/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This file contains the function WebRtcSpl_LevinsonDurbin(). * The description header can be found in signal_processing_library.h * */ #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #define SPL_LEVINSON_MAXORDER 20 int16_t WebRtcSpl_LevinsonDurbin(const int32_t* R, int16_t* A, int16_t* K, size_t order) { size_t i, j; // Auto-correlation coefficients in high precision int16_t R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1]; // LPC coefficients in high precision int16_t A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1]; // LPC coefficients for next iteration int16_t A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1]; // Reflection coefficient in high precision int16_t K_hi, K_low; // Prediction gain Alpha in high precision and with scale factor int16_t Alpha_hi, Alpha_low, Alpha_exp; int16_t tmp_hi, tmp_low; int32_t temp1W32, temp2W32, temp3W32; int16_t norm; // Normalize the autocorrelation R[0]...R[order+1] norm = WebRtcSpl_NormW32(R[0]); for (i = 0; i <= order; ++i) { temp1W32 = WEBRTC_SPL_LSHIFT_W32(R[i], norm); // Put R in hi and low format R_hi[i] = (int16_t)(temp1W32 >> 16); R_low[i] = (int16_t)((temp1W32 - ((int32_t)R_hi[i] << 16)) >> 1); } // K = A[1] = -R[1] / R[0] temp2W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[1],16) + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[1],1); // R[1] in Q31 temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1] temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31 // Put back the sign on R[1] if (temp2W32 > 0) { temp1W32 = -temp1W32; } // Put K in hi and low format K_hi = (int16_t)(temp1W32 >> 16); K_low = (int16_t)((temp1W32 - ((int32_t)K_hi << 16)) >> 1); // Store first reflection coefficient K[0] = K_hi; temp1W32 >>= 4; // A[1] in Q27. // Put A[1] in hi and low format A_hi[1] = (int16_t)(temp1W32 >> 16); A_low[1] = (int16_t)((temp1W32 - ((int32_t)A_hi[1] << 16)) >> 1); // Alpha = R[0] * (1-K^2) temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) << 1; // = k^2 in Q31 temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0 temp1W32 = (int32_t)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31 // Store temp1W32 = 1 - K[0]*K[0] on hi and low format tmp_hi = (int16_t)(temp1W32 >> 16); tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1); // Calculate Alpha in Q31 temp1W32 = (R_hi[0] * tmp_hi + (R_hi[0] * tmp_low >> 15) + (R_low[0] * tmp_hi >> 15)) << 1; // Normalize Alpha and put it in hi and low format Alpha_exp = WebRtcSpl_NormW32(temp1W32); temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp); Alpha_hi = (int16_t)(temp1W32 >> 16); Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1); // Perform the iterative calculations in the Levinson-Durbin algorithm for (i = 2; i <= order; i++) { /* ---- temp1W32 = R[i] + > R[j]*A[i-j] / ---- j=1..i-1 */ temp1W32 = 0; for (j = 1; j < i; j++) { // temp1W32 is in Q31 temp1W32 += (R_hi[j] * A_hi[i - j] << 1) + (((R_hi[j] * A_low[i - j] >> 15) + (R_low[j] * A_hi[i - j] >> 15)) << 1); } temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, 4); temp1W32 += (WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16) + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[i], 1)); // K = -temp1W32 / Alpha temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32) temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha // Put the sign of temp1W32 back again if (temp1W32 > 0) { temp3W32 = -temp3W32; } // Use the Alpha shifts from earlier to de-normalize norm = WebRtcSpl_NormW32(temp3W32); if ((Alpha_exp <= norm) || (temp3W32 == 0)) { temp3W32 = WEBRTC_SPL_LSHIFT_W32(temp3W32, Alpha_exp); } else { if (temp3W32 > 0) { temp3W32 = (int32_t)0x7fffffffL; } else { temp3W32 = (int32_t)0x80000000L; } } // Put K on hi and low format K_hi = (int16_t)(temp3W32 >> 16); K_low = (int16_t)((temp3W32 - ((int32_t)K_hi << 16)) >> 1); // Store Reflection coefficient in Q15 K[i - 1] = K_hi; // Test for unstable filter. // If unstable return 0 and let the user decide what to do in that case if ((int32_t)WEBRTC_SPL_ABS_W16(K_hi) > (int32_t)32750) { return 0; // Unstable filter } /* Compute updated LPC coefficient: Anew[i] Anew[j]= A[j] + K*A[i-j] for j=1..i-1 Anew[i]= K */ for (j = 1; j < i; j++) { // temp1W32 = A[j] in Q27 temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[j],16) + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[j],1); // temp1W32 += K*A[i-j] in Q27 temp1W32 += (K_hi * A_hi[i - j] + (K_hi * A_low[i - j] >> 15) + (K_low * A_hi[i - j] >> 15)) << 1; // Put Anew in hi and low format A_upd_hi[j] = (int16_t)(temp1W32 >> 16); A_upd_low[j] = (int16_t)( (temp1W32 - ((int32_t)A_upd_hi[j] << 16)) >> 1); } // temp3W32 = K in Q27 (Convert from Q31 to Q27) temp3W32 >>= 4; // Store Anew in hi and low format A_upd_hi[i] = (int16_t)(temp3W32 >> 16); A_upd_low[i] = (int16_t)( (temp3W32 - ((int32_t)A_upd_hi[i] << 16)) >> 1); // Alpha = Alpha * (1-K^2) temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) << 1; // K*K in Q31 temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0 temp1W32 = (int32_t)0x7fffffffL - temp1W32; // 1 - K*K in Q31 // Convert 1- K^2 in hi and low format tmp_hi = (int16_t)(temp1W32 >> 16); tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1); // Calculate Alpha = Alpha * (1-K^2) in Q31 temp1W32 = (Alpha_hi * tmp_hi + (Alpha_hi * tmp_low >> 15) + (Alpha_low * tmp_hi >> 15)) << 1; // Normalize Alpha and store it on hi and low format norm = WebRtcSpl_NormW32(temp1W32); temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm); Alpha_hi = (int16_t)(temp1W32 >> 16); Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1); // Update the total normalization of Alpha Alpha_exp = Alpha_exp + norm; // Update A[] for (j = 1; j <= i; j++) { A_hi[j] = A_upd_hi[j]; A_low[j] = A_upd_low[j]; } } /* Set A[0] to 1.0 and store the A[i] i=1...order in Q12 (Convert from Q27 and use rounding) */ A[0] = 4096; for (i = 1; i <= order; i++) { // temp1W32 in Q27 temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[i], 16) + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[i], 1); // Round and store upper word A[i] = (int16_t)(((temp1W32 << 1) + 32768) >> 16); } return 1; // Stable filters }