summaryrefslogtreecommitdiff
path: root/third_party/webrtc/src/webrtc/modules/audio_processing/utility/delay_estimator.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/webrtc/src/webrtc/modules/audio_processing/utility/delay_estimator.c')
-rw-r--r--third_party/webrtc/src/webrtc/modules/audio_processing/utility/delay_estimator.c684
1 files changed, 684 insertions, 0 deletions
diff --git a/third_party/webrtc/src/webrtc/modules/audio_processing/utility/delay_estimator.c b/third_party/webrtc/src/webrtc/modules/audio_processing/utility/delay_estimator.c
new file mode 100644
index 00000000..f9f3dc24
--- /dev/null
+++ b/third_party/webrtc/src/webrtc/modules/audio_processing/utility/delay_estimator.c
@@ -0,0 +1,684 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/utility/delay_estimator.h"
+
+#include <assert.h>
+#include <stdlib.h>
+#include <string.h>
+
+// Number of right shifts for scaling is linearly depending on number of bits in
+// the far-end binary spectrum.
+static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum.
+static const int kShiftsLinearSlope = 3;
+
+static const int32_t kProbabilityOffset = 1024; // 2 in Q9.
+static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9.
+static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9.
+
+// Robust validation settings
+static const float kHistogramMax = 3000.f;
+static const float kLastHistogramMax = 250.f;
+static const float kMinHistogramThreshold = 1.5f;
+static const int kMinRequiredHits = 10;
+static const int kMaxHitsWhenPossiblyNonCausal = 10;
+static const int kMaxHitsWhenPossiblyCausal = 1000;
+static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0.
+static const float kFractionSlope = 0.05f;
+static const float kMinFractionWhenPossiblyCausal = 0.5f;
+static const float kMinFractionWhenPossiblyNonCausal = 0.25f;
+
+// Counts and returns number of bits of a 32-bit word.
+static int BitCount(uint32_t u32) {
+ uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) -
+ ((u32 >> 2) & 011111111111);
+ tmp = ((tmp + (tmp >> 3)) & 030707070707);
+ tmp = (tmp + (tmp >> 6));
+ tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
+
+ return ((int) tmp);
+}
+
+// Compares the |binary_vector| with all rows of the |binary_matrix| and counts
+// per row the number of times they have the same value.
+//
+// Inputs:
+// - binary_vector : binary "vector" stored in a long
+// - binary_matrix : binary "matrix" stored as a vector of long
+// - matrix_size : size of binary "matrix"
+//
+// Output:
+// - bit_counts : "Vector" stored as a long, containing for each
+// row the number of times the matrix row and the
+// input vector have the same value
+//
+static void BitCountComparison(uint32_t binary_vector,
+ const uint32_t* binary_matrix,
+ int matrix_size,
+ int32_t* bit_counts) {
+ int n = 0;
+
+ // Compare |binary_vector| with all rows of the |binary_matrix|
+ for (; n < matrix_size; n++) {
+ bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]);
+ }
+}
+
+// Collects necessary statistics for the HistogramBasedValidation(). This
+// function has to be called prior to calling HistogramBasedValidation(). The
+// statistics updated and used by the HistogramBasedValidation() are:
+// 1. the number of |candidate_hits|, which states for how long we have had the
+// same |candidate_delay|
+// 2. the |histogram| of candidate delays over time. This histogram is
+// weighted with respect to a reliability measure and time-varying to cope
+// with possible delay shifts.
+// For further description see commented code.
+//
+// Inputs:
+// - candidate_delay : The delay to validate.
+// - valley_depth_q14 : The cost function has a valley/minimum at the
+// |candidate_delay| location. |valley_depth_q14| is the
+// cost function difference between the minimum and
+// maximum locations. The value is in the Q14 domain.
+// - valley_level_q14 : Is the cost function value at the minimum, in Q14.
+static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self,
+ int candidate_delay,
+ int32_t valley_depth_q14,
+ int32_t valley_level_q14) {
+ const float valley_depth = valley_depth_q14 * kQ14Scaling;
+ float decrease_in_last_set = valley_depth;
+ const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ?
+ kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal;
+ int i = 0;
+
+ assert(self->history_size == self->farend->history_size);
+ // Reset |candidate_hits| if we have a new candidate.
+ if (candidate_delay != self->last_candidate_delay) {
+ self->candidate_hits = 0;
+ self->last_candidate_delay = candidate_delay;
+ }
+ self->candidate_hits++;
+
+ // The |histogram| is updated differently across the bins.
