WebRtcSpl_NormW16(supGain) + 1;
+ if (zeros32 + zeros16 > 16)
+ {
+ // Multiplication is safe
+ // Result in
+ // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
+ // aecm->xfaQDomainBuf[diff])
+ echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
+ (uint16_t)supGain);
+ resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
+ resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
+ } else
+ {
+ tmp16no1 = 17 - zeros32 - zeros16;
+ resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
+ RESOLUTION_SUPGAIN;
+ resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
+ if (zeros32 > tmp16no1)
+ {
+ echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
+ supGain >> tmp16no1);
+ } else
+ {
+ // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
+ echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
+ }
+ }
+
+ zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
+ assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative.
+ dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
+ if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
+ tmp16no1 = aecm->nearFilt[i] << zeros16;
+ qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
+ tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
+ } else {
+ tmp16no1 = dfa_clean_q_domain_diff < 0
+ ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
+ : aecm->nearFilt[i] << dfa_clean_q_domain_diff;
+ qDomainDiff = 0;
+ tmp16no2 = ptrDfaClean[i];
+ }
+ tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
+ tmp16no2 = (int16_t)(tmp32no1 >> 4);
+ tmp16no2 += tmp16no1;
+ zeros16 = WebRtcSpl_NormW16(tmp16no2);
+ if ((tmp16no2) & (-qDomainDiff > zeros16)) {
+ aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
+ } else {
+ aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff
+ : tmp16no2 >> qDomainDiff;
+ }
+
+ // Wiener filter coefficients, resulting hnl in Q14
+ if (echoEst32Gained == 0)
+ {
+ hnl[i] = ONE_Q14;
+ } else if (aecm->nearFilt[i] == 0)
+ {
+ hnl[i] = 0;
+ } else
+ {
+ // Multiply the suppression gain
+ // Rounding
+ echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
+ tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
+ (uint16_t)aecm->nearFilt[i]);
+
+ // Current resolution is
+ // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
+ // Make sure we are in Q14
+ tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
+ if (tmp32no1 > ONE_Q14)
+ {
+ hnl[i] = 0;
+ } else if (tmp32no1 < 0)
+ {
+ hnl[i] = ONE_Q14;
+ } else
+ {
+ // 1-echoEst/dfa
+ hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
+ if (hnl[i] < 0)
+ {
+ hnl[i] = 0;
+ }
+ }
+ }
+ if (hnl[i])
+ {
+ numPosCoef++;
+ }
+ }
+ // Only in wideband. Prevent the gain in upper band from being larger than
+ // in lower band.
+ if (aecm->mult == 2)
+ {
+ // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
+ // speech distortion in double-talk.
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14);
+ }
+
+ for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
+ {
+ avgHnl32 += (int32_t)hnl[i];
+ }
+ assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
+ avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
+
+ for (i = kMaxPrefBand; i < PART_LEN1; i++)
+ {
+ if (hnl[i] > (int16_t)avgHnl32)
+ {
+ hnl[i] = (int16_t)avgHnl32;
+ }
+ }
+ }
+
+ // Calculate NLP gain, result is in Q14
+ if (aecm->nlpFlag)
+ {
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ // Truncate values close to zero and one.
+ if (hnl[i] > NLP_COMP_HIGH)
+ {
+ hnl[i] = ONE_Q14;
+ } else if (hnl[i] < NLP_COMP_LOW)
+ {
+ hnl[i] = 0;
+ }
+
+ // Remove outliers
+ if (numPosCoef < 3)
+ {
+ nlpGain = 0;
+ } else
+ {
+ nlpGain = ONE_Q14;
+ }
+
+ // NLP
+ if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
+ {
+ hnl[i] = ONE_Q14;
+ } else
+ {
+ hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14);
+ }
+
+ // multiply with Wiener coefficients
+ efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
+ hnl[i], 14));
+ efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
+ hnl[i], 14));
+ }
+ }
+ else
+ {
+ // multiply with Wiener coefficients
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
+ hnl[i], 14));
+ efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
+ hnl[i], 14));
+ }
+ }
+
+ if (aecm->cngMode == AecmTrue)
+ {
+ ComfortNoise(aecm, ptrDfaClean, efw, hnl);
+ }
+
+ InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
+
+ return 0;
+}
+
+static void ComfortNoise(AecmCore* aecm,
+ const uint16_t* dfa,
+ ComplexInt16* out,
+ const int16_t* lambda) {
+ int16_t i;
+ int16_t tmp16;
+ int32_t tmp32;
+
+ int16_t randW16[PART_LEN];
+ int16_t uReal[PART_LEN1];
+ int16_t uImag[PART_LEN1];
+ int32_t outLShift32;
+ int16_t noiseRShift16[PART_LEN1];
+
+ int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
+ int16_t minTrackShift;
+
+ assert(shiftFromNearToNoise >= 0);
+ assert(shiftFromNearToNoise < 16);
+
+ if (aecm->noiseEstCtr < 100)
+ {
+ // Track the minimum more quickly initially.
+ aecm->noiseEstCtr++;
+ minTrackShift = 6;
+ } else
+ {
+ minTrackShift = 9;
+ }
+
+ // Estimate noise power.
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ // Shift to the noise domain.
+ tmp32 = (int32_t)dfa[i];
+ outLShift32 = tmp32 << shiftFromNearToNoise;
+
+ if (outLShift32 < aecm->noiseEst[i])
+ {
+ // Reset "too low" counter
+ aecm->noiseEstTooLowCtr[i] = 0;
+ // Track the minimum.
+ if (aecm->noiseEst[i] < (1 << minTrackShift))
+ {
+ // For small values, decrease noiseEst[i] every
+ // |kNoiseEstIncCount| block. The regular approach below can not
+ // go further down due to truncation.
+ aecm->noiseEstTooHighCtr[i]++;
+ if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
+ {
+ aecm->noiseEst[i]--;
+ aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
+ }
+ }
+ else
+ {
+ aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32)
+ >> minTrackShift);
+ }
+ } else
+ {
+ // Reset "too high" counter
+ aecm->noiseEstTooHighCtr[i] = 0;
+ // Ramp slowly upwards until we hit the minimum again.
+ if ((aecm->noiseEst[i] >> 19) > 0)
+ {
+ // Avoid overflow.
+ // Multiplication with 2049 will cause wrap around. Scale
+ // down first and then multiply
+ aecm->noiseEst[i] >>= 11;
+ aecm->noiseEst[i] *= 2049;
+ }
+ else if ((aecm->noiseEst[i] >> 11) > 0)
+ {
+ // Large enough for relative increase
+ aecm->noiseEst[i] *= 2049;
+ aecm->noiseEst[i] >>= 11;
+ }
+ else
+ {
+ // Make incremental increases based on size every
+ // |kNoiseEstIncCount| block
+ aecm->noiseEstTooLowCtr[i]++;
+ if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
+ {
+ aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
+ aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
+ }
+ }
+ }
+ }
+
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
+ if (tmp32 > 32767)
+ {
+ tmp32 = 32767;
+ aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
+ }
+ noiseRShift16[i] = (int16_t)tmp32;
+
+ tmp16 = ONE_Q14 - lambda[i];
+ noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14);
+ }
+
+ // Generate a uniform random array on [0 2^15-1].
+ WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
+
+ // Generate noise according to estimated energy.
+ uReal[0] = 0; // Reject LF noise.
+ uImag[0] = 0;
+ for (i = 1; i < PART_LEN1; i++)
+ {
+ // Get a random index for the cos and sin tables over [0 359].
+ tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15);
+
+ // Tables are in Q13.
+ uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >>
+ 13);
+ uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >>
+ 13);
+ }
+ uImag[PART_LEN] = 0;
+
+ for (i = 0; i < PART_LEN1; i++)
+ {
+ out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
+ out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
+ }
+}
+
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_mips.c b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_mips.c
new file mode 100644
index 00000000..3c2343a8
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_mips.c
@@ -0,0 +1,1566 @@
+/*
+ * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
+
+#include <assert.h>
+
+#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
+#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
+
+static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
+ 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
+ 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
+ 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
+ 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
+ 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
+ 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
+ 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
+ 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
+};
+
+static const int16_t kNoiseEstQDomain = 15;
+static const int16_t kNoiseEstIncCount = 5;
+
+static int16_t coefTable[] = {
+ 0, 4, 256, 260, 128, 132, 384, 388,
+ 64, 68, 320, 324, 192, 196, 448, 452,
+ 32, 36, 288, 292, 160, 164, 416, 420,
+ 96, 100, 352, 356, 224, 228, 480, 484,
+ 16, 20, 272, 276, 144, 148, 400, 404,
+ 80, 84, 336, 340, 208, 212, 464, 468,
+ 48, 52, 304, 308, 176, 180, 432, 436,
+ 112, 116, 368, 372, 240, 244, 496, 500,
+ 8, 12, 264, 268, 136, 140, 392, 396,
+ 72, 76, 328, 332, 200, 204, 456, 460,
+ 40, 44, 296, 300, 168, 172, 424, 428,
+ 104, 108, 360, 364, 232, 236, 488, 492,
+ 24, 28, 280, 284, 152, 156, 408, 412,
+ 88, 92, 344, 348, 216, 220, 472, 476,
+ 56, 60, 312, 316, 184, 188, 440, 444,
+ 120, 124, 376, 380, 248, 252, 504, 508
+};
+
+static int16_t coefTable_ifft[] = {
+ 0, 512, 256, 508, 128, 252, 384, 380,
+ 64, 124, 320, 444, 192, 188, 448, 316,
+ 32, 60, 288, 476, 160, 220, 416, 348,
+ 96, 92, 352, 412, 224, 156, 480, 284,
+ 16, 28, 272, 492, 144, 236, 400, 364,
+ 80, 108, 336, 428, 208, 172, 464, 300,
+ 48, 44, 304, 460, 176, 204, 432, 332,
+ 112, 76, 368, 396, 240, 140, 496, 268,
+ 8, 12, 264, 500, 136, 244, 392, 372,
+ 72, 116, 328, 436, 200, 180, 456, 308,
+ 40, 52, 296, 468, 168, 212, 424, 340,
+ 104, 84, 360, 404, 232, 148, 488, 276,
+ 24, 20, 280, 484, 152, 228, 408, 356,
+ 88, 100, 344, 420, 216, 164, 472, 292,
+ 56, 36, 312, 452, 184, 196, 440, 324,
+ 120, 68, 376, 388, 248, 132, 504, 260
+};
+
+static void ComfortNoise(AecmCore* aecm,
+ const uint16_t* dfa,
+ ComplexInt16* out,
+ const int16_t* lambda);
+
+static void WindowAndFFT(AecmCore* aecm,
+ int16_t* fft,
+ const int16_t* time_signal,
+ ComplexInt16* freq_signal,
+ int time_signal_scaling) {
+ int i, j;
+ int32_t tmp1, tmp2, tmp3, tmp4;
+ int16_t* pfrfi;
+ ComplexInt16* pfreq_signal;
+ int16_t f_coef, s_coef;
+ int32_t load_ptr, store_ptr1, store_ptr2, shift, shift1;
+ int32_t hann, hann1, coefs;
+
+ memset(fft, 0, sizeof(int16_t) * PART_LEN4);
+
+ // FFT of signal
+ __asm __volatile (
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "addiu %[shift], %[time_signal_scaling], -14 \n\t"
+ "addiu %[i], $zero, 64 \n\t"
+ "addiu %[load_ptr], %[time_signal], 0 \n\t"
+ "addiu %[hann], %[hanning], 0 \n\t"
+ "addiu %[hann1], %[hanning], 128 \n\t"
+ "addiu %[coefs], %[coefTable], 0 \n\t"
+ "bltz %[shift], 2f \n\t"
+ " negu %[shift1], %[shift] \n\t"
+ "1: \n\t"
+ "lh %[tmp1], 0(%[load_ptr]) \n\t"
+ "lh %[tmp2], 0(%[hann]) \n\t"
+ "lh %[tmp3], 128(%[load_ptr]) \n\t"
+ "lh %[tmp4], 0(%[hann1]) \n\t"
+ "addiu %[i], %[i], -1 \n\t"
+ "mul %[tmp1], %[tmp1], %[tmp2] \n\t"
+ "mul %[tmp3], %[tmp3], %[tmp4] \n\t"
+ "lh %[f_coef], 0(%[coefs]) \n\t"
+ "lh %[s_coef], 2(%[coefs]) \n\t"
+ "addiu %[load_ptr], %[load_ptr], 2 \n\t"
+ "addiu %[hann], %[hann], 2 \n\t"
