summaryrefslogtreecommitdiff
path: root/pjmedia/src/pjmedia/resample.c
blob: 98b5cf14b509ff2726b5e6721b024e43c4a77bc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/* $Id$ */
/* 
 * Copyright (C) 2003-2006 Benny Prijono <benny@prijono.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 */

/*
 * Based on:
 * resample-1.8.tar.gz from the 
 * Digital Audio Resampling Home Page located at
 * http://www-ccrma.stanford.edu/~jos/resample/.
 *
 * SOFTWARE FOR SAMPLING-RATE CONVERSION AND FIR DIGITAL FILTER DESIGN
 *
 * Snippet from the resample.1 man page:
 * 
 * HISTORY
 *
 * The first version of this software was written by Julius O. Smith III
 * <jos@ccrma.stanford.edu> at CCRMA <http://www-ccrma.stanford.edu> in
 * 1981.  It was called SRCONV and was written in SAIL for PDP-10
 * compatible machines.  The algorithm was first published in
 * 
 * Smith, Julius O. and Phil Gossett. ``A Flexible Sampling-Rate
 * Conversion Method,'' Proceedings (2): 19.4.1-19.4.4, IEEE Conference
 * on Acoustics, Speech, and Signal Processing, San Diego, March 1984.
 * 
 * An expanded tutorial based on this paper is available at the Digital
 * Audio Resampling Home Page given above.
 * 
 * Circa 1988, the SRCONV program was translated from SAIL to C by
 * Christopher Lee Fraley working with Roger Dannenberg at CMU.
 * 
 * Since then, the C version has been maintained by jos.
 * 
 * Sndlib support was added 6/99 by John Gibson <jgg9c@virginia.edu>.
 * 
 * The resample program is free software distributed in accordance
 * with the Lesser GNU Public License (LGPL).  There is NO warranty; not
 * even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 */

/* PJMEDIA modification:
 *  - remove resample(), just use SrcUp, SrcUD, and SrcLinear directly.
 *  - move FilterUp() and FilterUD() from filterkit.c
 *  - move stddefs.h and resample.h to this file.
 *  - const correctness.
 */
#include <pjmedia/resample.h>
#include <pjmedia/errno.h>
#include <pj/assert.h>
#include <pj/log.h>
#include <pj/pool.h>


#define THIS_FILE   "resample.c"


/*
 * Taken from stddefs.h
 */
#ifndef PI
#define PI (3.14159265358979232846)
#endif

#ifndef PI2
#define PI2 (6.28318530717958465692)
#endif

#define D2R (0.01745329348)          /* (2*pi)/360 */
#define R2D (57.29577951)            /* 360/(2*pi) */

#ifndef MAX
#define MAX(x,y) ((x)>(y) ?(x):(y))
#endif
#ifndef MIN
#define MIN(x,y) ((x)<(y) ?(x):(y))
#endif

#ifndef ABS
#define ABS(x)   ((x)<0   ?(-(x)):(x))
#endif

#ifndef SGN
#define SGN(x)   ((x)<0   ?(-1):((x)==0?(0):(1)))
#endif

typedef char           RES_BOOL;
typedef short          RES_HWORD;
typedef int            RES_WORD;
typedef unsigned short RES_UHWORD;
typedef unsigned int   RES_UWORD;

#define MAX_HWORD (32767)
#define MIN_HWORD (-32768)

#ifdef DEBUG
#define INLINE
#else
#define INLINE inline
#endif

/*
 * Taken from resample.h
 *
 * The configuration constants below govern
 * the number of bits in the input sample and filter coefficients, the 
 * number of bits to the right of the binary-point for fixed-point math, etc.
 *
 */

/* Conversion constants */
#define Nhc       8
#define Na        7
#define Np       (Nhc+Na)
#define Npc      (1<<Nhc)
#define Amask    ((1<<Na)-1)
#define Pmask    ((1<<Np)-1)
#define Nh       16
#define Nb       16
#define Nhxn     14
#define Nhg      (Nh-Nhxn)
#define NLpScl   13