+ // 1. The |candidate_delay| histogram bin is increased with the
+ // |valley_depth|, which is a simple measure of how reliable the
+ // |candidate_delay| is. The histogram is not increased above
+ // |kHistogramMax|.
+ self->histogram[candidate_delay] += valley_depth;
+ if (self->histogram[candidate_delay] > kHistogramMax) {
+ self->histogram[candidate_delay] = kHistogramMax;
+ }
+ // 2. The histogram bins in the neighborhood of |candidate_delay| are
+ // unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}.
+ // 3. The histogram bins in the neighborhood of |last_delay| are decreased
+ // with |decrease_in_last_set|. This value equals the difference between
+ // the cost function values at the locations |candidate_delay| and
+ // |last_delay| until we reach |max_hits_for_slow_change| consecutive hits
+ // at the |candidate_delay|. If we exceed this amount of hits the
+ // |candidate_delay| is a "potential" candidate and we start decreasing
+ // these histogram bins more rapidly with |valley_depth|.
+ if (self->candidate_hits < max_hits_for_slow_change) {
+ decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] -
+ valley_level_q14) * kQ14Scaling;
+ }
+ // 4. All other bins are decreased with |valley_depth|.
+ // TODO(bjornv): Investigate how to make this loop more efficient. Split up
+ // the loop? Remove parts that doesn't add too much.
+ for (i = 0; i < self->history_size; ++i) {
+ int is_in_last_set = (i >= self->last_delay - 2) &&
+ (i <= self->last_delay + 1) && (i != candidate_delay);
+ int is_in_candidate_set = (i >= candidate_delay - 2) &&
+ (i <= candidate_delay + 1);
+ self->histogram[i] -= decrease_in_last_set * is_in_last_set +
+ valley_depth * (!is_in_last_set && !is_in_candidate_set);
+ // 5. No histogram bin can go below 0.
+ if (self->histogram[i] < 0) {
+ self->histogram[i] = 0;
+ }
+ }
+}
+
+// Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(),
+// based on a mix of counting concurring hits with a modified histogram
+// of recent delay estimates. In brief a candidate is valid (returns 1) if it
+// is the most likely according to the histogram. There are a couple of
+// exceptions that are worth mentioning:
+// 1. If the |candidate_delay| < |last_delay| it can be that we are in a
+// non-causal state, breaking a possible echo control algorithm. Hence, we
+// open up for a quicker change by allowing the change even if the
+// |candidate_delay| is not the most likely one according to the histogram.
+// 2. There's a minimum number of hits (kMinRequiredHits) and the histogram
+// value has to reached a minimum (kMinHistogramThreshold) to be valid.
+// 3. The action is also depending on the filter length used for echo control.
+// If the delay difference is larger than what the filter can capture, we
+// also move quicker towards a change.
+// For further description see commented code.
+//
+// Input:
+// - candidate_delay : The delay to validate.
+//
+// Return value:
+// - is_histogram_valid : 1 - The |candidate_delay| is valid.
+// 0 - Otherwise.
+static int HistogramBasedValidation(const BinaryDelayEstimator* self,
+ int candidate_delay) {
+ float fraction = 1.f;
+ float histogram_threshold = self->histogram[self->compare_delay];
+ const int delay_difference = candidate_delay - self->last_delay;
+ int is_histogram_valid = 0;
+
+ // The histogram based validation of |candidate_delay| is done by comparing
+ // the |histogram| at bin |candidate_delay| with a |histogram_threshold|.
+ // This |histogram_threshold| equals a |fraction| of the |histogram| at bin
+ // |last_delay|. The |fraction| is a piecewise linear function of the
+ // |delay_difference| between the |candidate_delay| and the |last_delay|
+ // allowing for a quicker move if
+ // i) a potential echo control filter can not handle these large differences.
+ // ii) keeping |last_delay| instead of updating to |candidate_delay| could
+ // force an echo control into a non-causal state.
+ // We further require the histogram to have reached a minimum value of
+ // |kMinHistogramThreshold|. In addition, we also require the number of
+ // |candidate_hits| to be more than |kMinRequiredHits| to remove spurious
+ // values.
+
+ // Calculate a comparison histogram value (|histogram_threshold|) that is
+ // depending on the distance between the |candidate_delay| and |last_delay|.
+ // TODO(bjornv): How much can we gain by turning the fraction calculation
+ // into tables?