+ "addiu %[hann1], %[hann1], -2 \n\t"
+ "addu %[store_ptr1], %[fft], %[f_coef] \n\t"
+ "addu %[store_ptr2], %[fft], %[s_coef] \n\t"
+ "sllv %[tmp1], %[tmp1], %[shift] \n\t"
+ "sllv %[tmp3], %[tmp3], %[shift] \n\t"
+ "sh %[tmp1], 0(%[store_ptr1]) \n\t"
+ "sh %[tmp3], 0(%[store_ptr2]) \n\t"
+ "bgtz %[i], 1b \n\t"
+ " addiu %[coefs], %[coefs], 4 \n\t"
+ "b 3f \n\t"
+ " nop \n\t"
+ "2: \n\t"
+ "lh %[tmp1], 0(%[load_ptr]) \n\t"
+ "lh %[tmp2], 0(%[hann]) \n\t"
+ "lh %[tmp3], 128(%[load_ptr]) \n\t"
+ "lh %[tmp4], 0(%[hann1]) \n\t"
+ "addiu %[i], %[i], -1 \n\t"
+ "mul %[tmp1], %[tmp1], %[tmp2] \n\t"
+ "mul %[tmp3], %[tmp3], %[tmp4] \n\t"
+ "lh %[f_coef], 0(%[coefs]) \n\t"
+ "lh %[s_coef], 2(%[coefs]) \n\t"
+ "addiu %[load_ptr], %[load_ptr], 2 \n\t"
+ "addiu %[hann], %[hann], 2 \n\t"
+ "addiu %[hann1], %[hann1], -2 \n\t"
+ "addu %[store_ptr1], %[fft], %[f_coef] \n\t"
+ "addu %[store_ptr2], %[fft], %[s_coef] \n\t"
+ "srav %[tmp1], %[tmp1], %[shift1] \n\t"
+ "srav %[tmp3], %[tmp3], %[shift1] \n\t"
+ "sh %[tmp1], 0(%[store_ptr1]) \n\t"
+ "sh %[tmp3], 0(%[store_ptr2]) \n\t"
+ "bgtz %[i], 2b \n\t"
+ " addiu %[coefs], %[coefs], 4 \n\t"
+ "3: \n\t"
+ ".set pop \n\t"
+ : [load_ptr] "=&r" (load_ptr), [shift] "=&r" (shift), [hann] "=&r" (hann),
+ [hann1] "=&r" (hann1), [shift1] "=&r" (shift1), [coefs] "=&r" (coefs),
+ [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3),
+ [tmp4] "=&r" (tmp4), [i] "=&r" (i), [f_coef] "=&r" (f_coef),
+ [s_coef] "=&r" (s_coef), [store_ptr1] "=&r" (store_ptr1),
+ [store_ptr2] "=&r" (store_ptr2)
+ : [time_signal] "r" (time_signal), [coefTable] "r" (coefTable),
+ [time_signal_scaling] "r" (time_signal_scaling),
+ [hanning] "r" (WebRtcAecm_kSqrtHanning), [fft] "r" (fft)
+ : "memory", "hi", "lo"
+ );
+
+ WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
+ pfrfi = fft;
+ pfreq_signal = freq_signal;
+
+ __asm __volatile (
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "addiu %[j], $zero, 128 \n\t"
+ "1: \n\t"
+ "lh %[tmp1], 0(%[pfrfi]) \n\t"
+ "lh %[tmp2], 2(%[pfrfi]) \n\t"
+ "lh %[tmp3], 4(%[pfrfi]) \n\t"
+ "lh %[tmp4], 6(%[pfrfi]) \n\t"
+ "subu %[tmp2], $zero, %[tmp2] \n\t"
+ "sh %[tmp1], 0(%[pfreq_signal]) \n\t"
+ "sh %[tmp2], 2(%[pfreq_signal]) \n\t"
+ "subu %[tmp4], $zero, %[tmp4] \n\t"
+ "sh %[tmp3], 4(%[pfreq_signal]) \n\t"
+ "sh %[tmp4], 6(%[pfreq_signal]) \n\t"
+ "lh %[tmp1], 8(%[pfrfi]) \n\t"
+ "lh %[tmp2], 10(%[pfrfi]) \n\t"
+ "lh %[tmp3], 12(%[pfrfi]) \n\t"
+ "lh %[tmp4], 14(%[pfrfi]) \n\t"
+ "addiu %[j], %[j], -8 \n\t"
+ "subu %[tmp2], $zero, %[tmp2] \n\t"
+ "sh %[tmp1], 8(%[pfreq_signal]) \n\t"
+ "sh %[tmp2], 10(%[pfreq_signal]) \n\t"
+ "subu %[tmp4], $zero, %[tmp4] \n\t"
+ "sh %[tmp3], 12(%[pfreq_signal]) \n\t"
+ "sh %[tmp4], 14(%[pfreq_signal]) \n\t"
+ "addiu %[pfreq_signal], %[pfreq_signal], 16 \n\t"
+ "bgtz %[j], 1b \n\t"
+ " addiu %[pfrfi], %[pfrfi], 16 \n\t"
+ ".set pop \n\t"
+ : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3),
+ [j] "=&r" (j), [pfrfi] "+r" (pfrfi), [pfreq_signal] "+r" (pfreq_signal),
+ [tmp4] "=&r" (tmp4)
+ :
+ : "memory"
+ );
+}
+
+static void InverseFFTAndWindow(AecmCore* aecm,
+ int16_t* fft,
+ ComplexInt16* efw,
+ int16_t* output,
+ const int16_t* nearendClean) {
+ int i, outCFFT;
+ int32_t tmp1, tmp2, tmp3, tmp4, tmp_re, tmp_im;
+ int16_t* pcoefTable_ifft = coefTable_ifft;
+ int16_t* pfft = fft;
+ int16_t* ppfft = fft;
+ ComplexInt16* pefw = efw;
+ int32_t out_aecm;
+ int16_t* paecm_buf = aecm->outBuf;
+ const int16_t* p_kSqrtHanning = WebRtcAecm_kSqrtHanning;
+ const int16_t* pp_kSqrtHanning = &WebRtcAecm_kSqrtHanning[PART_LEN];
+ int16_t* output1 = output;
+
+ __asm __volatile (
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "addiu %[i], $zero, 64 \n\t"
+ "1: \n\t"
+ "lh %[tmp1], 0(%[pcoefTable_ifft]) \n\t"
+ "lh %[tmp2], 2(%[pcoefTable_ifft]) \n\t"
+ "lh %[tmp_re], 0(%[pefw]) \n\t"
+ "lh %[tmp_im], 2(%[pefw]) \n\t"
+ "addu %[pfft], %[fft], %[tmp2] \n\t"
+ "sh %[tmp_re], 0(%[pfft]) \n\t"
+ "sh %[tmp_im], 2(%[pfft]) \n\t"
+ "addu %[pfft], %[fft], %[tmp1] \n\t"
+ "sh %[tmp_re], 0(%[pfft]) \n\t"
+ "subu %[tmp_im], $zero, %[tmp_im] \n\t"
+ "sh %[tmp_im], 2(%[pfft]) \n\t"
+ "lh %[tmp1], 4(%[pcoefTable_ifft]) \n\t"
+ "lh %[tmp2], 6(%[pcoefTable_ifft]) \n\t"
+ "lh %[tmp_re], 4(%[pefw]) \n\t"
+ "lh %[tmp_im], 6(%[pefw]) \n\t"
+ "addu %[pfft], %[fft], %[tmp2] \n\t"
+ "sh %[tmp_re], 0(%[pfft]) \n\t"
+ "sh %[tmp_im], 2(%[pfft]) \n\t"
+ "addu %[pfft], %[fft], %[tmp1] \n\t"
+ "sh %[tmp_re], 0(%[pfft]) \n\t"
+ "subu %[tmp_im], $zero, %[tmp_im] \n\t"
+ "sh %[tmp_im], 2(%[pfft]) \n\t"
+ "lh %[tmp1], 8(%[pcoefTable_ifft]) \n\t"
+ "lh %[tmp2], 10(%[pcoefTable_ifft]) \n\t"
+ "lh %[tmp_re], 8(%[pefw]) \n\t"
+ "lh %[tmp_im], 10(%[pefw]) \n\t"
+ "addu %[pfft], %[fft], %[tmp2] \n\t"
+ "sh %[tmp_re], 0(%[pfft]) \n\t"
+ "sh %[tmp_im], 2(%[pfft]) \n\t"
+ "addu %[pfft], %[fft], %[tmp1] \n\t"
+ "sh %[tmp_re], 0(%[pfft]) \n\t"
+ "subu %[tmp_im], $zero, %[tmp_im] \n\t"
+ "sh %[tmp_im], 2(%[pfft]) \n\t"
+ "lh %[tmp1], 12(%[pcoefTable_ifft]) \n\t"
+ "lh %[tmp2], 14(%[pcoefTable_ifft]) \n\t"
+ "lh %[tmp_re], 12(%[pefw]) \n\t"
+ "lh %[tmp_im], 14(%[pefw]) \n\t"
+ "addu %[pfft], %[fft], %[tmp2] \n\t"
+ "sh %[tmp_re], 0(%[pfft]) \n\t"
+ "sh %[tmp_im], 2(%[pfft]) \n\t"
+ "addu %[pfft], %[fft], %[tmp1] \n\t"
+ "sh %[tmp_re], 0(%[pfft]) \n\t"
+ "subu %[tmp_im], $zero, %[tmp_im] \n\t"
+ "sh %[tmp_im], 2(%[pfft]) \n\t"
+ "addiu %[pcoefTable_ifft], %[pcoefTable_ifft], 16 \n\t"
+ "addiu %[i], %[i], -4 \n\t"
+ "bgtz %[i], 1b \n\t"
+ " addiu %[pefw], %[pefw], 16 \n\t"
+ ".set pop \n\t"
+ : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft),
+ [i] "=&r" (i), [tmp_re] "=&r" (tmp_re), [tmp_im] "=&r" (tmp_im),
+ [pefw] "+r" (pefw), [pcoefTable_ifft] "+r" (pcoefTable_ifft),
+ [fft] "+r" (fft)
+ :
+ : "memory"
+ );
+
+ fft[2] = efw[PART_LEN].real;
+ fft[3] = -efw[PART_LEN].imag;
+
+ outCFFT = WebRtcSpl_ComplexIFFT(fft, PART_LEN_SHIFT, 1);
+ pfft = fft;
+
+ __asm __volatile (
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "addiu %[i], $zero, 128 \n\t"
+ "1: \n\t"
+ "lh %[tmp1], 0(%[ppfft]) \n\t"
+ "lh %[tmp2], 4(%[ppfft]) \n\t"
+ "lh %[tmp3], 8(%[ppfft]) \n\t"
+ "lh %[tmp4], 12(%[ppfft]) \n\t"
+ "addiu %[i], %[i], -4 \n\t"
+ "sh %[tmp1], 0(%[pfft]) \n\t"
+ "sh %[tmp2], 2(%[pfft]) \n\t"
+ "sh %[tmp3], 4(%[pfft]) \n\t"
+ "sh %[tmp4], 6(%[pfft]) \n\t"
+ "addiu %[ppfft], %[ppfft], 16 \n\t"
+ "bgtz %[i], 1b \n\t"
+ " addiu %[pfft], %[pfft], 8 \n\t"
+ ".set pop \n\t"
+ : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft),
+ [i] "=&r" (i), [tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4),
+ [ppfft] "+r" (ppfft)
+ :
+ : "memory"
+ );
+
+ pfft = fft;
+ out_aecm = (int32_t)(outCFFT - aecm->dfaCleanQDomain);
+
+ __asm __volatile (
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "addiu %[i], $zero, 64 \n\t"
+ "11: \n\t"
+ "lh %[tmp1], 0(%[pfft]) \n\t"
+ "lh %[tmp2], 0(%[p_kSqrtHanning]) \n\t"
+ "addiu %[i], %[i], -2 \n\t"
+ "mul %[tmp1], %[tmp1], %[tmp2] \n\t"
+ "lh %[tmp3], 2(%[pfft]) \n\t"
+ "lh %[tmp4], 2(%[p_kSqrtHanning]) \n\t"
+ "mul %[tmp3], %[tmp3], %[tmp4] \n\t"
+ "addiu %[tmp1], %[tmp1], 8192 \n\t"
+ "sra %[tmp1], %[tmp1], 14 \n\t"
+ "addiu %[tmp3], %[tmp3], 8192 \n\t"
+ "sra %[tmp3], %[tmp3], 14 \n\t"
+ "bgez %[out_aecm], 1f \n\t"
+ " negu %[tmp2], %[out_aecm] \n\t"
+ "srav %[tmp1], %[tmp1], %[tmp2] \n\t"
+ "b 2f \n\t"
+ " srav %[tmp3], %[tmp3], %[tmp2] \n\t"
+ "1: \n\t"
+ "sllv %[tmp1], %[tmp1], %[out_aecm] \n\t"
+ "sllv %[tmp3], %[tmp3], %[out_aecm] \n\t"
+ "2: \n\t"
+ "lh %[tmp4], 0(%[paecm_buf]) \n\t"
+ "lh %[tmp2], 2(%[paecm_buf]) \n\t"
+ "addu %[tmp3], %[tmp3], %[tmp2] \n\t"
+ "addu %[tmp1], %[tmp1], %[tmp4] \n\t"
+#if defined(MIPS_DSP_R1_LE)
+ "shll_s.w %[tmp1], %[tmp1], 16 \n\t"
+ "sra %[tmp1], %[tmp1], 16 \n\t"
+ "shll_s.w %[tmp3], %[tmp3], 16 \n\t"
+ "sra %[tmp3], %[tmp3], 16 \n\t"
+#else // #if defined(MIPS_DSP_R1_LE)
+ "sra %[tmp4], %[tmp1], 31 \n\t"
+ "sra %[tmp2], %[tmp1], 15 \n\t"
+ "beq %[tmp4], %[tmp2], 3f \n\t"
+ " ori %[tmp2], $zero, 0x7fff \n\t"
+ "xor %[tmp1], %[tmp2], %[tmp4] \n\t"
+ "3: \n\t"
+ "sra %[tmp2], %[tmp3], 31 \n\t"
+ "sra %[tmp4], %[tmp3], 15 \n\t"
+ "beq %[tmp2], %[tmp4], 4f \n\t"
+ " ori %[tmp4], $zero, 0x7fff \n\t"
+ "xor %[tmp3], %[tmp4], %[tmp2] \n\t"
+ "4: \n\t"
+#endif // #if defined(MIPS_DSP_R1_LE)
+ "sh %[tmp1], 0(%[pfft]) \n\t"
+ "sh %[tmp1], 0(%[output1]) \n\t"
+ "sh %[tmp3], 2(%[pfft]) \n\t"
+ "sh %[tmp3], 2(%[output1]) \n\t"
+ "lh %[tmp1], 128(%[pfft]) \n\t"
+ "lh %[tmp2], 0(%[pp_kSqrtHanning]) \n\t"
+ "mul %[tmp1], %[tmp1], %[tmp2] \n\t"
+ "lh %[tmp3], 130(%[pfft]) \n\t"
+ "lh %[tmp4], -2(%[pp_kSqrtHanning]) \n\t"
+ "mul %[tmp3], %[tmp3], %[tmp4] \n\t"
+ "sra %[tmp1], %[tmp1], 14 \n\t"
+ "sra %[tmp3], %[tmp3], 14 \n\t"
+ "bgez %[out_aecm], 5f \n\t"
+ " negu %[tmp2], %[out_aecm] \n\t"
+ "srav %[tmp3], %[tmp3], %[tmp2] \n\t"
+ "b 6f \n\t"
+ " srav %[tmp1], %[tmp1], %[tmp2] \n\t"
+ "5: \n\t"
+ "sllv %[tmp1], %[tmp1], %[out_aecm] \n\t"
+ "sllv %[tmp3], %[tmp3], %[out_aecm] \n\t"
+ "6: \n\t"
+#if defined(MIPS_DSP_R1_LE)
+ "shll_s.w %[tmp1], %[tmp1], 16 \n\t"
+ "sra %[tmp1], %[tmp1], 16 \n\t"
+ "shll_s.w %[tmp3], %[tmp3], 16 \n\t"
+ "sra %[tmp3], %[tmp3], 16 \n\t"
+#else // #if defined(MIPS_DSP_R1_LE)
+ "sra %[tmp4], %[tmp1], 31 \n\t"
+ "sra %[tmp2], %[tmp1], 15 \n\t"
+ "beq %[tmp4], %[tmp2], 7f \n\t"
+ " ori %[tmp2], $zero, 0x7fff \n\t"
+ "xor %[tmp1], %[tmp2], %[tmp4] \n\t"
+ "7: \n\t"
+ "sra %[tmp2], %[tmp3], 31 \n\t"
+ "sra %[tmp4], %[tmp3], 15 \n\t"
+ "beq %[tmp2], %[tmp4], 8f \n\t"
+ " ori %[tmp4], $zero, 0x7fff \n\t"
+ "xor %[tmp3], %[tmp4], %[tmp2] \n\t"
+ "8: \n\t"
+#endif // #if defined(MIPS_DSP_R1_LE)
+ "sh %[tmp1], 0(%[paecm_buf]) \n\t"
+ "sh %[tmp3], 2(%[paecm_buf]) \n\t"
+ "addiu %[output1], %[output1], 4 \n\t"
+ "addiu %[paecm_buf], %[paecm_buf], 4 \n\t"
+ "addiu %[pfft], %[pfft], 4 \n\t"
+ "addiu %[p_kSqrtHanning], %[p_kSqrtHanning], 4 \n\t"
+ "bgtz %[i], 11b \n\t"
+ " addiu %[pp_kSqrtHanning], %[pp_kSqrtHanning], -4 \n\t"
+ ".set pop \n\t"
+ : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft),
+ [output1] "+r" (output1), [tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4),
+ [paecm_buf] "+r" (paecm_buf), [i] "=&r" (i),
+ [pp_kSqrtHanning] "+r" (pp_kSqrtHanning),
+ [p_kSqrtHanning] "+r" (p_kSqrtHanning)
+ : [out_aecm] "r" (out_aecm),
+ [WebRtcAecm_kSqrtHanning] "r" (WebRtcAecm_kSqrtHanning)
+ : "hi", "lo","memory"
+ );
+
+ // Copy the current block to the old position
+ // (aecm->outBuf is shifted elsewhere)
+ memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
+ memcpy(aecm->dBufNoisy,
+ aecm->dBufNoisy + PART_LEN,
+ sizeof(int16_t) * PART_LEN);
+ if (nearendClean != NULL) {
+ memcpy(aecm->dBufClean,
+ aecm->dBufClean + PART_LEN,
+ sizeof(int16_t) * PART_LEN);
+ }
+}
+
+void WebRtcAecm_CalcLinearEnergies_mips(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est,
+ uint32_t* far_energy,
+ uint32_t* echo_energy_adapt,
+ uint32_t* echo_energy_stored) {
+ int i;
+ uint32_t par1 = (*far_energy);
+ uint32_t par2 = (*echo_energy_adapt);
+ uint32_t par3 = (*echo_energy_stored);
+ int16_t* ch_stored_p = &(aecm->channelStored[0]);
+ int16_t* ch_adapt_p = &(aecm->channelAdapt16[0]);
+ uint16_t* spectrum_p = (uint16_t*)(&(far_spectrum[0]));
+ int32_t* echo_p = &(echo_est[0]);
+ int32_t temp0, stored0, echo0, adept0, spectrum0;
+ int32_t stored1, adept1, spectrum1, echo1, temp1;
+
+ // Get energy for the delayed far end signal and estimated
+ // echo using both stored and adapted channels.
