/* Copyright (C) 2003-2006 Jean-Marc Valin File: mdf.c Echo canceller based on the MDF algorithm (see below) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* The echo canceller is based on the MDF algorithm described in: J. S. Soo, K. K. Pang Multidelay block frequency adaptive filter, IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-38, No. 2, February 1990. We use the Alternatively Updated MDF (AUMDF) variant. Robustness to double-talk is achieved using a variable learning rate as described in: Valin, J.-M., On Adjusting the Learning Rate in Frequency Domain Echo Cancellation With Double-Talk. Submitted to IEEE Transactions on Speech and Audio Processing, 2006. There is no explicit double-talk detection, but a continuous variation in the learning rate based on residual echo, double-talk and background noise. About the fixed-point version: All the signals are represented with 16-bit words. The filter weights are represented with 32-bit words, but only the top 16 bits are used in most cases. The lower 16 bits are completely unreliable (due to the fact that the update is done only on the top bits), but help in the adaptation -- probably by removing a "threshold effect" due to quantization (rounding going to zero) when the gradient is small. Another kludge that seems to work good: when performing the weight update, we only move half the way toward the "goal" this seems to reduce the effect of quantization noise in the update phase. This can be seen as applying a gradient descent on a "soft constraint" instead of having a hard constraint. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "misc.h" #include "speex/speex_echo.h" #include "fftwrap.h" #include "pseudofloat.h" #include "math_approx.h" #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #define min(a,b) ((a)<(b) ? (a) : (b)) #define max(a,b) ((a)>(b) ? (a) : (b)) #ifdef FIXED_POINT #define WEIGHT_SHIFT 11 #define NORMALIZE_SCALEDOWN 5 #define NORMALIZE_SCALEUP 3 #else #define WEIGHT_SHIFT 0 #endif #ifdef FIXED_POINT static const spx_float_t MIN_LEAK = ((spx_float_t){16777, -24}); #define TOP16(x) ((x)>>16) #else static const spx_float_t MIN_LEAK = .001f; #define TOP16(x) (x) #endif /** Speex echo cancellation state. */ struct SpeexEchoState_ { int frame_size; /**< Number of samples processed each time */ int window_size; int M; int cancel_count; int adapted; spx_int32_t sampling_rate; spx_word16_t spec_average; spx_word16_t beta0; spx_word16_t beta_max; spx_word32_t sum_adapt; spx_word16_t *e; spx_word16_t *x; spx_word16_t *X; spx_word16_t *d; spx_word16_t *y; spx_word16_t *last_y; spx_word32_t *Yps; spx_word16_t *Y; spx_word16_t *E; spx_word32_t *PHI; spx_word32_t *W; spx_word32_t *power; spx_float_t *power_1; spx_word16_t *wtmp; #ifdef FIXED_POINT spx_word16_t *wtmp2; #endif spx_word32_t *Rf; spx_word32_t *Yf; spx_word32_t *Xf; spx_word32_t *Eh; spx_word32_t *Yh; spx_float_t Pey; spx_float_t Pyy; spx_word16_t *window; void *fft_table; spx_word16_t memX, memD, memE; spx_word16_t preemph; spx_word16_t notch_radius; spx_mem_t notch_mem[2]; }; static inline void filter_dc_notch16(spx_int16_t *in, spx_word16_t radius, spx_word16_t *out, int len, spx_mem_t *mem) { int i; spx_word16_t den2; #ifdef FIXED_POINT den2 = MULT16_16_Q15(radius,radius) + MULT16_16_Q15(QCONST16(.7,15),MULT16_16_Q15(32767-radius,32767-radius)); #else den2 = radius*radius + .7*(1-radius)*(1-radius); #endif /*printf ("%d %d %d %d %d %d\n", num[0], num[1], num[2], den[0], den[1], den[2]);*/ for (i=0;i>= 2; while(len--) { spx_word32_t part=0; part = MAC16_16(part,*x++,*y++); part = MAC16_16(part,*x++,*y++); part = MAC16_16(part,*x++,*y++); part = MAC16_16(part,*x++,*y++); /* HINT: If you had a 40-bit accumulator, you could shift only at the end */ sum = ADD32(sum,SHR32(part,6)); } return sum; } /** Compute power spectrum of a half-complex (packed) vector */ static inline void power_spectrum(spx_word16_t *X, spx_word32_t *ps, int N) { int i, j; ps[0]=MULT16_16(X[0],X[0]); for (i=1,j=1;iframe_size = frame_size; st->window_size = 2*frame_size; N = st->window_size; M = st->M = (filter_length+st->frame_size-1)/frame_size; st->cancel_count=0; st->sum_adapt = 0; /* FIXME: Make that an init option (new API call?) */ st->sampling_rate = 8000; st->spec_average = DIV32_16(SHL32(st->frame_size, 15), st->sampling_rate); #ifdef FIXED_POINT st->beta0 = DIV32_16(SHL32(st->frame_size, 16), st->sampling_rate); st->beta_max = DIV32_16(SHL32(st->frame_size, 14), st->sampling_rate); #else st->beta0 = (2.0f*st->frame_size)/st->sampling_rate; st->beta_max = (.5f*st->frame_size)/st->sampling_rate; #endif st->fft_table = spx_fft_init(N); st->e = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); st->x = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); st->d = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); st->y = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); st->Yps = (spx_word32_t*)speex_alloc(N*sizeof(spx_word32_t)); st->last_y = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); st->Yf = (spx_word32_t*)speex_alloc((st->frame_size+1)*sizeof(spx_word32_t)); st->Rf = (spx_word32_t*)speex_alloc((st->frame_size+1)*sizeof(spx_word32_t)); st->Xf = (spx_word32_t*)speex_alloc((st->frame_size+1)*sizeof(spx_word32_t)); st->Yh = (spx_word32_t*)speex_alloc((st->frame_size+1)*sizeof(spx_word32_t)); st->Eh = (spx_word32_t*)speex_alloc((st->frame_size+1)*sizeof(spx_word32_t)); st->X = (spx_word16_t*)speex_alloc(M*N*sizeof(spx_word16_t)); st->Y = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); st->E = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); st->W = (spx_word32_t*)speex_alloc(M*N*sizeof(spx_word32_t)); st->PHI = (spx_word32_t*)speex_alloc(M*N*sizeof(spx_word32_t)); st->power = (spx_word32_t*)speex_alloc((frame_size+1)*sizeof(spx_word32_t)); st->power_1 = (spx_float_t*)speex_alloc((frame_size+1)*sizeof(spx_float_t)); st->window = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); st->wtmp = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); #ifdef FIXED_POINT st->wtmp2 = (spx_word16_t*)speex_alloc(N*sizeof(spx_word16_t)); for (i=0;i>1;i++) { st->window[i] = (16383-SHL16(spx_cos(DIV32_16(MULT16_16(25736,i<<1),N)),1)); st->window[N-i-1] = st->window[i]; } #else for (i=0;iwindow[i] = .5-.5*cos(2*M_PI*i/N); #endif for (i=0;iW[i] = st->PHI[i] = 0; } st->memX=st->memD=st->memE=0; st->preemph = QCONST16(.9,15); if (st->sampling_rate<12000) st->notch_radius = QCONST16(.9, 15); else if (st->sampling_rate<24000) st->notch_radius = QCONST16(.982, 15); else st->notch_radius = QCONST16(.992, 15); st->notch_mem[0] = st->notch_mem[1] = 0; st->adapted = 0; st->Pey = st->Pyy = FLOAT_ONE; return st; } /** Resets echo canceller state */ void speex_echo_state_reset(SpeexEchoState *st) { int i, M, N; st->cancel_count=0; N = st->window_size; M = st->M; for (i=0;iW[i] = 0; st->X[i] = 0; } for (i=0;i<=st->frame_size;i++) st->power[i] = 0; st->adapted = 0; st->sum_adapt = 0; st->Pey = st->Pyy = FLOAT_ONE; } /** Destroys an echo canceller state */ void speex_echo_state_destroy(SpeexEchoState *st) { spx_fft_destroy(st->fft_table); speex_free(st->e); speex_free(st->x); speex_free(st->d); speex_free(st->y); speex_free(st->last_y); speex_free(st->Yps); speex_free(st->Yf); speex_free(st->Rf); speex_free(st->Xf); speex_free(st->Yh); speex_free(st->Eh); speex_free(st->X); speex_free(st->Y); speex_free(st->E); speex_free(st->W); speex_free(st->PHI); speex_free(st->power); speex_free(st->power_1); speex_free(st->window); speex_free(st->wtmp); #ifdef FIXED_POINT speex_free(st->wtmp2); #endif speex_free(st); } extern int fixed_point; /** Performs echo cancellation on a frame */ void speex_echo_cancel(SpeexEchoState *st, short *ref, short *echo, short *out, spx_int32_t *Yout) { int i,j; int N,M; spx_word32_t Syy,See; spx_word16_t leak_estimate; spx_word16_t ss, ss_1; spx_float_t Pey = FLOAT_ONE, Pyy=FLOAT_ONE; spx_float_t alpha, alpha_1; spx_word16_t RER; spx_word32_t tmp32; spx_word16_t M_1; N = st->window_size; M = st->M; st->cancel_count++; #ifdef FIXED_POINT ss=DIV32_16(11469,M); ss_1 = SUB16(32767,ss); M_1 = DIV32_16(32767,M); #else ss=.35/M; ss_1 = 1-ss; M_1 = 1.f/M; #endif filter_dc_notch16(ref, st->notch_radius, st->d, st->frame_size, st->notch_mem); /* Copy input data to buffer */ for (i=0;iframe_size;i++) { spx_word16_t tmp; st->x[i] = st->x[i+st->frame_size]; st->x[i+st->frame_size] = SUB16(echo[i], MULT16_16_P15(st->preemph, st->memX)); st->memX = echo[i]; tmp = st->d[i]; st->d[i] = st->d[i+st->frame_size]; st->d[i+st->frame_size] = SUB16(tmp, MULT16_16_P15(st->preemph, st->memD)); st->memD = tmp; } /* Shift memory: this could be optimized eventually*/ for (i=0;iX[i]=st->X[i+N]; /* Convert x (echo input) to frequency domain */ spx_fft(st->fft_table, st->x, &st->X[(M-1)*N]); /* Compute filter response Y */ spectral_mul_accum(st->X, st->W, st->Y, N, M); spx_ifft(st->fft_table, st->Y, st->y); #if 1 spectral_mul_accum(st->X, st->PHI, st->Y, N, M); spx_ifft(st->fft_table, st->Y, st->e); #endif /* Compute error signal (for the output with de-emphasis) */ for (i=0;iframe_size;i++) { spx_word32_t tmp_out; #if 1 spx_word16_t y = MULT16_16_Q15(st->window[i+st->frame_size],st->e[i+st->frame_size]) + MULT16_16_Q15(st->window[i],st->y[i+st->frame_size]); tmp_out = SUB32(EXTEND32(st->d[i+st->frame_size]), EXTEND32(y)); #else tmp_out = SUB32(EXTEND32(st->d[i+st->frame_size]), EXTEND32(st->y[i+st->frame_size])); #endif /* Saturation */ if (tmp_out>32767) tmp_out = 32767; else if (tmp_out<-32768) tmp_out = -32768; tmp_out = ADD32(tmp_out, EXTEND32(MULT16_16_P15(st->preemph, st->memE))); out[i] = tmp_out; st->memE = tmp_out; } /* Compute error signal (filter update version) */ for (i=0;iframe_size;i++) { st->e[i] = 0; st->e[i+st->frame_size] = st->d[i+st->frame_size] - st->y[i+st->frame_size]; } /* Compute a bunch of correlations */ See = inner_prod(st->e+st->frame_size, st->e+st->frame_size, st->frame_size); See = ADD32(See, SHR32(10000,6)); Syy = inner_prod(st->y+st->frame_size, st->y+st->frame_size, st->frame_size); /* Convert error to frequency domain */ spx_fft(st->fft_table, st->e, st->E); for (i=0;iframe_size;i++) st->y[i] = 0; spx_fft(st->fft_table, st->y, st->Y); /* Compute power spectrum of echo (X), error (E) and