/* Description of constants:
 *
 * Npc - is the number of look-up values available for the lowpass filter
 *    between the beginning of its impulse response and the "cutoff time"
 *    of the filter.  The cutoff time is defined as the reciprocal of the
 *    lowpass-filter cut off frequence in Hz.  For example, if the
 *    lowpass filter were a sinc function, Npc would be the index of the
 *    impulse-response lookup-table corresponding to the first zero-
 *    crossing of the sinc function.  (The inverse first zero-crossing
 *    time of a sinc function equals its nominal cutoff frequency in Hz.)
 *    Npc must be a power of 2 due to the details of the current
 *    implementation. The default value of 512 is sufficiently high that
 *    using linear interpolation to fill in between the table entries
 *    gives approximately 16-bit accuracy in filter coefficients.
 *
 * Nhc - is log base 2 of Npc.
 *
 * Na - is the number of bits devoted to linear interpolation of the
 *    filter coefficients.
 *
 * Np - is Na + Nhc, the number of bits to the right of the binary point
 *    in the integer "time" variable. To the left of the point, it indexes
 *    the input array (X), and to the right, it is interpreted as a number
 *    between 0 and 1 sample of the input X.  Np must be less than 16 in
 *    this implementation.
 *
 * Nh - is the number of bits in the filter coefficients. The sum of Nh and
 *    the number of bits in the input data (typically 16) cannot exceed 32.
 *    Thus Nh should be 16.  The largest filter coefficient should nearly
 *    fill 16 bits (32767).
 *
 * Nb - is the number of bits in the input data. The sum of Nb and Nh cannot
 *    exceed 32.
 *
 * Nhxn - is the number of bits to right shift after multiplying each input
 *    sample times a filter coefficient. It can be as great as Nh and as
 *    small as 0. Nhxn = Nh-2 gives 2 guard bits in the multiply-add
 *    accumulation.  If Nhxn=0, the accumulation will soon overflow 32 bits.
 *
 * Nhg - is the number of guard bits in mpy-add accumulation (equal to Nh-Nhxn)
 *
 * NLpScl - is the number of bits allocated to the unity-gain normalization
 *    factor.  The output of the lowpass filter is multiplied by LpScl and
 *    then right-shifted NLpScl bits. To avoid overflow, we must have 
 *    Nb+Nhg+NLpScl < 32.
 */


#ifdef _MSC_VER
#   pragma warning(push, 3)
//#   pragma warning(disable: 4245)   // Conversion from uint to ushort
#   pragma warning(disable: 4244)   // Conversion from double to uint
#   pragma warning(disable: 4146)   // unary minus operator applied to unsigned type, result still unsigned
#   pragma warning(disable: 4761)   // integral size mismatch in argument; conversion supplied
#endif

#if defined(PJMEDIA_HAS_SMALL_FILTER) && PJMEDIA_HAS_SMALL_FILTER!=0
#   include "smallfilter.h"
#else
#   define SMALL_FILTER_NMULT	0
#   define SMALL_FILTER_SCALE	0
#   define SMALL_FILTER_NWING	0
#   define SMALL_FILTER_IMP	NULL
#   define SMALL_FILTER_IMPD	NULL
#endif

#if defined(PJMEDIA_HAS_LARGE_FILTER) && PJMEDIA_HAS_LARGE_FILTER!=0
#   include "largefilter.h"
#else
#   define LARGE_FILTER_NMULT	0
#   define LARGE_FILTER_SCALE	0
#   define LARGE_FILTER_NWING	0
#   define LARGE_FILTER_IMP	NULL
#   define LARGE_FILTER_IMPD	NULL
#endif