+ for (i = 0; i < PART_LEN; i+= 4) {
+ __asm __volatile (
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "lh %[stored0], 0(%[ch_stored_p]) \n\t"
+ "lhu %[adept0], 0(%[ch_adapt_p]) \n\t"
+ "lhu %[spectrum0], 0(%[spectrum_p]) \n\t"
+ "lh %[stored1], 2(%[ch_stored_p]) \n\t"
+ "lhu %[adept1], 2(%[ch_adapt_p]) \n\t"
+ "lhu %[spectrum1], 2(%[spectrum_p]) \n\t"
+ "mul %[echo0], %[stored0], %[spectrum0] \n\t"
+ "mul %[temp0], %[adept0], %[spectrum0] \n\t"
+ "mul %[echo1], %[stored1], %[spectrum1] \n\t"
+ "mul %[temp1], %[adept1], %[spectrum1] \n\t"
+ "addu %[par1], %[par1], %[spectrum0] \n\t"
+ "addu %[par1], %[par1], %[spectrum1] \n\t"
+ "addiu %[echo_p], %[echo_p], 16 \n\t"
+ "addu %[par3], %[par3], %[echo0] \n\t"
+ "addu %[par2], %[par2], %[temp0] \n\t"
+ "addu %[par3], %[par3], %[echo1] \n\t"
+ "addu %[par2], %[par2], %[temp1] \n\t"
+ "usw %[echo0], -16(%[echo_p]) \n\t"
+ "usw %[echo1], -12(%[echo_p]) \n\t"
+ "lh %[stored0], 4(%[ch_stored_p]) \n\t"
+ "lhu %[adept0], 4(%[ch_adapt_p]) \n\t"
+ "lhu %[spectrum0], 4(%[spectrum_p]) \n\t"
+ "lh %[stored1], 6(%[ch_stored_p]) \n\t"
+ "lhu %[adept1], 6(%[ch_adapt_p]) \n\t"
+ "lhu %[spectrum1], 6(%[spectrum_p]) \n\t"
+ "mul %[echo0], %[stored0], %[spectrum0] \n\t"
+ "mul %[temp0], %[adept0], %[spectrum0] \n\t"
+ "mul %[echo1], %[stored1], %[spectrum1] \n\t"
+ "mul %[temp1], %[adept1], %[spectrum1] \n\t"
+ "addu %[par1], %[par1], %[spectrum0] \n\t"
+ "addu %[par1], %[par1], %[spectrum1] \n\t"
+ "addiu %[ch_stored_p], %[ch_stored_p], 8 \n\t"
+ "addiu %[ch_adapt_p], %[ch_adapt_p], 8 \n\t"
+ "addiu %[spectrum_p], %[spectrum_p], 8 \n\t"
+ "addu %[par3], %[par3], %[echo0] \n\t"
+ "addu %[par2], %[par2], %[temp0] \n\t"
+ "addu %[par3], %[par3], %[echo1] \n\t"
+ "addu %[par2], %[par2], %[temp1] \n\t"
+ "usw %[echo0], -8(%[echo_p]) \n\t"
+ "usw %[echo1], -4(%[echo_p]) \n\t"
+ ".set pop \n\t"
+ : [temp0] "=&r" (temp0), [stored0] "=&r" (stored0),
+ [adept0] "=&r" (adept0), [spectrum0] "=&r" (spectrum0),
+ [echo0] "=&r" (echo0), [echo_p] "+r" (echo_p), [par3] "+r" (par3),
+ [par1] "+r" (par1), [par2] "+r" (par2), [stored1] "=&r" (stored1),
+ [adept1] "=&r" (adept1), [echo1] "=&r" (echo1),
+ [spectrum1] "=&r" (spectrum1), [temp1] "=&r" (temp1),
+ [ch_stored_p] "+r" (ch_stored_p), [ch_adapt_p] "+r" (ch_adapt_p),
+ [spectrum_p] "+r" (spectrum_p)
+ :
+ : "hi", "lo", "memory"
+ );
+ }
+
+ echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
+ far_spectrum[PART_LEN]);
+ par1 += (uint32_t)(far_spectrum[PART_LEN]);
+ par2 += aecm->channelAdapt16[PART_LEN] * far_spectrum[PART_LEN];
+ par3 += (uint32_t)echo_est[PART_LEN];
+
+ (*far_energy) = par1;
+ (*echo_energy_adapt) = par2;
+ (*echo_energy_stored) = par3;
+}
+
+#if defined(MIPS_DSP_R1_LE)
+void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est) {
+ int i;
+ int16_t* temp1;
+ uint16_t* temp8;
+ int32_t temp0, temp2, temp3, temp4, temp5, temp6;
+ int32_t* temp7 = &(echo_est[0]);
+ temp1 = &(aecm->channelStored[0]);
+ temp8 = (uint16_t*)(&far_spectrum[0]);
+
+ // During startup we store the channel every block.
+ memcpy(aecm->channelStored, aecm->channelAdapt16,
+ sizeof(int16_t) * PART_LEN1);
+ // Recalculate echo estimate
+ for (i = 0; i < PART_LEN; i += 4) {
+ __asm __volatile (
+ "ulw %[temp0], 0(%[temp8]) \n\t"
+ "ulw %[temp2], 0(%[temp1]) \n\t"
+ "ulw %[temp4], 4(%[temp8]) \n\t"
+ "ulw %[temp5], 4(%[temp1]) \n\t"
+ "muleq_s.w.phl %[temp3], %[temp2], %[temp0] \n\t"
+ "muleq_s.w.phr %[temp0], %[temp2], %[temp0] \n\t"
+ "muleq_s.w.phl %[temp6], %[temp5], %[temp4] \n\t"
+ "muleq_s.w.phr %[temp4], %[temp5], %[temp4] \n\t"
+ "addiu %[temp7], %[temp7], 16 \n\t"
+ "addiu %[temp1], %[temp1], 8 \n\t"
+ "addiu %[temp8], %[temp8], 8 \n\t"
+ "sra %[temp3], %[temp3], 1 \n\t"
+ "sra %[temp0], %[temp0], 1 \n\t"
+ "sra %[temp6], %[temp6], 1 \n\t"
+ "sra %[temp4], %[temp4], 1 \n\t"
+ "usw %[temp3], -12(%[temp7]) \n\t"
+ "usw %[temp0], -16(%[temp7]) \n\t"
+ "usw %[temp6], -4(%[temp7]) \n\t"
+ "usw %[temp4], -8(%[temp7]) \n\t"
+ : [temp0] "=&r" (temp0), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
+ [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [temp6] "=&r" (temp6),
+ [temp1] "+r" (temp1), [temp8] "+r" (temp8), [temp7] "+r" (temp7)
+ :
+ : "hi", "lo", "memory"
+ );
+ }
+ echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
+ far_spectrum[i]);
+}
+
+void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore* aecm) {
+ int i;
+ int32_t* temp3;
+ int16_t* temp0;
+ int32_t temp1, temp2, temp4, temp5;
+
+ temp0 = &(aecm->channelStored[0]);
+ temp3 = &(aecm->channelAdapt32[0]);
+
+ // The stored channel has a significantly lower MSE than the adaptive one for
+ // two consecutive calculations. Reset the adaptive channel.
+ memcpy(aecm->channelAdapt16,
+ aecm->channelStored,
+ sizeof(int16_t) * PART_LEN1);
+
+ // Restore the W32 channel
+ for (i = 0; i < PART_LEN; i += 4) {
+ __asm __volatile (
+ "ulw %[temp1], 0(%[temp0]) \n\t"
+ "ulw %[temp4], 4(%[temp0]) \n\t"
+ "preceq.w.phl %[temp2], %[temp1] \n\t"
+ "preceq.w.phr %[temp1], %[temp1] \n\t"
+ "preceq.w.phl %[temp5], %[temp4] \n\t"
+ "preceq.w.phr %[temp4], %[temp4] \n\t"
+ "addiu %[temp0], %[temp0], 8 \n\t"
+ "usw %[temp2], 4(%[temp3]) \n\t"
+ "usw %[temp1], 0(%[temp3]) \n\t"
+ "usw %[temp5], 12(%[temp3]) \n\t"
+ "usw %[temp4], 8(%[temp3]) \n\t"
+ "addiu %[temp3], %[temp3], 16 \n\t"
+ : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2),
+ [temp4] "=&r" (temp4), [temp5] "=&r" (temp5),
+ [temp3] "+r" (temp3), [temp0] "+r" (temp0)
+ :
+ : "memory"
+ );
+ }
+
+ aecm->channelAdapt32[i] = (int32_t)aecm->channelStored[i] << 16;
+}
+#endif // #if defined(MIPS_DSP_R1_LE)
+
+// Transforms a time domain signal into the frequency domain, outputting the
+// complex valued signal, absolute value and sum of absolute values.
+//
+// time_signal [in] Pointer to time domain signal
+// freq_signal_real [out] Pointer to real part of frequency domain array
+// freq_signal_imag [out] Pointer to imaginary part of frequency domain
+// array
+// freq_signal_abs [out] Pointer to absolute value of frequency domain
+// array
+// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
+// the frequency domain array
+// return value The Q-domain of current frequency values
+//
+static int TimeToFrequencyDomain(AecmCore* aecm,
+ const int16_t* time_signal,
+ ComplexInt16* freq_signal,
+ uint16_t* freq_signal_abs,
+ uint32_t* freq_signal_sum_abs) {
+ int i = 0;
+ int time_signal_scaling = 0;
+
+ // In fft_buf, +16 for 32-byte alignment.
+ int16_t fft_buf[PART_LEN4 + 16];
+ int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
+
+ int16_t tmp16no1;
+#if !defined(MIPS_DSP_R2_LE)
+ int32_t tmp32no1;
+ int32_t tmp32no2;
+ int16_t tmp16no2;
+#else
+ int32_t tmp32no10, tmp32no11, tmp32no12, tmp32no13;
+ int32_t tmp32no20, tmp32no21, tmp32no22, tmp32no23;
+ int16_t* freqp;
+ uint16_t* freqabsp;
+ uint32_t freqt0, freqt1, freqt2, freqt3;
+ uint32_t freqs;
+#endif
+
+#ifdef AECM_DYNAMIC_Q
+ tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
+ time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
+#endif
+
+ WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
+
+ // Extract imaginary and real part,
+ // calculate the magnitude for all frequency bins
+ freq_signal[0].imag = 0;
+ freq_signal[PART_LEN].imag = 0;
+ freq_signal[PART_LEN].real = fft[PART_LEN2];
+ freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
+ freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
+ freq_signal[PART_LEN].real);
+ (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
+ (uint32_t)(freq_signal_abs[PART_LEN]);
+
+#if !defined(MIPS_DSP_R2_LE)
+ for (i = 1; i < PART_LEN; i++) {
+ if (freq_signal[i].real == 0)
+ {
+ freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(
+ freq_signal[i].imag);
+ }
+ else if (freq_signal[i].imag == 0)
+ {
+ freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(
+ freq_signal[i].real);
+ }
+ else
+ {
+ // Approximation for magnitude of complex fft output
+ // magn = sqrt(real^2 + imag^2)
+ // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
+ //
+ // The parameters alpha and beta are stored in Q15
+ tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
+ tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
+ tmp32no1 = tmp16no1 * tmp16no1;
+ tmp32no2 = tmp16no2 * tmp16no2;
+ tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
+ tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
+
+ freq_signal_abs[i] = (uint16_t)tmp32no1;
+ }
+ (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
+ }
+#else // #if !defined(MIPS_DSP_R2_LE)
+ freqs = (uint32_t)(freq_signal_abs[0]) +
+ (uint32_t)(freq_signal_abs[PART_LEN]);
+ freqp = &(freq_signal[1].real);
+
+ __asm __volatile (
+ "lw %[freqt0], 0(%[freqp]) \n\t"
+ "lw %[freqt1], 4(%[freqp]) \n\t"
+ "lw %[freqt2], 8(%[freqp]) \n\t"
+ "mult $ac0, $zero, $zero \n\t"
+ "mult $ac1, $zero, $zero \n\t"
+ "mult $ac2, $zero, $zero \n\t"
+ "dpaq_s.w.ph $ac0, %[freqt0], %[freqt0] \n\t"
+ "dpaq_s.w.ph $ac1, %[freqt1], %[freqt1] \n\t"
+ "dpaq_s.w.ph $ac2, %[freqt2], %[freqt2] \n\t"
+ "addiu %[freqp], %[freqp], 12 \n\t"
+ "extr.w %[tmp32no20], $ac0, 1 \n\t"
+ "extr.w %[tmp32no21], $ac1, 1 \n\t"
+ "extr.w %[tmp32no22], $ac2, 1 \n\t"
+ : [freqt0] "=&r" (freqt0), [freqt1] "=&r" (freqt1),
+ [freqt2] "=&r" (freqt2), [freqp] "+r" (freqp),
+ [tmp32no20] "=r" (tmp32no20), [tmp32no21] "=r" (tmp32no21),
+ [tmp32no22] "=r" (tmp32no22)
+ :
+ : "memory", "hi", "lo", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo"
+ );
+
+ tmp32no10 = WebRtcSpl_SqrtFloor(tmp32no20);
+ tmp32no11 = WebRtcSpl_SqrtFloor(tmp32no21);
+ tmp32no12 = WebRtcSpl_SqrtFloor(tmp32no22);
+ freq_signal_abs[1] = (uint16_t)tmp32no10;
+ freq_signal_abs[2] = (uint16_t)tmp32no11;
+ freq_signal_abs[3] = (uint16_t)tmp32no12;
+ freqs += (uint32_t)tmp32no10;
+ freqs += (uint32_t)tmp32no11;
+ freqs += (uint32_t)tmp32no12;
+ freqabsp = &(freq_signal_abs[4]);
+ for (i = 4; i < PART_LEN; i+=4)
+ {
+ __asm __volatile (
+ "ulw %[freqt0], 0(%[freqp]) \n\t"
+ "ulw %[freqt1], 4(%[freqp]) \n\t"
+ "ulw %[freqt2], 8(%[freqp]) \n\t"
+ "ulw %[freqt3], 12(%[freqp]) \n\t"
+ "mult $ac0, $zero, $zero \n\t"
+ "mult $ac1, $zero, $zero \n\t"
+ "mult $ac2, $zero, $zero \n\t"
+ "mult $ac3, $zero, $zero \n\t"
+ "dpaq_s.w.ph $ac0, %[freqt0], %[freqt0] \n\t"
+ "dpaq_s.w.ph $ac1, %[freqt1], %[freqt1] \n\t"
+ "dpaq_s.w.ph $ac2, %[freqt2], %[freqt2] \n\t"
+ "dpaq_s.w.ph $ac3, %[freqt3], %[freqt3] \n\t"
+ "addiu %[freqp], %[freqp], 16 \n\t"
+ "addiu %[freqabsp], %[freqabsp], 8 \n\t"
+ "extr.w %[tmp32no20], $ac0, 1 \n\t"
+ "extr.w %[tmp32no21], $ac1, 1 \n\t"
+ "extr.w %[tmp32no22], $ac2, 1 \n\t"
+ "extr.w %[tmp32no23], $ac3, 1 \n\t"
+ : [freqt0] "=&r" (freqt0), [freqt1] "=&r" (freqt1),
+ [freqt2] "=&r" (freqt2), [freqt3] "=&r" (freqt3),
+ [tmp32no20] "=r" (tmp32no20), [tmp32no21] "=r" (tmp32no21),
+ [tmp32no22] "=r" (tmp32no22), [tmp32no23] "=r" (tmp32no23),
+ [freqabsp] "+r" (freqabsp), [freqp] "+r" (freqp)
+ :
+ : "memory", "hi", "lo", "$ac1hi", "$ac1lo",
+ "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo"
+ );
+
+ tmp32no10 = WebRtcSpl_SqrtFloor(tmp32no20);
+ tmp32no11 = WebRtcSpl_SqrtFloor(tmp32no21);
+ tmp32no12 = WebRtcSpl_SqrtFloor(tmp32no22);
+ tmp32no13 = WebRtcSpl_SqrtFloor(tmp32no23);
+
+ __asm __volatile (
+ "sh %[tmp32no10], -8(%[freqabsp]) \n\t"
+ "sh %[tmp32no11], -6(%[freqabsp]) \n\t"
+ "sh %[tmp32no12], -4(%[freqabsp]) \n\t"
+ "sh %[tmp32no13], -2(%[freqabsp]) \n\t"
+ "addu %[freqs], %[freqs], %[tmp32no10] \n\t"
+ "addu %[freqs], %[freqs], %[tmp32no11] \n\t"
+ "addu %[freqs], %[freqs], %[tmp32no12] \n\t"
+ "addu %[freqs], %[freqs], %[tmp32no13] \n\t"
+ : [freqs] "+r" (freqs)
+ : [tmp32no10] "r" (tmp32no10), [tmp32no11] "r" (tmp32no11),
+ [tmp32no12] "r" (tmp32no12), [tmp32no13] "r" (tmp32no13),
+ [freqabsp] "r" (freqabsp)
+ : "memory"
+ );
+ }
+
+ (*freq_signal_sum_abs) = freqs;
+#endif
+
+ return time_signal_scaling;
+}
+
+int WebRtcAecm_ProcessBlock(AecmCore* aecm,
+ const int16_t* farend,
+ const int16_t* nearendNoisy,
+ const int16_t* nearendClean,
+ int16_t* output) {
+ int i;
+ uint32_t xfaSum;
+ uint32_t dfaNoisySum;
+ uint32_t dfaCleanSum;
+ uint32_t echoEst32Gained;
+ uint32_t tmpU32;
+ int32_t tmp32no1;
+
+ uint16_t xfa[PART_LEN1];
+ uint16_t dfaNoisy[PART_LEN1];
+ uint16_t dfaClean[PART_LEN1];
+ uint16_t* ptrDfaClean = dfaClean;
+ const uint16_t* far_spectrum_ptr = NULL;
+
+ // 32 byte aligned buffers (with +8 or +16).