+ if (delay_difference > self->allowed_offset) {
+ fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset);
+ fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction :
+ kMinFractionWhenPossiblyCausal);
+ } else if (delay_difference < 0) {
+ fraction = kMinFractionWhenPossiblyNonCausal -
+ kFractionSlope * delay_difference;
+ fraction = (fraction > 1.f ? 1.f : fraction);
+ }
+ histogram_threshold *= fraction;
+ histogram_threshold = (histogram_threshold > kMinHistogramThreshold ?
+ histogram_threshold : kMinHistogramThreshold);
+
+ is_histogram_valid =
+ (self->histogram[candidate_delay] >= histogram_threshold) &&
+ (self->candidate_hits > kMinRequiredHits);
+
+ return is_histogram_valid;
+}
+
+// Performs a robust validation of the |candidate_delay| estimated in
+// WebRtc_ProcessBinarySpectrum(). The algorithm takes the
+// |is_instantaneous_valid| and the |is_histogram_valid| and combines them
+// into a robust validation. The HistogramBasedValidation() has to be called
+// prior to this call.
+// For further description on how the combination is done, see commented code.
+//
+// Inputs:
+// - candidate_delay : The delay to validate.
+// - is_instantaneous_valid : The instantaneous validation performed in
+// WebRtc_ProcessBinarySpectrum().
+// - is_histogram_valid : The histogram based validation.
+//
+// Return value:
+// - is_robust : 1 - The candidate_delay is valid according to a
+// combination of the two inputs.
+// : 0 - Otherwise.
+static int RobustValidation(const BinaryDelayEstimator* self,
+ int candidate_delay,
+ int is_instantaneous_valid,
+ int is_histogram_valid) {
+ int is_robust = 0;
+
+ // The final robust validation is based on the two algorithms; 1) the
+ // |is_instantaneous_valid| and 2) the histogram based with result stored in
+ // |is_histogram_valid|.
+ // i) Before we actually have a valid estimate (|last_delay| == -2), we say
+ // a candidate is valid if either algorithm states so
+ // (|is_instantaneous_valid| OR |is_histogram_valid|).
+ is_robust = (self->last_delay < 0) &&
+ (is_instantaneous_valid || is_histogram_valid);
+ // ii) Otherwise, we need both algorithms to be certain
+ // (|is_instantaneous_valid| AND |is_histogram_valid|)
+ is_robust |= is_instantaneous_valid && is_histogram_valid;
+ // iii) With one exception, i.e., the histogram based algorithm can overrule
+ // the instantaneous one if |is_histogram_valid| = 1 and the histogram
+ // is significantly strong.
+ is_robust |= is_histogram_valid &&
+ (self->histogram[candidate_delay] > self->last_delay_histogram);
+
+ return is_robust;
+}
+
+void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
+
+ if (self == NULL) {
+ return;
+ }
+
+ free(self->binary_far_history);
+ self->binary_far_history = NULL;
+
+ free(self->far_bit_counts);
+ self->far_bit_counts = NULL;
+
+ free(self);
+}
+
+BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend(
+ int history_size) {
+ BinaryDelayEstimatorFarend* self = NULL;
+
+ if (history_size > 1) {
+ // Sanity conditions fulfilled.
+ self = malloc(sizeof(BinaryDelayEstimatorFarend));
+ }
+ if (self == NULL) {
+ return NULL;
+ }
+
+ self->history_size = 0;
+ self->binary_far_history = NULL;
+ self->far_bit_counts = NULL;
+ if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) {
+ WebRtc_FreeBinaryDelayEstimatorFarend(self);
+ self = NULL;
+ }
+ return self;
+}
+
+int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self,
+ int history_size) {
+ assert(self != NULL);
+ // (Re-)Allocate memory for history buffers.
+ self->binary_far_history =
+ realloc(self->binary_far_history,
+ history_size * sizeof(*self->binary_far_history));
+ self->far_bit_counts = realloc(self->far_bit_counts,
+ history_size * sizeof(*self->far_bit_counts));
+ if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) {
+ history_size = 0;
+ }
+ // Fill with zeros if we have expanded the buffers.
