/* $Header: /pjproject-0.3/pjlib/include/pj/compat/high_precision.h 3 10/29/05 11:51a Bennylp $ */ #ifndef __PJ_COMPAT_HIGH_PRECISION_H__ #define __PJ_COMPAT_HIGH_PRECISION_H__ #if defined(PJ_HAS_FLOATING_POINT) && PJ_HAS_FLOATING_POINT != 0 /* * The first choice for high precision math is to use double. */ # include typedef double pj_highprec_t; # define PJ_HIGHPREC_VALUE_IS_ZERO(a) (a==0) # define pj_highprec_mod(a,b) (a=fmod(a,b)) #elif defined(PJ_LINUX_KERNEL) && PJ_LINUX_KERNEL != 0 # include typedef pj_int64_t pj_highprec_t; # define pj_highprec_div(a1,a2) do_div(a1,a2) # define pj_highprec_mod(a1,a2) (a1=do_mod(a1, a2)) PJ_INLINE(pj_int64_t) do_mod( pj_int64_t a1, pj_int64_t a2) { return do_div(a1,a2); } #elif defined(PJ_HAS_INT64) && PJ_HAS_INT64 != 0 /* * Next choice is to use 64-bit arithmatics. */ typedef pj_int64_t pj_highprec_t; #else # warning "High precision math is not available" /* * Last, fallback to 32-bit arithmetics. */ typedef pj_int32_t pj_highprec_t; #endif /** * @def pj_highprec_mul * pj_highprec_mul(a1, a2) - High Precision Multiplication * Multiply a1 and a2, and store the result in a1. */ #ifndef pj_highprec_mul # define pj_highprec_mul(a1,a2) (a1 = a1 * a2) #endif /** * @def pj_highprec_div * pj_highprec_div(a1, a2) - High Precision Division * Divide a2 from a1, and store the result in a1. */ #ifndef pj_highprec_div # define pj_highprec_div(a1,a2) (a1 = a1 / a2) #endif /** * @def pj_highprec_mod * pj_highprec_mod(a1, a2) - High Precision Modulus * Get the modulus a2 from a1, and store the result in a1. */ #ifndef pj_highprec_mod # define pj_highprec_mod(a1,a2) (a1 = a1 % a2) #endif /** * @def PJ_HIGHPREC_VALUE_IS_ZERO(a) * Test if the specified high precision value is zero. */ #ifndef PJ_HIGHPREC_VALUE_IS_ZERO # define PJ_HIGHPREC_VALUE_IS_ZERO(a) (a==0) #endif #endif /* __PJ_COMPAT_HIGH_PRECISION_H__ */