+ int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
+ int32_t echoEst32_buf[PART_LEN1 + 8];
+ int32_t dfw_buf[PART_LEN2 + 8];
+ int32_t efw_buf[PART_LEN2 + 8];
+
+ int16_t* fft = (int16_t*)(((uint32_t)fft_buf + 31) & ~ 31);
+ int32_t* echoEst32 = (int32_t*)(((uint32_t)echoEst32_buf + 31) & ~ 31);
+ ComplexInt16* dfw = (ComplexInt16*)(((uint32_t)dfw_buf + 31) & ~31);
+ ComplexInt16* efw = (ComplexInt16*)(((uint32_t)efw_buf + 31) & ~31);
+
+ int16_t hnl[PART_LEN1];
+ int16_t numPosCoef = 0;
+ int delay;
+ int16_t tmp16no1;
+ int16_t tmp16no2;
+ int16_t mu;
+ int16_t supGain;
+ int16_t zeros32, zeros16;
+ int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
+ int far_q;
+ int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff;
+
+ const int kMinPrefBand = 4;
+ const int kMaxPrefBand = 24;
+ int32_t avgHnl32 = 0;
+
+ int32_t temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8;
+ int16_t* ptr;
+ int16_t* ptr1;
+ int16_t* er_ptr;
+ int16_t* dr_ptr;
+
+ ptr = &hnl[0];
+ ptr1 = &hnl[0];
+ er_ptr = &efw[0].real;
+ dr_ptr = &dfw[0].real;
+
+ // Determine startup state. There are three states:
+ // (0) the first CONV_LEN blocks
+ // (1) another CONV_LEN blocks
+ // (2) the rest
+
+ if (aecm->startupState < 2) {
+ aecm->startupState = (aecm->totCount >= CONV_LEN) +
+ (aecm->totCount >= CONV_LEN2);
+ }
+ // END: Determine startup state
+
+ // Buffer near and far end signals
+ memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
+ memcpy(aecm->dBufNoisy + PART_LEN,
+ nearendNoisy,
+ sizeof(int16_t) * PART_LEN);
+ if (nearendClean != NULL) {
+ memcpy(aecm->dBufClean + PART_LEN,
+ nearendClean,
+ sizeof(int16_t) * PART_LEN);
+ }
+
+ // Transform far end signal from time domain to frequency domain.
+ far_q = TimeToFrequencyDomain(aecm,
+ aecm->xBuf,
+ dfw,
+ xfa,
+ &xfaSum);
+
+ // Transform noisy near end signal from time domain to frequency domain.
+ zerosDBufNoisy = TimeToFrequencyDomain(aecm,
+ aecm->dBufNoisy,
+ dfw,
+ dfaNoisy,
+ &dfaNoisySum);
+ aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
+ aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
+
+ if (nearendClean == NULL) {
+ ptrDfaClean = dfaNoisy;
+ aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
+ aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
+ dfaCleanSum = dfaNoisySum;
+ } else {
+ // Transform clean near end signal from time domain to frequency domain.
+ zerosDBufClean = TimeToFrequencyDomain(aecm,
+ aecm->dBufClean,
+ dfw,
+ dfaClean,
+ &dfaCleanSum);
+ aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
+ aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
+ }
+
+ // Get the delay
+ // Save far-end history and estimate delay
+ WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
+
+ if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, xfa, PART_LEN1,
+ far_q) == -1) {
+ return -1;
+ }
+ delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
+ dfaNoisy,
+ PART_LEN1,
+ zerosDBufNoisy);
+ if (delay == -1) {
+ return -1;
+ }
+ else if (delay == -2) {
+ // If the delay is unknown, we assume zero.
+ // NOTE: this will have to be adjusted if we ever add lookahead.
+ delay = 0;
+ }
+
+ if (aecm->fixedDelay >= 0) {
+ // Use fixed delay
+ delay = aecm->fixedDelay;
+ }
+
+ // Get aligned far end spectrum
+ far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
+ zerosXBuf = (int16_t) far_q;
+
+ if (far_spectrum_ptr == NULL) {
+ return -1;
+ }
+
+ // Calculate log(energy) and update energy threshold levels
+ WebRtcAecm_CalcEnergies(aecm,
+ far_spectrum_ptr,
+ zerosXBuf,
+ dfaNoisySum,
+ echoEst32);
+ // Calculate stepsize
+ mu = WebRtcAecm_CalcStepSize(aecm);
+
+ // Update counters
+ aecm->totCount++;
+
+ // This is the channel estimation algorithm.
+ // It is base on NLMS but has a variable step length,
+ // which was calculated above.
+ WebRtcAecm_UpdateChannel(aecm,
+ far_spectrum_ptr,
+ zerosXBuf,
+ dfaNoisy,
+ mu,
+ echoEst32);
+
+ supGain = WebRtcAecm_CalcSuppressionGain(aecm);
+
+ // Calculate Wiener filter hnl[]
+ for (i = 0; i < PART_LEN1; i++) {
+ // Far end signal through channel estimate in Q8
+ // How much can we shift right to preserve resolution
+ tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
+ aecm->echoFilt[i] += (tmp32no1 * 50) >> 8;
+
+ zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
+ zeros16 = WebRtcSpl_NormW16(supGain) + 1;
+ if (zeros32 + zeros16 > 16) {
+ // Multiplication is safe
+ // Result in
+ // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+aecm->xfaQDomainBuf[diff])
+ echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
+ (uint16_t)supGain);
+ resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
+ resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
+ } else {
+ tmp16no1 = 17 - zeros32 - zeros16;
+ resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
+ RESOLUTION_SUPGAIN;
+ resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
+ if (zeros32 > tmp16no1) {
+ echoEst32Gained = WEBRTC_SPL_UMUL_32_16(
+ (uint32_t)aecm->echoFilt[i],
+ supGain >> tmp16no1);
+ } else {
+ // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
+ echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
+ }
+ }
+
+ zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
+ assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative.
+ dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
+ if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
+ tmp16no1 = aecm->nearFilt[i] << zeros16;
+ qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
+ tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
+ } else {
+ tmp16no1 = dfa_clean_q_domain_diff < 0
+ ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
+ : aecm->nearFilt[i] << dfa_clean_q_domain_diff;
+ qDomainDiff = 0;
+ tmp16no2 = ptrDfaClean[i];
+ }
+
+ tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
+ tmp16no2 = (int16_t)(tmp32no1 >> 4);
+ tmp16no2 += tmp16no1;
+ zeros16 = WebRtcSpl_NormW16(tmp16no2);
+ if ((tmp16no2) & (-qDomainDiff > zeros16)) {
+ aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
+ } else {
+ aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff
+ : tmp16no2 >> qDomainDiff;
+ }
+
+ // Wiener filter coefficients, resulting hnl in Q14
+ if (echoEst32Gained == 0) {
+ hnl[i] = ONE_Q14;
+ numPosCoef++;
+ } else if (aecm->nearFilt[i] == 0) {
+ hnl[i] = 0;
+ } else {
+ // Multiply the suppression gain
+ // Rounding
+ echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
+ tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
+ (uint16_t)aecm->nearFilt[i]);
+
+ // Current resolution is
+ // Q-(RESOLUTION_CHANNEL + RESOLUTION_SUPGAIN
+ // - max(0, 17 - zeros16 - zeros32))
+ // Make sure we are in Q14
+ tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
+ if (tmp32no1 > ONE_Q14) {
+ hnl[i] = 0;
+ } else if (tmp32no1 < 0) {
+ hnl[i] = ONE_Q14;
+ numPosCoef++;
+ } else {
+ // 1-echoEst/dfa
+ hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
+ if (hnl[i] <= 0) {
+ hnl[i] = 0;
+ } else {
+ numPosCoef++;
+ }
+ }
+ }
+ }
+
+ // Only in wideband. Prevent the gain in upper band from being larger than
+ // in lower band.
+ if (aecm->mult == 2) {
+ // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
+ // speech distortion in double-talk.