+ if (history_size > self->history_size) {
+ int size_diff = history_size - self->history_size;
+ memset(&self->binary_far_history[self->history_size],
+ 0,
+ sizeof(*self->binary_far_history) * size_diff);
+ memset(&self->far_bit_counts[self->history_size],
+ 0,
+ sizeof(*self->far_bit_counts) * size_diff);
+ }
+ self->history_size = history_size;
+
+ return self->history_size;
+}
+
+void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
+ assert(self != NULL);
+ memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size);
+ memset(self->far_bit_counts, 0, sizeof(int) * self->history_size);
+}
+
+void WebRtc_SoftResetBinaryDelayEstimatorFarend(
+ BinaryDelayEstimatorFarend* self, int delay_shift) {
+ int abs_shift = abs(delay_shift);
+ int shift_size = 0;
+ int dest_index = 0;
+ int src_index = 0;
+ int padding_index = 0;
+
+ assert(self != NULL);
+ shift_size = self->history_size - abs_shift;
+ assert(shift_size > 0);
+ if (delay_shift == 0) {
+ return;
+ } else if (delay_shift > 0) {
+ dest_index = abs_shift;
+ } else if (delay_shift < 0) {
+ src_index = abs_shift;
+ padding_index = shift_size;
+ }
+
+ // Shift and zero pad buffers.
+ memmove(&self->binary_far_history[dest_index],
+ &self->binary_far_history[src_index],
+ sizeof(*self->binary_far_history) * shift_size);
+ memset(&self->binary_far_history[padding_index], 0,
+ sizeof(*self->binary_far_history) * abs_shift);
+ memmove(&self->far_bit_counts[dest_index],
+ &self->far_bit_counts[src_index],
+ sizeof(*self->far_bit_counts) * shift_size);
+ memset(&self->far_bit_counts[padding_index], 0,
+ sizeof(*self->far_bit_counts) * abs_shift);
+}
+
+void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle,
+ uint32_t binary_far_spectrum) {
+ assert(handle != NULL);
+ // Shift binary spectrum history and insert current |binary_far_spectrum|.
+ memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
+ (handle->history_size - 1) * sizeof(uint32_t));
+ handle->binary_far_history[0] = binary_far_spectrum;
+
+ // Shift history of far-end binary spectrum bit counts and insert bit count
+ // of current |binary_far_spectrum|.
+ memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
+ (handle->history_size - 1) * sizeof(int));
+ handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
+}
+
+void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) {
+
+ if (self == NULL) {
+ return;
+ }
+
+ free(self->mean_bit_counts);
+ self->mean_bit_counts = NULL;
+
+ free(self->bit_counts);
+ self->bit_counts = NULL;
+
+ free(self->binary_near_history);
+ self->binary_near_history = NULL;
+
+ free(self->histogram);
+ self->histogram = NULL;
+
+ // BinaryDelayEstimator does not have ownership of |farend|, hence we do not
+ // free the memory here. That should be handled separately by the user.
+ self->farend = NULL;
+
+ free(self);
+}
+
+BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
+ BinaryDelayEstimatorFarend* farend, int max_lookahead) {
+ BinaryDelayEstimator* self = NULL;
+
+ if ((farend != NULL) && (max_lookahead >= 0)) {
+ // Sanity conditions fulfilled.
+ self = malloc(sizeof(BinaryDelayEstimator));
+ }
+ if (self == NULL) {
+ return NULL;
+ }
+
+ self->farend = farend;
+ self->near_history_size = max_lookahead + 1;
+ self->history_size = 0;
+ self->robust_validation_enabled = 0; // Disabled by default.
+ self->allowed_offset = 0;
+
+ self->lookahead = max_lookahead;
+
+ // Allocate memory for spectrum and history buffers.
+ self->mean_bit_counts = NULL;
+ self->bit_counts = NULL;
+ self->histogram = NULL;
+ self->binary_near_history =
+ malloc((max_lookahead + 1) * sizeof(*self->binary_near_history));
+ if (self->binary_near_history == NULL ||
+ WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) {
+ WebRtc_FreeBinaryDelayEstimator(self);
+ self = NULL;
+ }
+
+ return self;
+}
+
+int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self,
+ int history_size) {
+ BinaryDelayEstimatorFarend* far = self->farend;
+ // (Re-)Allocate memory for spectrum and history buffers.
+ if (history_size != far->history_size) {
+ // Only update far-end buffers if we need.
+ history_size = WebRtc_AllocateFarendBufferMemory(far, history_size);
+ }
+ // The extra array element in |mean_bit_counts| and |histogram| is a dummy
+ // element only used while |last_delay| == -2, i.e., before we have a valid
+ // estimate.