filter response (Y) */ power_spectrum(st->E, st->Rf, N); power_spectrum(st->Y, st->Yf, N); power_spectrum(&st->X[(M-1)*N], st->Xf, N); /* Smooth echo energy estimate over time */ for (j=0;j<=st->frame_size;j++) st->power[j] = MULT16_32_Q15(ss_1,st->power[j]) + 1 + MULT16_32_Q15(ss,st->Xf[j]); /* Enable this to compute the power based only on the tail (would need to compute more efficiently to make this really useful */ if (0) { float scale2 = .5f/M; for (j=0;j<=st->frame_size;j++) st->power[j] = 0; for (i=0;iX[i*N], st->Xf, N); for (j=0;j<=st->frame_size;j++) st->power[j] += scale2*st->Xf[j]; } } /* Compute filtered spectra and (cross-)correlations */ for (j=st->frame_size;j>=0;j--) { spx_float_t Eh, Yh; Eh = PSEUDOFLOAT(st->Rf[j] - st->Eh[j]); Yh = PSEUDOFLOAT(st->Yf[j] - st->Yh[j]); Pey = FLOAT_ADD(Pey,FLOAT_MULT(Eh,Yh)); Pyy = FLOAT_ADD(Pyy,FLOAT_MULT(Yh,Yh)); #ifdef FIXED_POINT st->Eh[j] = MAC16_32_Q15(MULT16_32_Q15(SUB16(32767,st->spec_average),st->Eh[j]), st->spec_average, st->Rf[j]); st->Yh[j] = MAC16_32_Q15(MULT16_32_Q15(SUB16(32767,st->spec_average),st->Yh[j]), st->spec_average, st->Yf[j]); #else st->Eh[j] = (1-st->spec_average)*st->Eh[j] + st->spec_average*st->Rf[j]; st->Yh[j] = (1-st->spec_average)*st->Yh[j] + st->spec_average*st->Yf[j]; #endif } /* Compute correlation updatete rate */ tmp32 = MULT16_32_Q15(st->beta0,Syy); if (tmp32 > MULT16_32_Q15(st->beta_max,See)) tmp32 = MULT16_32_Q15(st->beta_max,See); alpha = FLOAT_DIV32(tmp32, See); alpha_1 = FLOAT_SUB(FLOAT_ONE, alpha); /* Update correlations (recursive average) */ st->Pey = FLOAT_ADD(FLOAT_MULT(alpha_1,st->Pey) , FLOAT_MULT(alpha,Pey)); st->Pyy = FLOAT_ADD(FLOAT_MULT(alpha_1,st->Pyy) , FLOAT_MULT(alpha,Pyy)); if (FLOAT_LT(st->Pyy, FLOAT_ONE)) st->Pyy = FLOAT_ONE; /* We don't really hope to get better than 33 dB (MIN_LEAK-3dB) attenuation anyway */ if (FLOAT_LT(st->Pey, FLOAT_MULT(MIN_LEAK,st->Pyy))) st->Pey = FLOAT_MULT(MIN_LEAK,st->Pyy); if (FLOAT_GT(st->Pey, st->Pyy)) st->Pey = st->Pyy; /* leak_estimate is the limear regression result */ leak_estimate = FLOAT_EXTRACT16(FLOAT_SHL(FLOAT_DIVU(st->Pey, st->Pyy),14)); if (leak_estimate > 16383) leak_estimate = 32767; else leak_estimate = SHL16(leak_estimate,1); /*printf ("%f\n", leak_estimate);*/ /* Compute Residual to Error Ratio */ #ifdef FIXED_POINT tmp32 = MULT16_32_Q15(leak_estimate,Syy); tmp32 = ADD32(tmp32, SHL32(tmp32,1)); if (tmp32 > SHR32(See,1)) tmp32 = SHR32(See,1); RER = FLOAT_EXTRACT16(FLOAT_SHL(FLOAT_DIV32(tmp32,See),15)); #else RER = 3.*MULT16_32_Q15(leak_estimate,Syy) / See; if (RER > .5) RER = .5; #endif /* We consider that the filter has had minimal adaptation if the following is true*/ if (!st->adapted && st->sum_adapt > QCONST32(1,15)) { st->adapted = 1; } if (st->adapted) { for (i=0;i<=st->frame_size;i++) { spx_word32_t r, e; /* Compute frequency-domain adaptation mask */ r = MULT16_32_Q15(leak_estimate,SHL32(st->Yf[i],3)); e = SHL32(st->Rf[i],3)+1; #ifdef FIXED_POINT if (r>SHR32(e,1)) r = SHR32(e,1); #else if (r>.5*e) r = .5*e; #endif r = MULT16_32_Q15(QCONST16(.8,15),r) + MULT16_32_Q15(QCONST16(.2,15),(spx_word32_t)(MULT16_32_Q15(RER,e))); /*st->power_1[i] = adapt_rate*r/(e*(1+st->power[i]));*/ st->power_1[i] = FLOAT_SHL(FLOAT_DIV32_FLOAT(MULT16_32_Q15(M_1,r),FLOAT_MUL32U(e,st->power[i]+10)),WEIGHT_SHIFT+16); } } else { spx_word32_t Sxx; spx_word16_t adapt_rate=0; Sxx = inner_prod(st->x+st->frame_size, st->x+st->frame_size, st->frame_size); /* Temporary adaption rate if filter is not adapted correctly */ tmp32 = MULT16_32_Q15(QCONST16(.15f, 15), Sxx); #ifdef FIXED_POINT if (Sxx > SHR32(See,2)) Sxx = SHR32(See,2); #else if (Sxx > .25*See) Sxx = .25*See; #endif adapt_rate = FLOAT_EXTRACT16(FLOAT_SHL(FLOAT_DIV32(MULT16_32_Q15(M_1,Sxx), See),15)); for (i=0;i<=st->frame_size;i++) st->power_1[i] = FLOAT_SHL(FLOAT_DIV32(EXTEND32(adapt_rate),ADD32(st->power[i],10)),WEIGHT_SHIFT+1); /* How much have we adapted so far? */ st->sum_adapt = ADD32(st->sum_adapt,adapt_rate); } /* Compute weight gradient */ for (j=0;jpower_1, &st->X[j*N], st->E, st->PHI+N*j, N); } /* Gradient descent */ for (i=0;iW[i] += st->PHI[i]; /* Old value of W in PHI */ st->PHI[i] = st->W[i] - st->PHI[i]; } /* Update weight to prevent circular convolution (MDF / AUMDF) */ for (j=0;jcancel_count%(M-1) == j) { #ifdef FIXED_POINT for (i=0;iwtmp2[i] = PSHR32(st->W[j*N+i],NORMALIZE_SCALEDOWN+16); spx_ifft(st->fft_table, st->wtmp2, st->wtmp); for (i=0;iframe_size;i++) { st->wtmp[i]=0; } for (i=st->frame_size;iwtmp[i]=SHL(st->wtmp[i],NORMALIZE_SCALEUP); } spx_fft(st->fft_table, st->wtmp, st->wtmp2); /* The "-1" in the shift is a sort of kludge that trades less efficient update speed for decrease noise */ for (i=0;iW[j*N+i] -= SHL32(st->wtmp2[i],16+NORMALIZE_SCALEDOWN-NORMALIZE_SCALEUP-1); #else spx_ifft(st->fft_table, &st->W[j*N], st->wtmp); for (i=st->frame_size;iwtmp[i]=0; } spx_fft(st->fft_table, st->wtmp, &st->W[j*N]); #endif } } /* Compute spectrum of estimated echo for use in an echo post-filter (if necessary)*/ if (Yout) { spx_word16_t leak2; if (st->adapted) { /* If the filter is adapted, take the filtered echo */ for (i=0;iframe_size;i++) st->last_y[i] = st->last_y[st->frame_size+i]; for (i=0;iframe_size;i++) st->last_y[st->frame_size+i] = ref[i]-out[i]; } else { /* If filter isn't adapted yet, all we can do is take the echo signal directly */ for (i=0;ilast_y[i] = st->x[i]; } /* Apply hanning window (should pre-compute it)*/ for (i=0;iy[i] = MULT16_16_Q15(st->window[i],st->last_y[i]); /* Compute power spectrum of the echo */ spx_fft(st->fft_table, st->y, st->Y); power_spectrum(st->Y, st->Yps, N); #ifdef FIXED_POINT if (leak_estimate > 16383) leak2 = 32767; else leak2 = SHL16(leak_estimate, 1); #else if (leak_estimate>.5) leak2 = 1; else leak2 = 2*leak_estimate; #endif /* Estimate residual echo */ for (i=0;i<=st->frame_size;i++) Yout[i] = MULT16_32_Q15(leak2,st->Yps[i]); } } int speex_echo_ctl(SpeexEchoState *st, int request, void *ptr) { switch(request) { case SPEEX_ECHO_GET_FRAME_SIZE: (*(int*)ptr) = st->frame_size; break; case SPEEX_ECHO_SET_SAMPLING_RATE: st->sampling_rate = (*(int*)ptr); st->spec_average = DIV32_16(SHL32(st->frame_size, 15), st->sampling_rate); #ifdef FIXED_POINT st->beta0 = DIV32_16(SHL32(st->frame_size, 16), st->sampling_rate); st->beta_max = DIV32_16(SHL32(st->frame_size, 14), st->sampling_rate); #else st->beta0 = (2.0f*st->frame_size)/st->sampling_rate; st->beta_max = (.5f*st->frame_size)/st->sampling_rate; #endif if (st->sampling_rate<12000) st->notch_radius = QCONST16(.9, 15); else if (st->sampling_rate<24000) st->notch_radius = QCONST16(.982, 15); else st->notch_radius = QCONST16(.992, 15); break; case SPEEX_ECHO_GET_SAMPLING_RATE: (*(int*)ptr) = st->sampling_rate; break; default: speex_warning_int("Unknown speex_echo_ctl request: ", request); return -1; } return 0; }