+ for (i = 0; i < (PART_LEN1 >> 3); i++) {
+ __asm __volatile (
+ "lh %[temp1], 0(%[ptr1]) \n\t"
+ "lh %[temp2], 2(%[ptr1]) \n\t"
+ "lh %[temp3], 4(%[ptr1]) \n\t"
+ "lh %[temp4], 6(%[ptr1]) \n\t"
+ "lh %[temp5], 8(%[ptr1]) \n\t"
+ "lh %[temp6], 10(%[ptr1]) \n\t"
+ "lh %[temp7], 12(%[ptr1]) \n\t"
+ "lh %[temp8], 14(%[ptr1]) \n\t"
+ "mul %[temp1], %[temp1], %[temp1] \n\t"
+ "mul %[temp2], %[temp2], %[temp2] \n\t"
+ "mul %[temp3], %[temp3], %[temp3] \n\t"
+ "mul %[temp4], %[temp4], %[temp4] \n\t"
+ "mul %[temp5], %[temp5], %[temp5] \n\t"
+ "mul %[temp6], %[temp6], %[temp6] \n\t"
+ "mul %[temp7], %[temp7], %[temp7] \n\t"
+ "mul %[temp8], %[temp8], %[temp8] \n\t"
+ "sra %[temp1], %[temp1], 14 \n\t"
+ "sra %[temp2], %[temp2], 14 \n\t"
+ "sra %[temp3], %[temp3], 14 \n\t"
+ "sra %[temp4], %[temp4], 14 \n\t"
+ "sra %[temp5], %[temp5], 14 \n\t"
+ "sra %[temp6], %[temp6], 14 \n\t"
+ "sra %[temp7], %[temp7], 14 \n\t"
+ "sra %[temp8], %[temp8], 14 \n\t"
+ "sh %[temp1], 0(%[ptr1]) \n\t"
+ "sh %[temp2], 2(%[ptr1]) \n\t"
+ "sh %[temp3], 4(%[ptr1]) \n\t"
+ "sh %[temp4], 6(%[ptr1]) \n\t"
+ "sh %[temp5], 8(%[ptr1]) \n\t"
+ "sh %[temp6], 10(%[ptr1]) \n\t"
+ "sh %[temp7], 12(%[ptr1]) \n\t"
+ "sh %[temp8], 14(%[ptr1]) \n\t"
+ "addiu %[ptr1], %[ptr1], 16 \n\t"
+ : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
+ [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [temp6] "=&r" (temp6),
+ [temp7] "=&r" (temp7), [temp8] "=&r" (temp8), [ptr1] "+r" (ptr1)
+ :
+ : "memory", "hi", "lo"
+ );
+ }
+ for(i = 0; i < (PART_LEN1 & 7); i++) {
+ __asm __volatile (
+ "lh %[temp1], 0(%[ptr1]) \n\t"
+ "mul %[temp1], %[temp1], %[temp1] \n\t"
+ "sra %[temp1], %[temp1], 14 \n\t"
+ "sh %[temp1], 0(%[ptr1]) \n\t"
+ "addiu %[ptr1], %[ptr1], 2 \n\t"
+ : [temp1] "=&r" (temp1), [ptr1] "+r" (ptr1)
+ :
+ : "memory", "hi", "lo"
+ );
+ }
+
+ for (i = kMinPrefBand; i <= kMaxPrefBand; i++) {
+ avgHnl32 += (int32_t)hnl[i];
+ }
+
+ assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
+ avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
+
+ for (i = kMaxPrefBand; i < PART_LEN1; i++) {
+ if (hnl[i] > (int16_t)avgHnl32) {
+ hnl[i] = (int16_t)avgHnl32;
+ }
+ }
+ }
+
+ // Calculate NLP gain, result is in Q14
+ if (aecm->nlpFlag) {
+ if (numPosCoef < 3) {
+ for (i = 0; i < PART_LEN1; i++) {
+ efw[i].real = 0;
+ efw[i].imag = 0;
+ hnl[i] = 0;
+ }
+ } else {
+ for (i = 0; i < PART_LEN1; i++) {
+#if defined(MIPS_DSP_R1_LE)
+ __asm __volatile (
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "lh %[temp1], 0(%[ptr]) \n\t"
+ "lh %[temp2], 0(%[dr_ptr]) \n\t"
+ "slti %[temp4], %[temp1], 0x4001 \n\t"
+ "beqz %[temp4], 3f \n\t"
+ " lh %[temp3], 2(%[dr_ptr]) \n\t"
+ "slti %[temp5], %[temp1], 3277 \n\t"
+ "bnez %[temp5], 2f \n\t"
+ " addiu %[dr_ptr], %[dr_ptr], 4 \n\t"
+ "mul %[temp2], %[temp2], %[temp1] \n\t"
+ "mul %[temp3], %[temp3], %[temp1] \n\t"
+ "shra_r.w %[temp2], %[temp2], 14 \n\t"
+ "shra_r.w %[temp3], %[temp3], 14 \n\t"
+ "b 4f \n\t"
+ " nop \n\t"
+ "2: \n\t"
+ "addu %[temp1], $zero, $zero \n\t"
+ "addu %[temp2], $zero, $zero \n\t"
+ "addu %[temp3], $zero, $zero \n\t"
+ "b 1f \n\t"
+ " nop \n\t"
+ "3: \n\t"
+ "addiu %[temp1], $0, 0x4000 \n\t"
+ "1: \n\t"
+ "sh %[temp1], 0(%[ptr]) \n\t"
+ "4: \n\t"
+ "sh %[temp2], 0(%[er_ptr]) \n\t"
+ "sh %[temp3], 2(%[er_ptr]) \n\t"
+ "addiu %[ptr], %[ptr], 2 \n\t"
+ "addiu %[er_ptr], %[er_ptr], 4 \n\t"
+ ".set pop \n\t"
+ : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
+ [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [ptr] "+r" (ptr),
+ [er_ptr] "+r" (er_ptr), [dr_ptr] "+r" (dr_ptr)
+ :
+ : "memory", "hi", "lo"
+ );
+#else
+ __asm __volatile (
+ ".set push \n\t"
+ ".set noreorder \n\t"
+ "lh %[temp1], 0(%[ptr]) \n\t"
+ "lh %[temp2], 0(%[dr_ptr]) \n\t"
+ "slti %[temp4], %[temp1], 0x4001 \n\t"
+ "beqz %[temp4], 3f \n\t"
+ " lh %[temp3], 2(%[dr_ptr]) \n\t"
+ "slti %[temp5], %[temp1], 3277 \n\t"
+ "bnez %[temp5], 2f \n\t"
+ " addiu %[dr_ptr], %[dr_ptr], 4 \n\t"
+ "mul %[temp2], %[temp2], %[temp1] \n\t"
+ "mul %[temp3], %[temp3], %[temp1] \n\t"
+ "addiu %[temp2], %[temp2], 0x2000 \n\t"
+ "addiu %[temp3], %[temp3], 0x2000 \n\t"
+ "sra %[temp2], %[temp2], 14 \n\t"
+ "sra %[temp3], %[temp3], 14 \n\t"
+ "b 4f \n\t"
+ " nop \n\t"
+ "2: \n\t"
+ "addu %[temp1], $zero, $zero \n\t"
+ "addu %[temp2], $zero, $zero \n\t"
+ "addu %[temp3], $zero, $zero \n\t"
+ "b 1f \n\t"
+ " nop \n\t"
+ "3: \n\t"
+ "addiu %[temp1], $0, 0x4000 \n\t"
+ "1: \n\t"
+ "sh %[temp1], 0(%[ptr]) \n\t"
+ "4: \n\t"
+ "sh %[temp2], 0(%[er_ptr]) \n\t"
+ "sh %[temp3], 2(%[er_ptr]) \n\t"
+ "addiu %[ptr], %[ptr], 2 \n\t"
+ "addiu %[er_ptr], %[er_ptr], 4 \n\t"
+ ".set pop \n\t"
+ : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
+ [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [ptr] "+r" (ptr),
+ [er_ptr] "+r" (er_ptr), [dr_ptr] "+r" (dr_ptr)
+ :
+ : "memory", "hi", "lo"
+ );
+#endif
+ }
+ }
+ }
+ else {
+ // multiply with Wiener coefficients
+ for (i = 0; i < PART_LEN1; i++) {
+ efw[i].real = (int16_t)
+ (WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
+ hnl[i],
+ 14));
+ efw[i].imag = (int16_t)
+ (WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
+ hnl[i],
+ 14));
+ }
+ }
+
+ if (aecm->cngMode == AecmTrue) {
+ ComfortNoise(aecm, ptrDfaClean, efw, hnl);
+ }
+
+ InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
+
+ return 0;
+}
+
+// Generate comfort noise and add to output signal.
+static void ComfortNoise(AecmCore* aecm,
+ const uint16_t* dfa,
+ ComplexInt16* out,
+ const int16_t* lambda) {
+ int16_t i;
+ int16_t tmp16, tmp161, tmp162, tmp163, nrsh1, nrsh2;
+ int32_t tmp32, tmp321, tnoise, tnoise1;
+ int32_t tmp322, tmp323, *tmp1;
+ int16_t* dfap;
+ int16_t* lambdap;
+ const int32_t c2049 = 2049;
+ const int32_t c359 = 359;
+ const int32_t c114 = ONE_Q14;
+
+ int16_t randW16[PART_LEN];
+ int16_t uReal[PART_LEN1];
+ int16_t uImag[PART_LEN1];
+ int32_t outLShift32;
+
+ int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
+ int16_t minTrackShift = 9;
+
+ assert(shiftFromNearToNoise >= 0);
+ assert(shiftFromNearToNoise < 16);
+
+ if (aecm->noiseEstCtr < 100) {
+ // Track the minimum more quickly initially.
+ aecm->noiseEstCtr++;
+ minTrackShift = 6;
+ }
+
+ // Generate a uniform random array on [0 2^15-1].
+ WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
+ int16_t* randW16p = (int16_t*)randW16;
+#if defined (MIPS_DSP_R1_LE)
+ int16_t* kCosTablep = (int16_t*)WebRtcAecm_kCosTable;
+ int16_t* kSinTablep = (int16_t*)WebRtcAecm_kSinTable;
+#endif // #if defined(MIPS_DSP_R1_LE)
+ tmp1 = (int32_t*)aecm->noiseEst + 1;
+ dfap = (int16_t*)dfa + 1;
+ lambdap = (int16_t*)lambda + 1;
+ // Estimate noise power.
+ for (i = 1; i < PART_LEN1; i+=2) {
+ // Shift to the noise domain.
+ __asm __volatile (
+ "lh %[tmp32], 0(%[dfap]) \n\t"
+ "lw %[tnoise], 0(%[tmp1]) \n\t"
+ "sllv %[outLShift32], %[tmp32], %[shiftFromNearToNoise] \n\t"
+ : [tmp32] "=&r" (tmp32), [outLShift32] "=r" (outLShift32),
+ [tnoise] "=&r" (tnoise)
+ : [tmp1] "r" (tmp1), [dfap] "r" (dfap),
+ [shiftFromNearToNoise] "r" (shiftFromNearToNoise)
+ : "memory"
+ );
+
+ if (outLShift32 < tnoise) {
+ // Reset "too low" counter
+ aecm->noiseEstTooLowCtr[i] = 0;
+ // Track the minimum.
+ if (tnoise < (1 << minTrackShift)) {
+ // For small values, decrease noiseEst[i] every
+ // |kNoiseEstIncCount| block. The regular approach below can not
+ // go further down due to truncation.
+ aecm->noiseEstTooHighCtr[i]++;
+ if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) {
+ tnoise--;
+ aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
+ }
+ } else {
+ __asm __volatile (
+ "subu %[tmp32], %[tnoise], %[outLShift32] \n\t"
+ "srav %[tmp32], %[tmp32], %[minTrackShift] \n\t"
+ "subu %[tnoise], %[tnoise], %[tmp32] \n\t"
+ : [tmp32] "=&r" (tmp32), [tnoise] "+r" (tnoise)
+ : [outLShift32] "r" (outLShift32), [minTrackShift] "r" (minTrackShift)
+ );
+ }
+ } else {
+ // Reset "too high" counter
+ aecm->noiseEstTooHighCtr[i] = 0;
+ // Ramp slowly upwards until we hit the minimum again.
+ if ((tnoise >> 19) <= 0) {
+ if ((tnoise >> 11) > 0) {
+ // Large enough for relative increase
+ __asm __volatile (
+ "mul %[tnoise], %[tnoise], %[c2049] \n\t"
+ "sra %[tnoise], %[tnoise], 11 \n\t"
+ : [tnoise] "+r" (tnoise)
+ : [c2049] "r" (c2049)
+ : "hi", "lo"
+ );
+ } else {
+ // Make incremental increases based on size every
+ // |kNoiseEstIncCount| block
+ aecm->noiseEstTooLowCtr[i]++;
+ if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) {
+ __asm __volatile (
+ "sra %[tmp32], %[tnoise], 9 \n\t"
+ "addi %[tnoise], %[tnoise], 1 \n\t"
+ "addu %[tnoise], %[tnoise], %[tmp32] \n\t"
+ : [tnoise] "+r" (tnoise), [tmp32] "=&r" (tmp32)
+ :
+ );
+ aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
+ }
+ }
+ } else {
+ // Avoid overflow.
+ // Multiplication with 2049 will cause wrap around. Scale
+ // down first and then multiply
+ __asm __volatile (
+ "sra %[tnoise], %[tnoise], 11 \n\t"
+ "mul %[tnoise], %[tnoise], %[c2049] \n\t"
+ : [tnoise] "+r" (tnoise)
+ : [c2049] "r" (c2049)
+ : "hi", "lo"
+ );
+ }
+ }
+
+ // Shift to the noise domain.
+ __asm __volatile (
+ "lh %[tmp32], 2(%[dfap]) \n\t"
+ "lw %[tnoise1], 4(%[tmp1]) \n\t"
+ "addiu %[dfap], %[dfap], 4 \n\t"
+ "sllv %[outLShift32], %[tmp32], %[shiftFromNearToNoise] \n\t"
+ : [tmp32] "=&r" (tmp32), [dfap] "+r" (dfap),
+ [outLShift32] "=r" (outLShift32), [tnoise1] "=&r" (tnoise1)
+ : [tmp1] "r" (tmp1), [shiftFromNearToNoise] "r" (shiftFromNearToNoise)
+ : "memory"
+ );
+
+ if (outLShift32 < tnoise1) {
+ // Reset "too low" counter
+ aecm->noiseEstTooLowCtr[i + 1] = 0;
+ // Track the minimum.
+ if (tnoise1 < (1 << minTrackShift)) {
+ // For small values, decrease noiseEst[i] every
+ // |kNoiseEstIncCount| block. The regular approach below can not
+ // go further down due to truncation.
+ aecm->noiseEstTooHighCtr[i + 1]++;
+ if (aecm->noiseEstTooHighCtr[i + 1] >= kNoiseEstIncCount) {
+ tnoise1--;
+ aecm->noiseEstTooHighCtr[i + 1] = 0; // Reset the counter
+ }
+ } else {
+ __asm __volatile (
+ "subu %[tmp32], %[tnoise1], %[outLShift32] \n\t"
+ "srav %[tmp32], %[tmp32], %[minTrackShift] \n\t"
+ "subu %[tnoise1], %[tnoise1], %[tmp32] \n\t"
+ : [tmp32] "=&r" (tmp32), [tnoise1] "+r" (tnoise1)
+ : [outLShift32] "r" (outLShift32), [minTrackShift] "r" (minTrackShift)
+ );
+ }
+ } else {
+ // Reset "too high" counter
+ aecm->noiseEstTooHighCtr[i + 1] = 0;
+ // Ramp slowly upwards until we hit the minimum again.
+ if ((tnoise1 >> 19) <= 0) {
+ if ((tnoise1 >> 11) > 0) {
+ // Large enough for relative increase
+ __asm __volatile (
+ "mul %[tnoise1], %[tnoise1], %[c2049] \n\t"
+ "sra %[tnoise1], %[tnoise1], 11 \n\t"
+ : [tnoise1] "+r" (tnoise1)
+ : [c2049] "r" (c2049)
+ : "hi", "lo"
+ );
+ } else {
+ // Make incremental increases based on size every
+ // |kNoiseEstIncCount| block
+ aecm->noiseEstTooLowCtr[i + 1]++;
+ if (aecm->noiseEstTooLowCtr[i + 1] >= kNoiseEstIncCount) {
+ __asm __volatile (
+ "sra %[tmp32], %[tnoise1], 9 \n\t"
+ "addi %[tnoise1], %[tnoise1], 1 \n\t"
+ "addu %[tnoise1], %[tnoise1], %[tmp32] \n\t"
+ : [tnoise1] "+r" (tnoise1), [tmp32] "=&r" (tmp32)
+ :
+ );
+ aecm->noiseEstTooLowCtr[i + 1] = 0; // Reset counter
+ }
+ }
+ } else {
+ // Avoid overflow.