+ self->mean_bit_counts =
+ realloc(self->mean_bit_counts,
+ (history_size + 1) * sizeof(*self->mean_bit_counts));
+ self->bit_counts =
+ realloc(self->bit_counts, history_size * sizeof(*self->bit_counts));
+ self->histogram =
+ realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram));
+
+ if ((self->mean_bit_counts == NULL) ||
+ (self->bit_counts == NULL) ||
+ (self->histogram == NULL)) {
+ history_size = 0;
+ }
+ // Fill with zeros if we have expanded the buffers.
+ if (history_size > self->history_size) {
+ int size_diff = history_size - self->history_size;
+ memset(&self->mean_bit_counts[self->history_size],
+ 0,
+ sizeof(*self->mean_bit_counts) * size_diff);
+ memset(&self->bit_counts[self->history_size],
+ 0,
+ sizeof(*self->bit_counts) * size_diff);
+ memset(&self->histogram[self->history_size],
+ 0,
+ sizeof(*self->histogram) * size_diff);
+ }
+ self->history_size = history_size;
+
+ return self->history_size;
+}
+
+void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) {
+ int i = 0;
+ assert(self != NULL);
+
+ memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size);
+ memset(self->binary_near_history,
+ 0,
+ sizeof(uint32_t) * self->near_history_size);
+ for (i = 0; i <= self->history_size; ++i) {
+ self->mean_bit_counts[i] = (20 << 9); // 20 in Q9.
+ self->histogram[i] = 0.f;
+ }
+ self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9.
+ self->last_delay_probability = (int) kMaxBitCountsQ9; // 32 in Q9.
+
+ // Default return value if we're unable to estimate. -1 is used for errors.
+ self->last_delay = -2;
+
+ self->last_candidate_delay = -2;
+ self->compare_delay = self->history_size;
+ self->candidate_hits = 0;
+ self->last_delay_histogram = 0.f;
+}
+
+int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self,
+ int delay_shift) {
+ int lookahead = 0;
+ assert(self != NULL);
+ lookahead = self->lookahead;
+ self->lookahead -= delay_shift;
+ if (self->lookahead < 0) {
+ self->lookahead = 0;
+ }
+ if (self->lookahead > self->near_history_size - 1) {
+ self->lookahead = self->near_history_size - 1;
+ }
+ return lookahead - self->lookahead;
+}
+
+int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
+ uint32_t binary_near_spectrum) {
+ int i = 0;
+ int candidate_delay = -1;
+ int valid_candidate = 0;
+
+ int32_t value_best_candidate = kMaxBitCountsQ9;
+ int32_t value_worst_candidate = 0;
+ int32_t valley_depth = 0;
+
+ assert(self != NULL);
+ if (self->farend->history_size != self->history_size) {
+ // Non matching history sizes.
+ return -1;
+ }
+ if (self->near_history_size > 1) {
+ // If we apply lookahead, shift near-end binary spectrum history. Insert
+ // current |binary_near_spectrum| and pull out the delayed one.
+ memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]),
+ (self->near_history_size - 1) * sizeof(uint32_t));
+ self->binary_near_history[0] = binary_near_spectrum;
+ binary_near_spectrum = self->binary_near_history[self->lookahead];
+ }
+
+ // Compare with delayed spectra and store the |bit_counts| for each delay.
+ BitCountComparison(binary_near_spectrum, self->farend->binary_far_history,
+ self->history_size, self->bit_counts);
+
+ // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|.
+ for (i = 0; i < self->history_size; i++) {
+ // |bit_counts| is constrained to [0, 32], meaning we can smooth with a
+ // factor up to 2^26. We use Q9.
+ int32_t bit_count = (self->bit_counts[i] << 9); // Q9.
+
+ // Update |mean_bit_counts| only when far-end signal has something to
+ // contribute. If |far_bit_counts| is zero the far-end signal is weak and
+ // we likely have a poor echo condition, hence don't update.
+ if (self->farend->far_bit_counts[i] > 0) {
+ // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|.
+ int shifts = kShiftsAtZero;
+ shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4;
+ WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i]));
+ }
+ }
+
+ // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate|
+ // of |mean_bit_counts|.
+ for (i = 0; i < self->history_size; i++) {
+ if (self->mean_bit_counts[i] < value_best_candidate) {
+ value_best_candidate = self->mean_bit_counts[i];
+ candidate_delay = i;
+ }
+ if (self->mean_bit_counts[i] > value_worst_candidate) {
+ value_worst_candidate = self->mean_bit_counts[i];
+ }
+ }
+ valley_depth = value_worst_candidate - value_best_candidate;
+
+ // The |value_best_candidate| is a good indicator on the probability of
+ // |candidate_delay| being an accurate delay (a small |value_best_candidate|
+ // means a good binary match). In the following sections we make a decision
+ // whether to update |last_delay| or not.