+ // Multiplication with 2049 will cause wrap around. Scale
+ // down first and then multiply
+ __asm __volatile (
+ "sra %[tnoise1], %[tnoise1], 11 \n\t"
+ "mul %[tnoise1], %[tnoise1], %[c2049] \n\t"
+ : [tnoise1] "+r" (tnoise1)
+ : [c2049] "r" (c2049)
+ : "hi", "lo"
+ );
+ }
+ }
+
+ __asm __volatile (
+ "lh %[tmp16], 0(%[lambdap]) \n\t"
+ "lh %[tmp161], 2(%[lambdap]) \n\t"
+ "sw %[tnoise], 0(%[tmp1]) \n\t"
+ "sw %[tnoise1], 4(%[tmp1]) \n\t"
+ "subu %[tmp16], %[c114], %[tmp16] \n\t"
+ "subu %[tmp161], %[c114], %[tmp161] \n\t"
+ "srav %[tmp32], %[tnoise], %[shiftFromNearToNoise] \n\t"
+ "srav %[tmp321], %[tnoise1], %[shiftFromNearToNoise] \n\t"
+ "addiu %[lambdap], %[lambdap], 4 \n\t"
+ "addiu %[tmp1], %[tmp1], 8 \n\t"
+ : [tmp16] "=&r" (tmp16), [tmp161] "=&r" (tmp161), [tmp1] "+r" (tmp1),
+ [tmp32] "=&r" (tmp32), [tmp321] "=&r" (tmp321), [lambdap] "+r" (lambdap)
+ : [tnoise] "r" (tnoise), [tnoise1] "r" (tnoise1), [c114] "r" (c114),
+ [shiftFromNearToNoise] "r" (shiftFromNearToNoise)
+ : "memory"
+ );
+
+ if (tmp32 > 32767) {
+ tmp32 = 32767;
+ aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
+ }
+ if (tmp321 > 32767) {
+ tmp321 = 32767;
+ aecm->noiseEst[i+1] = tmp321 << shiftFromNearToNoise;
+ }
+
+ __asm __volatile (
+ "mul %[tmp32], %[tmp32], %[tmp16] \n\t"
+ "mul %[tmp321], %[tmp321], %[tmp161] \n\t"
+ "sra %[nrsh1], %[tmp32], 14 \n\t"
+ "sra %[nrsh2], %[tmp321], 14 \n\t"
+ : [nrsh1] "=&r" (nrsh1), [nrsh2] "=r" (nrsh2)
+ : [tmp16] "r" (tmp16), [tmp161] "r" (tmp161), [tmp32] "r" (tmp32),
+ [tmp321] "r" (tmp321)
+ : "memory", "hi", "lo"
+ );
+
+ __asm __volatile (
+ "lh %[tmp32], 0(%[randW16p]) \n\t"
+ "lh %[tmp321], 2(%[randW16p]) \n\t"
+ "addiu %[randW16p], %[randW16p], 4 \n\t"
+ "mul %[tmp32], %[tmp32], %[c359] \n\t"
+ "mul %[tmp321], %[tmp321], %[c359] \n\t"
+ "sra %[tmp16], %[tmp32], 15 \n\t"
+ "sra %[tmp161], %[tmp321], 15 \n\t"
+ : [randW16p] "+r" (randW16p), [tmp32] "=&r" (tmp32),
+ [tmp16] "=r" (tmp16), [tmp161] "=r" (tmp161), [tmp321] "=&r" (tmp321)
+ : [c359] "r" (c359)
+ : "memory", "hi", "lo"
+ );
+
+#if !defined(MIPS_DSP_R1_LE)
+ tmp32 = WebRtcAecm_kCosTable[tmp16];
+ tmp321 = WebRtcAecm_kSinTable[tmp16];
+ tmp322 = WebRtcAecm_kCosTable[tmp161];
+ tmp323 = WebRtcAecm_kSinTable[tmp161];
+#else
+ __asm __volatile (
+ "sll %[tmp16], %[tmp16], 1 \n\t"
+ "sll %[tmp161], %[tmp161], 1 \n\t"
+ "lhx %[tmp32], %[tmp16](%[kCosTablep]) \n\t"
+ "lhx %[tmp321], %[tmp16](%[kSinTablep]) \n\t"
+ "lhx %[tmp322], %[tmp161](%[kCosTablep]) \n\t"
+ "lhx %[tmp323], %[tmp161](%[kSinTablep]) \n\t"
+ : [tmp32] "=&r" (tmp32), [tmp321] "=&r" (tmp321),
+ [tmp322] "=&r" (tmp322), [tmp323] "=&r" (tmp323)
+ : [kCosTablep] "r" (kCosTablep), [tmp16] "r" (tmp16),
+ [tmp161] "r" (tmp161), [kSinTablep] "r" (kSinTablep)
+ : "memory"
+ );
+#endif
+ __asm __volatile (
+ "mul %[tmp32], %[tmp32], %[nrsh1] \n\t"
+ "negu %[tmp162], %[nrsh1] \n\t"
+ "mul %[tmp322], %[tmp322], %[nrsh2] \n\t"
+ "negu %[tmp163], %[nrsh2] \n\t"
+ "sra %[tmp32], %[tmp32], 13 \n\t"
+ "mul %[tmp321], %[tmp321], %[tmp162] \n\t"
+ "sra %[tmp322], %[tmp322], 13 \n\t"
+ "mul %[tmp323], %[tmp323], %[tmp163] \n\t"
+ "sra %[tmp321], %[tmp321], 13 \n\t"
+ "sra %[tmp323], %[tmp323], 13 \n\t"
+ : [tmp32] "+r" (tmp32), [tmp321] "+r" (tmp321), [tmp162] "=&r" (tmp162),
+ [tmp322] "+r" (tmp322), [tmp323] "+r" (tmp323), [tmp163] "=&r" (tmp163)
+ : [nrsh1] "r" (nrsh1), [nrsh2] "r" (nrsh2)
+ : "hi", "lo"
+ );
+ // Tables are in Q13.
+ uReal[i] = (int16_t)tmp32;
+ uImag[i] = (int16_t)tmp321;
+ uReal[i + 1] = (int16_t)tmp322;
+ uImag[i + 1] = (int16_t)tmp323;
+ }
+
+ int32_t tt, sgn;
+ tt = out[0].real;
+ sgn = ((int)tt) >> 31;
+ out[0].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ tt = out[0].imag;
+ sgn = ((int)tt) >> 31;
+ out[0].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ for (i = 1; i < PART_LEN; i++) {
+ tt = out[i].real + uReal[i];
+ sgn = ((int)tt) >> 31;
+ out[i].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ tt = out[i].imag + uImag[i];
+ sgn = ((int)tt) >> 31;
+ out[i].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ }
+ tt = out[PART_LEN].real + uReal[PART_LEN];
+ sgn = ((int)tt) >> 31;
+ out[PART_LEN].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+ tt = out[PART_LEN].imag;
+ sgn = ((int)tt) >> 31;
+ out[PART_LEN].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
+}
+
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_neon.c b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_neon.c
new file mode 100644
index 00000000..1751fcf7
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_core_neon.c
@@ -0,0 +1,212 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
+
+#include <arm_neon.h>
+#include <assert.h>
+
+#include "webrtc/common_audio/signal_processing/include/real_fft.h"
+
+// TODO(kma): Re-write the corresponding assembly file, the offset
+// generating script and makefile, to replace these C functions.
+
+// Square root of Hanning window in Q14.
+const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
+ 0,
+ 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
+ 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
+ 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
+ 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
+ 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
+ 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
+ 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
+ 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
+};
+
+static inline void AddLanes(uint32_t* ptr, uint32x4_t v) {
+#if defined(WEBRTC_ARCH_ARM64)
+ *(ptr) = vaddvq_u32(v);
+#else
+ uint32x2_t tmp_v;
+ tmp_v = vadd_u32(vget_low_u32(v), vget_high_u32(v));
+ tmp_v = vpadd_u32(tmp_v, tmp_v);
+ *(ptr) = vget_lane_u32(tmp_v, 0);
+#endif
+}
+
+void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est,
+ uint32_t* far_energy,
+ uint32_t* echo_energy_adapt,
+ uint32_t* echo_energy_stored) {
+ int16_t* start_stored_p = aecm->channelStored;
+ int16_t* start_adapt_p = aecm->channelAdapt16;
+ int32_t* echo_est_p = echo_est;
+ const int16_t* end_stored_p = aecm->channelStored + PART_LEN;
+ const uint16_t* far_spectrum_p = far_spectrum;
+ int16x8_t store_v, adapt_v;
+ uint16x8_t spectrum_v;
+ uint32x4_t echo_est_v_low, echo_est_v_high;
+ uint32x4_t far_energy_v, echo_stored_v, echo_adapt_v;
+
+ far_energy_v = vdupq_n_u32(0);
+ echo_adapt_v = vdupq_n_u32(0);
+ echo_stored_v = vdupq_n_u32(0);
+
+ // Get energy for the delayed far end signal and estimated
+ // echo using both stored and adapted channels.
+ // The C code:
+ // for (i = 0; i < PART_LEN1; i++) {
+ // echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
+ // far_spectrum[i]);
+ // (*far_energy) += (uint32_t)(far_spectrum[i]);
+ // *echo_energy_adapt += aecm->channelAdapt16[i] * far_spectrum[i];
+ // (*echo_energy_stored) += (uint32_t)echo_est[i];
+ // }
+ while (start_stored_p < end_stored_p) {
+ spectrum_v = vld1q_u16(far_spectrum_p);
+ adapt_v = vld1q_s16(start_adapt_p);
+ store_v = vld1q_s16(start_stored_p);
+
+ far_energy_v = vaddw_u16(far_energy_v, vget_low_u16(spectrum_v));
+ far_energy_v = vaddw_u16(far_energy_v, vget_high_u16(spectrum_v));
+
+ echo_est_v_low = vmull_u16(vreinterpret_u16_s16(vget_low_s16(store_v)),
+ vget_low_u16(spectrum_v));
+ echo_est_v_high = vmull_u16(vreinterpret_u16_s16(vget_high_s16(store_v)),
+ vget_high_u16(spectrum_v));
+ vst1q_s32(echo_est_p, vreinterpretq_s32_u32(echo_est_v_low));
+ vst1q_s32(echo_est_p + 4, vreinterpretq_s32_u32(echo_est_v_high));
+
+ echo_stored_v = vaddq_u32(echo_est_v_low, echo_stored_v);
+ echo_stored_v = vaddq_u32(echo_est_v_high, echo_stored_v);
+
+ echo_adapt_v = vmlal_u16(echo_adapt_v,
+ vreinterpret_u16_s16(vget_low_s16(adapt_v)),
+ vget_low_u16(spectrum_v));
+ echo_adapt_v = vmlal_u16(echo_adapt_v,
+ vreinterpret_u16_s16(vget_high_s16(adapt_v)),
+ vget_high_u16(spectrum_v));
+
+ start_stored_p += 8;
+ start_adapt_p += 8;
+ far_spectrum_p += 8;
+ echo_est_p += 8;
+ }
+
+ AddLanes(far_energy, far_energy_v);
+ AddLanes(echo_energy_stored, echo_stored_v);
+ AddLanes(echo_energy_adapt, echo_adapt_v);
+
+ echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
+ far_spectrum[PART_LEN]);
+ *echo_energy_stored += (uint32_t)echo_est[PART_LEN];
+ *far_energy += (uint32_t)far_spectrum[PART_LEN];
+ *echo_energy_adapt += aecm->channelAdapt16[PART_LEN] * far_spectrum[PART_LEN];
+}
+
+void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
+ const uint16_t* far_spectrum,
+ int32_t* echo_est) {
+ assert((uintptr_t)echo_est % 32 == 0);
+ assert((uintptr_t)(aecm->channelStored) % 16 == 0);
+ assert((uintptr_t)(aecm->channelAdapt16) % 16 == 0);
+
+ // This is C code of following optimized code.
+ // During startup we store the channel every block.
+ // memcpy(aecm->channelStored,
+ // aecm->channelAdapt16,
+ // sizeof(int16_t) * PART_LEN1);
+ // Recalculate echo estimate
+ // for (i = 0; i < PART_LEN; i += 4) {
+ // echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
+ // far_spectrum[i]);
+ // echo_est[i + 1] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 1],
+ // far_spectrum[i + 1]);
+ // echo_est[i + 2] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 2],
+ // far_spectrum[i + 2]);
+ // echo_est[i + 3] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 3],
+ // far_spectrum[i + 3]);
+ // }
+ // echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
+ // far_spectrum[i]);
+ const uint16_t* far_spectrum_p = far_spectrum;
+ int16_t* start_adapt_p = aecm->channelAdapt16;
+ int16_t* start_stored_p = aecm->channelStored;
+ const int16_t* end_stored_p = aecm->channelStored + PART_LEN;
+ int32_t* echo_est_p = echo_est;
+
+ uint16x8_t far_spectrum_v;
+ int16x8_t adapt_v;
+ uint32x4_t echo_est_v_low, echo_est_v_high;
+
+ while (start_stored_p < end_stored_p) {
+ far_spectrum_v = vld1q_u16(far_spectrum_p);
+ adapt_v = vld1q_s16(start_adapt_p);
+
+ vst1q_s16(start_stored_p, adapt_v);
+
+ echo_est_v_low = vmull_u16(vget_low_u16(far_spectrum_v),
+ vget_low_u16(vreinterpretq_u16_s16(adapt_v)));
+ echo_est_v_high = vmull_u16(vget_high_u16(far_spectrum_v),
+ vget_high_u16(vreinterpretq_u16_s16(adapt_v)));
+
+ vst1q_s32(echo_est_p, vreinterpretq_s32_u32(echo_est_v_low));
+ vst1q_s32(echo_est_p + 4, vreinterpretq_s32_u32(echo_est_v_high));
+
+ far_spectrum_p += 8;
+ start_adapt_p += 8;
+ start_stored_p += 8;
+ echo_est_p += 8;
+ }
+ aecm->channelStored[PART_LEN] = aecm->channelAdapt16[PART_LEN];
+ echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
+ far_spectrum[PART_LEN]);
+}
+
+void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm) {
+ assert((uintptr_t)(aecm->channelStored) % 16 == 0);
+ assert((uintptr_t)(aecm->channelAdapt16) % 16 == 0);
+ assert((uintptr_t)(aecm->channelAdapt32) % 32 == 0);
+
+ // The C code of following optimized code.