+ // 1) If the difference bit counts between the best and the worst delay
+ // candidates is too small we consider the situation to be unreliable and
+ // don't update |last_delay|.
+ // 2) If the situation is reliable we update |last_delay| if the value of the
+ // best candidate delay has a value less than
+ // i) an adaptive threshold |minimum_probability|, or
+ // ii) this corresponding value |last_delay_probability|, but updated at
+ // this time instant.
+
+ // Update |minimum_probability|.
+ if ((self->minimum_probability > kProbabilityLowerLimit) &&
+ (valley_depth > kProbabilityMinSpread)) {
+ // The "hard" threshold can't be lower than 17 (in Q9).
+ // The valley in the curve also has to be distinct, i.e., the
+ // difference between |value_worst_candidate| and |value_best_candidate| has
+ // to be large enough.
+ int32_t threshold = value_best_candidate + kProbabilityOffset;
+ if (threshold < kProbabilityLowerLimit) {
+ threshold = kProbabilityLowerLimit;
+ }
+ if (self->minimum_probability > threshold) {
+ self->minimum_probability = threshold;
+ }
+ }
+ // Update |last_delay_probability|.
+ // We use a Markov type model, i.e., a slowly increasing level over time.
+ self->last_delay_probability++;
+ // Validate |candidate_delay|. We have a reliable instantaneous delay
+ // estimate if
+ // 1) The valley is distinct enough (|valley_depth| > |kProbabilityOffset|)
+ // and
+ // 2) The depth of the valley is deep enough
+ // (|value_best_candidate| < |minimum_probability|)
+ // and deeper than the best estimate so far
+ // (|value_best_candidate| < |last_delay_probability|)
+ valid_candidate = ((valley_depth > kProbabilityOffset) &&
+ ((value_best_candidate < self->minimum_probability) ||
+ (value_best_candidate < self->last_delay_probability)));
+
+ UpdateRobustValidationStatistics(self, candidate_delay, valley_depth,
+ value_best_candidate);
+ if (self->robust_validation_enabled) {
+ int is_histogram_valid = HistogramBasedValidation(self, candidate_delay);
+ valid_candidate = RobustValidation(self, candidate_delay, valid_candidate,
+ is_histogram_valid);
+
+ }
+ if (valid_candidate) {
+ if (candidate_delay != self->last_delay) {
+ self->last_delay_histogram =
+ (self->histogram[candidate_delay] > kLastHistogramMax ?
+ kLastHistogramMax : self->histogram[candidate_delay]);
+ // Adjust the histogram if we made a change to |last_delay|, though it was
+ // not the most likely one according to the histogram.
+ if (self->histogram[candidate_delay] <
+ self->histogram[self->compare_delay]) {
+ self->histogram[self->compare_delay] = self->histogram[candidate_delay];
+ }
+ }
+ self->last_delay = candidate_delay;
+ if (value_best_candidate < self->last_delay_probability) {
+ self->last_delay_probability = value_best_candidate;
+ }
+ self->compare_delay = self->last_delay;
+ }
+
+ return self->last_delay;
+}
+
+int WebRtc_binary_last_delay(BinaryDelayEstimator* self) {
+ assert(self != NULL);
+ return self->last_delay;
+}
+
+float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) {
+ float quality = 0;
+ assert(self != NULL);
+
+ if (self->robust_validation_enabled) {
+ // Simply a linear function of the histogram height at delay estimate.
+ quality = self->histogram[self->compare_delay] / kHistogramMax;
+ } else {
+ // Note that |last_delay_probability| states how deep the minimum of the
+ // cost function is, so it is rather an error probability.
+ quality = (float) (kMaxBitCountsQ9 - self->last_delay_probability) /
+ kMaxBitCountsQ9;
+ if (quality < 0) {
+ quality = 0;
+ }
+ }
+ return quality;
+}
+
+void WebRtc_MeanEstimatorFix(int32_t new_value,
+ int factor,
+ int32_t* mean_value) {
+ int32_t diff = new_value - *mean_value;
+
+ // mean_new = mean_value + ((new_value - mean_value) >> factor);
+ if (diff < 0) {
+ diff = -((-diff) >> factor);
+ } else {
+ diff = (diff >> factor);
+ }
+ *mean_value += diff;
+}