+ // for (i = 0; i < PART_LEN1; i++) {
+ // aecm->channelAdapt16[i] = aecm->channelStored[i];
+ // aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
+ // (int32_t)aecm->channelStored[i], 16);
+ // }
+
+ int16_t* start_stored_p = aecm->channelStored;
+ int16_t* start_adapt16_p = aecm->channelAdapt16;
+ int32_t* start_adapt32_p = aecm->channelAdapt32;
+ const int16_t* end_stored_p = start_stored_p + PART_LEN;
+
+ int16x8_t stored_v;
+ int32x4_t adapt32_v_low, adapt32_v_high;
+
+ while (start_stored_p < end_stored_p) {
+ stored_v = vld1q_s16(start_stored_p);
+ vst1q_s16(start_adapt16_p, stored_v);
+
+ adapt32_v_low = vshll_n_s16(vget_low_s16(stored_v), 16);
+ adapt32_v_high = vshll_n_s16(vget_high_s16(stored_v), 16);
+
+ vst1q_s32(start_adapt32_p, adapt32_v_low);
+ vst1q_s32(start_adapt32_p + 4, adapt32_v_high);
+
+ start_stored_p += 8;
+ start_adapt16_p += 8;
+ start_adapt32_p += 8;
+ }
+ aecm->channelAdapt16[PART_LEN] = aecm->channelStored[PART_LEN];
+ aecm->channelAdapt32[PART_LEN] = (int32_t)aecm->channelStored[PART_LEN] << 16;
+}
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_defines.h b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_defines.h
new file mode 100644
index 00000000..6d63990b
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/aecm_defines.h
@@ -0,0 +1,87 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
+#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
+
+#define AECM_DYNAMIC_Q /* Turn on/off dynamic Q-domain. */
+
+/* Algorithm parameters */
+#define FRAME_LEN 80 /* Total frame length, 10 ms. */
+
+#define PART_LEN 64 /* Length of partition. */
+#define PART_LEN_SHIFT 7 /* Length of (PART_LEN * 2) in base 2. */
+
+#define PART_LEN1 (PART_LEN + 1) /* Unique fft coefficients. */
+#define PART_LEN2 (PART_LEN << 1) /* Length of partition * 2. */
+#define PART_LEN4 (PART_LEN << 2) /* Length of partition * 4. */
+#define FAR_BUF_LEN PART_LEN4 /* Length of buffers. */
+#define MAX_DELAY 100
+
+/* Counter parameters */
+#define CONV_LEN 512 /* Convergence length used at startup. */
+#define CONV_LEN2 (CONV_LEN << 1) /* Used at startup. */
+
+/* Energy parameters */
+#define MAX_BUF_LEN 64 /* History length of energy signals. */
+#define FAR_ENERGY_MIN 1025 /* Lowest Far energy level: At least 2 */
+ /* in energy. */
+#define FAR_ENERGY_DIFF 929 /* Allowed difference between max */
+ /* and min. */
+#define ENERGY_DEV_OFFSET 0 /* The energy error offset in Q8. */
+#define ENERGY_DEV_TOL 400 /* The energy estimation tolerance (Q8). */
+#define FAR_ENERGY_VAD_REGION 230 /* Far VAD tolerance region. */
+
+/* Stepsize parameters */
+#define MU_MIN 10 /* Min stepsize 2^-MU_MIN (far end energy */
+ /* dependent). */
+#define MU_MAX 1 /* Max stepsize 2^-MU_MAX (far end energy */
+ /* dependent). */
+#define MU_DIFF 9 /* MU_MIN - MU_MAX */
+
+/* Channel parameters */
+#define MIN_MSE_COUNT 20 /* Min number of consecutive blocks with enough */
+ /* far end energy to compare channel estimates. */
+#define MIN_MSE_DIFF 29 /* The ratio between adapted and stored channel to */
+ /* accept a new storage (0.8 in Q-MSE_RESOLUTION). */
+#define MSE_RESOLUTION 5 /* MSE parameter resolution. */
+#define RESOLUTION_CHANNEL16 12 /* W16 Channel in Q-RESOLUTION_CHANNEL16. */
+#define RESOLUTION_CHANNEL32 28 /* W32 Channel in Q-RESOLUTION_CHANNEL. */
+#define CHANNEL_VAD 16 /* Minimum energy in frequency band */
+ /* to update channel. */
+
+/* Suppression gain parameters: SUPGAIN parameters in Q-(RESOLUTION_SUPGAIN). */
+#define RESOLUTION_SUPGAIN 8 /* Channel in Q-(RESOLUTION_SUPGAIN). */
+#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) /* Default. */
+#define SUPGAIN_ERROR_PARAM_A 3072 /* Estimation error parameter */
+ /* (Maximum gain) (8 in Q8). */
+#define SUPGAIN_ERROR_PARAM_B 1536 /* Estimation error parameter */
+ /* (Gain before going down). */
+#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT /* Estimation error parameter */
+ /* (Should be the same as Default) (1 in Q8). */
+#define SUPGAIN_EPC_DT 200 /* SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL */
+
+/* Defines for "check delay estimation" */
+#define CORR_WIDTH 31 /* Number of samples to correlate over. */
+#define CORR_MAX 16 /* Maximum correlation offset. */
+#define CORR_MAX_BUF 63
+#define CORR_DEV 4
+#define CORR_MAX_LEVEL 20
+#define CORR_MAX_LOW 4
+#define CORR_BUF_LEN (CORR_MAX << 1) + 1
+/* Note that CORR_WIDTH + 2*CORR_MAX <= MAX_BUF_LEN. */
+
+#define ONE_Q14 (1 << 14)
+
+/* NLP defines */
+#define NLP_COMP_LOW 3277 /* 0.2 in Q14 */
+#define NLP_COMP_HIGH ONE_Q14 /* 1 in Q14 */
+
+#endif
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/echo_control_mobile.c b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/echo_control_mobile.c
new file mode 100644
index 00000000..83781e97
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/echo_control_mobile.c
@@ -0,0 +1,702 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
+
+#ifdef AEC_DEBUG
+#include <stdio.h>
+#endif
+#include <stdlib.h>
+
+#include "webrtc/common_audio/ring_buffer.h"
+#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
+#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
+
+#define BUF_SIZE_FRAMES 50 // buffer size (frames)
+// Maximum length of resampled signal. Must be an integer multiple of frames
+// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
+// The factor of 2 handles wb, and the + 1 is as a safety margin
+#define MAX_RESAMP_LEN (5 * FRAME_LEN)
+
+static const size_t kBufSizeSamp = BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
+static const int kSampMsNb = 8; // samples per ms in nb
+// Target suppression levels for nlp modes
+// log{0.001, 0.00001, 0.00000001}
+static const int kInitCheck = 42;
+
+typedef struct
+{
+ int sampFreq;
+ int scSampFreq;
+ short bufSizeStart;
+ int knownDelay;
+
+ // Stores the last frame added to the farend buffer
+ short farendOld[2][FRAME_LEN];
+ short initFlag; // indicates if AEC has been initialized
+
+ // Variables used for averaging far end buffer size
+ short counter;
+ short sum;
+ short firstVal;
+ short checkBufSizeCtr;
+
+ // Variables used for delay shifts
+ short msInSndCardBuf;
+ short filtDelay;
+ int timeForDelayChange;
+ int ECstartup;
+ int checkBuffSize;
+ int delayChange;
+ short lastDelayDiff;
+
+ int16_t echoMode;
+
+#ifdef AEC_DEBUG
+ FILE *bufFile;
+ FILE *delayFile;
+ FILE *preCompFile;
+ FILE *postCompFile;
+#endif // AEC_DEBUG
+ // Structures
+ RingBuffer *farendBuf;
+
+ int lastError;
+
+ AecmCore* aecmCore;
+} AecMobile;
+
+// Estimates delay to set the position of the farend buffer read pointer
+// (controlled by knownDelay)
+static int WebRtcAecm_EstBufDelay(AecMobile* aecmInst, short msInSndCardBuf);
+
+// Stuffs the farend buffer if the estimated delay is too large
+static int WebRtcAecm_DelayComp(AecMobile* aecmInst);
+
+void* WebRtcAecm_Create() {
+ AecMobile* aecm = malloc(sizeof(AecMobile));
+
+ WebRtcSpl_Init();
+
+ aecm->aecmCore = WebRtcAecm_CreateCore();
+ if (!aecm->aecmCore) {
+ WebRtcAecm_Free(aecm);
+ return NULL;
+ }
+
+ aecm->farendBuf = WebRtc_CreateBuffer(kBufSizeSamp,
+ sizeof(int16_t));
+ if (!aecm->farendBuf)
+ {
+ WebRtcAecm_Free(aecm);
+ return NULL;
+ }
+
+ aecm->initFlag = 0;
+ aecm->lastError = 0;
+
+#ifdef AEC_DEBUG
+ aecm->aecmCore->farFile = fopen("aecFar.pcm","wb");
+ aecm->aecmCore->nearFile = fopen("aecNear.pcm","wb");
+ aecm->aecmCore->outFile = fopen("aecOut.pcm","wb");
+ //aecm->aecmCore->outLpFile = fopen("aecOutLp.pcm","wb");
+
+ aecm->bufFile = fopen("aecBuf.dat", "wb");
+ aecm->delayFile = fopen("aecDelay.dat", "wb");
+ aecm->preCompFile = fopen("preComp.pcm", "wb");
+ aecm->postCompFile = fopen("postComp.pcm", "wb");
+#endif // AEC_DEBUG
+ return aecm;
+}
+
+void WebRtcAecm_Free(void* aecmInst) {
+ AecMobile* aecm = aecmInst;
+
+ if (aecm == NULL) {
+ return;
+ }
+
+#ifdef AEC_DEBUG
+ fclose(aecm->aecmCore->farFile);
+ fclose(aecm->aecmCore->nearFile);
+ fclose(aecm->aecmCore->outFile);
+ //fclose(aecm->aecmCore->outLpFile);
+
+ fclose(aecm->bufFile);
+ fclose(aecm->delayFile);
+ fclose(aecm->preCompFile);
+ fclose(aecm->postCompFile);
+#endif // AEC_DEBUG
+ WebRtcAecm_FreeCore(aecm->aecmCore);
+ WebRtc_FreeBuffer(aecm->farendBuf);
+ free(aecm);
+}
+
+int32_t WebRtcAecm_Init(void *aecmInst, int32_t sampFreq)
+{
+ AecMobile* aecm = aecmInst;
+ AecmConfig aecConfig;
+
+ if (aecm == NULL)
+ {
+ return -1;
+ }
+
+ if (sampFreq != 8000 && sampFreq != 16000)
+ {
+ aecm->lastError = AECM_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+ aecm->sampFreq = sampFreq;
+
+ // Initialize AECM core
+ if (WebRtcAecm_InitCore(aecm->aecmCore, aecm->sampFreq) == -1)
+ {
+ aecm->lastError = AECM_UNSPECIFIED_ERROR;
+ return -1;
+ }
+
+ // Initialize farend buffer
+ WebRtc_InitBuffer(aecm->farendBuf);
+
+ aecm->initFlag = kInitCheck; // indicates that initialization has been done
+
+ aecm->delayChange = 1;
+
+ aecm->sum = 0;
+ aecm->counter = 0;
+ aecm->checkBuffSize = 1;
+ aecm->firstVal = 0;
+
+ aecm->ECstartup = 1;
+ aecm->bufSizeStart = 0;
+ aecm->checkBufSizeCtr = 0;
+ aecm->filtDelay = 0;
+ aecm->timeForDelayChange = 0;
+ aecm->knownDelay = 0;
+ aecm->lastDelayDiff = 0;
+
+ memset(&aecm->farendOld[0][0], 0, 160);
+
+ // Default settings.
+ aecConfig.cngMode = AecmTrue;
+ aecConfig.echoMode = 3;
+
+ if (WebRtcAecm_set_config(aecm, aecConfig) == -1)
+ {
+ aecm->lastError = AECM_UNSPECIFIED_ERROR;
+ return -1;
+ }
+
+ return 0;
+}
+
+int32_t WebRtcAecm_BufferFarend(void *aecmInst, const int16_t *farend,
+ size_t nrOfSamples)
+{
+ AecMobile* aecm = aecmInst;
+ int32_t retVal = 0;
+
+ if (aecm == NULL)
+ {
+ return -1;
+ }
+
+ if (farend == NULL)
+ {
+ aecm->lastError = AECM_NULL_POINTER_ERROR;
+ return -1;
+ }
+
+ if (aecm->initFlag != kInitCheck)
+ {
+ aecm->lastError = AECM_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ if (nrOfSamples != 80 && nrOfSamples != 160)
+ {
+ aecm->lastError = AECM_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+
+ // TODO: Is this really a good idea?
+ if (!aecm->ECstartup)
+ {
+ WebRtcAecm_DelayComp(aecm);
+ }
+
+ WebRtc_WriteBuffer(aecm->farendBuf, farend, nrOfSamples);
+
+ return retVal;
+}
+
+int32_t WebRtcAecm_Process(void *aecmInst, const int16_t *nearendNoisy,
+ const int16_t *nearendClean, int16_t *out,
+ size_t nrOfSamples, int16_t msInSndCardBuf)
+{
+ AecMobile* aecm = aecmInst;
+ int32_t retVal = 0;
+ size_t i;
+ short nmbrOfFilledBuffers;
+ size_t nBlocks10ms;
+ size_t nFrames;
+#ifdef AEC_DEBUG
+ short msInAECBuf;
+#endif
+
+ if (aecm == NULL)
+ {
+ return -1;
+ }
+
+ if (nearendNoisy == NULL)
+ {
+ aecm->lastError = AECM_NULL_POINTER_ERROR;
+ return -1;
+ }
+
+ if (out == NULL)
+ {
+ aecm->lastError = AECM_NULL_POINTER_ERROR;
+ return -1;
+ }
+
+ if (aecm->initFlag != kInitCheck)
+ {
+ aecm->lastError = AECM_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ if (nrOfSamples != 80 && nrOfSamples != 160)
+ {
+ aecm->lastError = AECM_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+
+ if (msInSndCardBuf < 0)
+ {
+ msInSndCardBuf = 0;
+ aecm->lastError = AECM_BAD_PARAMETER_WARNING;
+ retVal = -1;
+ } else if (msInSndCardBuf > 500)
+ {
+ msInSndCardBuf = 500;
+ aecm->lastError = AECM_BAD_PARAMETER_WARNING;
+ retVal = -1;
+ }
+ msInSndCardBuf += 10;
+ aecm->msInSndCardBuf = msInSndCardBuf;
+
+ nFrames = nrOfSamples / FRAME_LEN;
+ nBlocks10ms = nFrames / aecm->aecmCore->mult;
+
+ if (aecm->ECstartup)
+ {
+ if (nearendClean == NULL)
+ {
+ if (out != nearendNoisy)
+ {
+ memcpy(out, nearendNoisy, sizeof(short) * nrOfSamples);
+ }
+ } else if (out != nearendClean)
+ {
+ memcpy(out, nearendClean, sizeof(short) * nrOfSamples);
+ }
+
+ nmbrOfFilledBuffers =
+ (short) WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
+ // The AECM is in the start up mode
+ // AECM is disabled until the soundcard buffer and farend buffers are OK
+
+ // Mechanism to ensure that the soundcard buffer is reasonably stable.
+ if (aecm->checkBuffSize)
+ {
+ aecm->checkBufSizeCtr++;
+ // Before we fill up the far end buffer we require the amount of data on the
+ // sound card to be stable (+/-8 ms) compared to the first value. This
+ // comparison is made during the following 4 consecutive frames. If it seems
+ // to be stable then we start to fill up the far end buffer.
+
+ if (aecm->counter == 0)
+ {
+ aecm->firstVal = aecm->msInSndCardBuf;
+ aecm->sum = 0;
+ }
+
+ if (abs(aecm->firstVal - aecm->msInSndCardBuf)
+ < WEBRTC_SPL_MAX(0.2 * aecm->msInSndCardBuf, kSampMsNb))
+ {
+ aecm->sum += aecm->msInSndCardBuf;
+ aecm->counter++;
+ } else
+ {
+ aecm->counter = 0;
+ }
+
+ if (aecm->counter * nBlocks10ms >= 6)
+ {
+ // The farend buffer size is determined in blocks of 80 samples
+ // Use 75% of the average value of the soundcard buffer
+ aecm->bufSizeStart
+ = WEBRTC_SPL_MIN((3 * aecm->sum
+ * aecm->aecmCore->mult) / (aecm->counter * 40), BUF_SIZE_FRAMES);
+ // buffersize has now been determined
+ aecm->checkBuffSize = 0;
+ }
+
+ if (aecm->checkBufSizeCtr * nBlocks10ms > 50)
+ {
+ // for really bad sound cards, don't disable echocanceller for more than 0.5 sec
+ aecm->bufSizeStart = WEBRTC_SPL_MIN((3 * aecm->msInSndCardBuf
+ * aecm->aecmCore->mult) / 40, BUF_SIZE_FRAMES);
+ aecm->checkBuffSize = 0;
+ }
+ }
+
+ // if checkBuffSize changed in the if-statement above
+ if (!aecm->checkBuffSize)
+ {
+ // soundcard buffer is now reasonably stable
+ // When the far end buffer is filled with approximately the same amount of
+ // data as the amount on the sound card we end the start up phase and start
+ // to cancel echoes.
+
+ if (nmbrOfFilledBuffers == aecm->bufSizeStart)
+ {
+ aecm->ECstartup = 0; // Enable the AECM
+ } else if (nmbrOfFilledBuffers > aecm->bufSizeStart)
+ {
+ WebRtc_MoveReadPtr(aecm->farendBuf,
+ (int) WebRtc_available_read(aecm->farendBuf)
+ - (int) aecm->bufSizeStart * FRAME_LEN);
+ aecm->ECstartup = 0;
+ }
+ }
+
+ } else
+ {
+ // AECM is enabled
+
+ // Note only 1 block supported for nb and 2 blocks for wb
+ for (i = 0; i < nFrames; i++)
+ {
+ int16_t farend[FRAME_LEN];
+ const int16_t* farend_ptr = NULL;
+
+ nmbrOfFilledBuffers =
+ (short) WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
+
+ // Check that there is data in the far end buffer
+ if (nmbrOfFilledBuffers > 0)
+ {
+ // Get the next 80 samples from the farend buffer
+ WebRtc_ReadBuffer(aecm->farendBuf, (void**) &farend_ptr, farend,
+ FRAME_LEN);
+
+ // Always store the last frame for use when we run out of data
+ memcpy(&(aecm->farendOld[i][0]), farend_ptr,
+ FRAME_LEN * sizeof(short));
+ } else
+ {
+ // We have no data so we use the last played frame
+ memcpy(farend, &(aecm->farendOld[i][0]), FRAME_LEN * sizeof(short));
+ farend_ptr = farend;
+ }
+
+ // Call buffer delay estimator when all data is extracted,
+ // i,e. i = 0 for NB and i = 1 for WB
+ if ((i == 0 && aecm->sampFreq == 8000) || (i == 1 && aecm->sampFreq == 16000))
+ {
+ WebRtcAecm_EstBufDelay(aecm, aecm->msInSndCardBuf);
+ }
+
+ // Call the AECM
+ /*WebRtcAecm_ProcessFrame(aecm->aecmCore, farend, &nearend[FRAME_LEN * i],
+ &out[FRAME_LEN * i], aecm->knownDelay);*/
+ if (WebRtcAecm_ProcessFrame(aecm->aecmCore,
+ farend_ptr,
+ &nearendNoisy[FRAME_LEN * i],
+ (nearendClean
+ ? &nearendClean[FRAME_LEN * i]
+ : NULL),
+ &out[FRAME_LEN * i]) == -1)
+ return -1;
+ }
+ }
+
+#ifdef AEC_DEBUG
+ msInAECBuf = (short) WebRtc_available_read(aecm->farendBuf) /
+ (kSampMsNb * aecm->aecmCore->mult);
+ fwrite(&msInAECBuf, 2, 1, aecm->bufFile);
+ fwrite(&(aecm->knownDelay), sizeof(aecm->knownDelay), 1, aecm->delayFile);
+#endif
+
+ return retVal;
+}
+
+int32_t WebRtcAecm_set_config(void *aecmInst, AecmConfig config)
+{
+ AecMobile* aecm = aecmInst;
+
+ if (aecm == NULL)
+ {
+ return -1;
+ }
+
+ if (aecm->initFlag != kInitCheck)
+ {
+ aecm->lastError = AECM_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ if (config.cngMode != AecmFalse && config.cngMode != AecmTrue)
+ {
+ aecm->lastError = AECM_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+ aecm->aecmCore->cngMode = config.cngMode;
+
+ if (config.echoMode < 0 || config.echoMode > 4)
+ {
+ aecm->lastError = AECM_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+ aecm->echoMode = config.echoMode;
+
+ if (aecm->echoMode == 0)
+ {
+ aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 3;
+ aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 3;
+ aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 3;
+ aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 3;
+ aecm->aecmCore->supGainErrParamDiffAB = (SUPGAIN_ERROR_PARAM_A >> 3)
+ - (SUPGAIN_ERROR_PARAM_B >> 3);
+ aecm->aecmCore->supGainErrParamDiffBD = (SUPGAIN_ERROR_PARAM_B >> 3)
+ - (SUPGAIN_ERROR_PARAM_D >> 3);
+ } else if (aecm->echoMode == 1)
+ {
+ aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 2;
+ aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 2;
+ aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 2;
+ aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 2;
+ aecm->aecmCore->supGainErrParamDiffAB = (SUPGAIN_ERROR_PARAM_A >> 2)
+ - (SUPGAIN_ERROR_PARAM_B >> 2);
+ aecm->aecmCore->supGainErrParamDiffBD = (SUPGAIN_ERROR_PARAM_B >> 2)
+ - (SUPGAIN_ERROR_PARAM_D >> 2);
+ } else if (aecm->echoMode == 2)
+ {
+ aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 1;
+ aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 1;
+ aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 1;
+ aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 1;
+ aecm->aecmCore->supGainErrParamDiffAB = (SUPGAIN_ERROR_PARAM_A >> 1)
+ - (SUPGAIN_ERROR_PARAM_B >> 1);
+ aecm->aecmCore->supGainErrParamDiffBD = (SUPGAIN_ERROR_PARAM_B >> 1)
+ - (SUPGAIN_ERROR_PARAM_D >> 1);
+ } else if (aecm->echoMode == 3)
+ {
+ aecm->aecmCore->supGain = SUPGAIN_DEFAULT;
+ aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT;
+ aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A;
+ aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D;
+ aecm->aecmCore->supGainErrParamDiffAB = SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B;
+ aecm->aecmCore->supGainErrParamDiffBD = SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D;
+ } else if (aecm->echoMode == 4)
+ {
+ aecm->aecmCore->supGain = SUPGAIN_DEFAULT << 1;
+ aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT << 1;
+ aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A << 1;
+ aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D << 1;
+ aecm->aecmCore->supGainErrParamDiffAB = (SUPGAIN_ERROR_PARAM_A << 1)
+ - (SUPGAIN_ERROR_PARAM_B << 1);
+ aecm->aecmCore->supGainErrParamDiffBD = (SUPGAIN_ERROR_PARAM_B << 1)
+ - (SUPGAIN_ERROR_PARAM_D << 1);
+ }
+
+ return 0;
+}
+
+int32_t WebRtcAecm_get_config(void *aecmInst, AecmConfig *config)
+{
+ AecMobile* aecm = aecmInst;
+
+ if (aecm == NULL)
+ {
+ return -1;
+ }
+
+ if (config == NULL)
+ {
+ aecm->lastError = AECM_NULL_POINTER_ERROR;
+ return -1;
+ }
+
+ if (aecm->initFlag != kInitCheck)
+ {
+ aecm->lastError = AECM_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ config->cngMode = aecm->aecmCore->cngMode;
+ config->echoMode = aecm->echoMode;
+
+ return 0;
+}
+
+int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
+ const void* echo_path,
+ size_t size_bytes)
+{
+ AecMobile* aecm = aecmInst;
+ const int16_t* echo_path_ptr = echo_path;
+
+ if (aecmInst == NULL) {
+ return -1;
+ }
+ if (echo_path == NULL) {
+ aecm->lastError = AECM_NULL_POINTER_ERROR;
+ return -1;
+ }
+ if (size_bytes != WebRtcAecm_echo_path_size_bytes())
+ {
+ // Input channel size does not match the size of AECM
+ aecm->lastError = AECM_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+ if (aecm->initFlag != kInitCheck)
+ {
+ aecm->lastError = AECM_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ WebRtcAecm_InitEchoPathCore(aecm->aecmCore, echo_path_ptr);
+
+ return 0;
+}
+
+int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
+ void* echo_path,
+ size_t size_bytes)
+{
+ AecMobile* aecm = aecmInst;
+ int16_t* echo_path_ptr = echo_path;
+
+ if (aecmInst == NULL) {
+ return -1;
+ }
+ if (echo_path == NULL) {
+ aecm->lastError = AECM_NULL_POINTER_ERROR;
+ return -1;
+ }
+ if (size_bytes != WebRtcAecm_echo_path_size_bytes())
+ {
+ // Input channel size does not match the size of AECM
+ aecm->lastError = AECM_BAD_PARAMETER_ERROR;
+ return -1;
+ }
+ if (aecm->initFlag != kInitCheck)
+ {
+ aecm->lastError = AECM_UNINITIALIZED_ERROR;
+ return -1;
+ }
+
+ memcpy(echo_path_ptr, aecm->aecmCore->channelStored, size_bytes);
+ return 0;
+}
+
+size_t WebRtcAecm_echo_path_size_bytes()
+{
+ return (PART_LEN1 * sizeof(int16_t));
+}
+
+int32_t WebRtcAecm_get_error_code(void *aecmInst)
+{
+ AecMobile* aecm = aecmInst;
+
+ if (aecm == NULL)
+ {
+ return -1;
+ }
+
+ return aecm->lastError;
+}
+
+static int WebRtcAecm_EstBufDelay(AecMobile* aecm, short msInSndCardBuf) {
+ short delayNew, nSampSndCard;
+ short nSampFar = (short) WebRtc_available_read(aecm->farendBuf);
+ short diff;
+
+ nSampSndCard = msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
+
+ delayNew = nSampSndCard - nSampFar;
+
+ if (delayNew < FRAME_LEN)
+ {
+ WebRtc_MoveReadPtr(aecm->farendBuf, FRAME_LEN);
+ delayNew += FRAME_LEN;
+ }
+
+ aecm->filtDelay = WEBRTC_SPL_MAX(0, (8 * aecm->filtDelay + 2 * delayNew) / 10);
+
+ diff = aecm->filtDelay - aecm->knownDelay;
+ if (diff > 224)
+ {
+ if (aecm->lastDelayDiff < 96)
+ {
+ aecm->timeForDelayChange = 0;
+ } else
+ {
+ aecm->timeForDelayChange++;
+ }
+ } else if (diff < 96 && aecm->knownDelay > 0)
+ {
+ if (aecm->lastDelayDiff > 224)
+ {
+ aecm->timeForDelayChange = 0;
+ } else
+ {
+ aecm->timeForDelayChange++;
+ }
+ } else
+ {
+ aecm->timeForDelayChange = 0;
+ }
+ aecm->lastDelayDiff = diff;
+
+ if (aecm->timeForDelayChange > 25)
+ {
+ aecm->knownDelay = WEBRTC_SPL_MAX((int)aecm->filtDelay - 160, 0);
+ }
+ return 0;
+}
+
+static int WebRtcAecm_DelayComp(AecMobile* aecm) {
+ int nSampFar = (int) WebRtc_available_read(aecm->farendBuf);
+ int nSampSndCard, delayNew, nSampAdd;
+ const int maxStuffSamp = 10 * FRAME_LEN;
+
+ nSampSndCard = aecm->msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
+ delayNew = nSampSndCard - nSampFar;
+
+ if (delayNew > FAR_BUF_LEN - FRAME_LEN * aecm->aecmCore->mult)
+ {
+ // The difference of the buffer sizes is larger than the maximum
+ // allowed known delay. Compensate by stuffing the buffer.
+ nSampAdd = (int)(WEBRTC_SPL_MAX(((nSampSndCard >> 1) - nSampFar),
+ FRAME_LEN));
+ nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp);
+
+ WebRtc_MoveReadPtr(aecm->farendBuf, -nSampAdd);
+ aecm->delayChange = 1; // the delay needs to be updated
+ }
+
+ return 0;
+}
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h
new file mode 100644
index 00000000..7ae15c2a
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h
@@ -0,0 +1,218 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_
+#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_
+
+#include <stdlib.h>
+
+#include "webrtc/typedefs.h"
+
+enum {
+ AecmFalse = 0,
+ AecmTrue
+};
+
+// Errors
+#define AECM_UNSPECIFIED_ERROR 12000
+#define AECM_UNSUPPORTED_FUNCTION_ERROR 12001
+#define AECM_UNINITIALIZED_ERROR 12002
+#define AECM_NULL_POINTER_ERROR 12003
+#define AECM_BAD_PARAMETER_ERROR 12004
+
+// Warnings
+#define AECM_BAD_PARAMETER_WARNING 12100
+
+typedef struct {
+ int16_t cngMode; // AECM_FALSE, AECM_TRUE (default)
+ int16_t echoMode; // 0, 1, 2, 3 (default), 4
+} AecmConfig;
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Allocates the memory needed by the AECM. The memory needs to be
+ * initialized separately using the WebRtcAecm_Init() function.
+ * Returns a pointer to the instance and a nullptr at failure.
+ */
+void* WebRtcAecm_Create();
+
+/*
+ * This function releases the memory allocated by WebRtcAecm_Create()
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ */
+void WebRtcAecm_Free(void* aecmInst);
+
+/*
+ * Initializes an AECM instance.
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ * int32_t sampFreq Sampling frequency of data
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * int32_t return 0: OK
+ * -1: error
+ */
+int32_t WebRtcAecm_Init(void* aecmInst, int32_t sampFreq);
+
+/*
+ * Inserts an 80 or 160 sample block of data into the farend buffer.
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ * int16_t* farend In buffer containing one frame of
+ * farend signal
+ * int16_t nrOfSamples Number of samples in farend buffer
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * int32_t return 0: OK
+ * -1: error
+ */
+int32_t WebRtcAecm_BufferFarend(void* aecmInst,
+ const int16_t* farend,
+ size_t nrOfSamples);
+
+/*
+ * Runs the AECM on an 80 or 160 sample blocks of data.
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ * int16_t* nearendNoisy In buffer containing one frame of
+ * reference nearend+echo signal. If
+ * noise reduction is active, provide
+ * the noisy signal here.
+ * int16_t* nearendClean In buffer containing one frame of
+ * nearend+echo signal. If noise
+ * reduction is active, provide the
+ * clean signal here. Otherwise pass a
+ * NULL pointer.
+ * int16_t nrOfSamples Number of samples in nearend buffer
+ * int16_t msInSndCardBuf Delay estimate for sound card and
+ * system buffers
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * int16_t* out Out buffer, one frame of processed nearend
+ * int32_t return 0: OK
+ * -1: error
+ */
+int32_t WebRtcAecm_Process(void* aecmInst,
+ const int16_t* nearendNoisy,
+ const int16_t* nearendClean,
+ int16_t* out,
+ size_t nrOfSamples,
+ int16_t msInSndCardBuf);
+
+/*
+ * This function enables the user to set certain parameters on-the-fly
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ * AecmConfig config Config instance that contains all
+ * properties to be set
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * int32_t return 0: OK
+ * -1: error
+ */
+int32_t WebRtcAecm_set_config(void* aecmInst, AecmConfig config);
+
+/*
+ * This function enables the user to set certain parameters on-the-fly
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * AecmConfig* config Pointer to the config instance that
+ * all properties will be written to
+ * int32_t return 0: OK
+ * -1: error
+ */
+int32_t WebRtcAecm_get_config(void *aecmInst, AecmConfig *config);
+
+/*
+ * This function enables the user to set the echo path on-the-fly.
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ * void* echo_path Pointer to the echo path to be set
+ * size_t size_bytes Size in bytes of the echo path
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * int32_t return 0: OK
+ * -1: error
+ */
+int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
+ const void* echo_path,
+ size_t size_bytes);
+
+/*
+ * This function enables the user to get the currently used echo path
+ * on-the-fly
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ * void* echo_path Pointer to echo path
+ * size_t size_bytes Size in bytes of the echo path
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * int32_t return 0: OK
+ * -1: error
+ */
+int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
+ void* echo_path,
+ size_t size_bytes);
+
+/*
+ * This function enables the user to get the echo path size in bytes
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * size_t return Size in bytes
+ */
+size_t WebRtcAecm_echo_path_size_bytes();
+
+/*
+ * Gets the last error code.
+ *
+ * Inputs Description
+ * -------------------------------------------------------------------
+ * void* aecmInst Pointer to the AECM instance
+ *
+ * Outputs Description
+ * -------------------------------------------------------------------
+ * int32_t return 11000-11100: error code
+ */
+int32_t WebRtcAecm_get_error_code(void *aecmInst);
+
+#ifdef __cplusplus
+}
+#endif
+#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_