#undef INLINE
#define INLINE
#define HAVE_FILTER 0    

#ifndef NULL
#   define NULL	0
#endif


static INLINE RES_HWORD WordToHword(RES_WORD v, int scl)
{
    RES_HWORD out;
    RES_WORD llsb = (1<<(scl-1));
    v += llsb;		/* round */
    v >>= scl;
    if (v>MAX_HWORD) {
	v = MAX_HWORD;
    } else if (v < MIN_HWORD) {
	v = MIN_HWORD;
    }	
    out = (RES_HWORD) v;
    return out;
}

/* Sampling rate conversion using linear interpolation for maximum speed.
 */
static int 
  SrcLinear(const RES_HWORD X[], RES_HWORD Y[], double pFactor, RES_UHWORD nx)
{
    RES_HWORD iconst;
    RES_UWORD time = 0;
    const RES_HWORD *xp;
    RES_HWORD *Ystart, *Yend;
    RES_WORD v,x1,x2;
    
    double dt;                  /* Step through input signal */ 
    RES_UWORD dtb;                  /* Fixed-point version of Dt */
    RES_UWORD endTime;              /* When time reaches EndTime, return to user */
    
    dt = 1.0/pFactor;            /* Output sampling period */
    dtb = dt*(1<<Np) + 0.5;     /* Fixed-point representation */
    
    Ystart = Y;
    Yend = Ystart + (unsigned)(nx * pFactor);
    endTime = time + (1<<Np)*(RES_WORD)nx;
    while (time < endTime)
    {
	iconst = (time) & Pmask;
	xp = &X[(time)>>Np];      /* Ptr to current input sample */
	x1 = *xp++;
	x2 = *xp;
	x1 *= ((1<<Np)-iconst);
	x2 *= iconst;
	v = x1 + x2;
	*Y++ = WordToHword(v,Np);   /* Deposit output */
	time += dtb;		    /* Move to next sample by time increment */
    }
    return (Y - Ystart);            /* Return number of output samples */
}

static RES_WORD FilterUp(const RES_HWORD Imp[], const RES_HWORD ImpD[], 
		     RES_UHWORD Nwing, RES_BOOL Interp,
		     const RES_HWORD *Xp, RES_HWORD Ph, RES_HWORD Inc)
{
    const RES_HWORD *Hp;
    const RES_HWORD *Hdp = NULL;
    const RES_HWORD *End;
    RES_HWORD a = 0;
    RES_WORD v, t;
    
    v=0;
    Hp = &Imp[Ph>>Na];
    End = &Imp[Nwing];
    if (Interp) {
	Hdp = &ImpD[Ph>>Na];
	a = Ph & Amask;
    }
    if (Inc == 1)		/* If doing right wing...              */
    {				/* ...drop extra coeff, so when Ph is  */
	End--;			/*    0.5, we don't do too many mult's */
	if (Ph == 0)		/* If the phase is zero...           */
	{			/* ...then we've already skipped the */
	    Hp += Npc;		/*    first sample, so we must also  */
	    Hdp += Npc;		/*    skip ahead in Imp[] and ImpD[] */
	}
    }
    if (Interp)
      while (Hp < End) {
	  t = *Hp;		/* Get filter coeff */
	  t += (((RES_WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
	  Hdp += Npc;		/* Filter coeff differences step */
	  t *= *Xp;		/* Mult coeff by input sample */
	  if (t & (1<<(Nhxn-1)))  /* Round, if needed */
	    t += (1<<(Nhxn-1));
	  t >>= Nhxn;		/* Leave some guard bits, but come back some */
	  v += t;			/* The filter output */
	  Hp += Npc;		/* Filter coeff step */

	  Xp += Inc;		/* Input signal step. NO CHECK ON BOUNDS */
      } 
    else 
      while (Hp < End) {
	  t = *Hp;		/* Get filter coeff */
	  t *= *Xp;		/* Mult coeff by input sample */
	  if (t & (1<<(Nhxn-1)))  /* Round, if needed */
	    t += (1<<(Nhxn-1));
	  t >>= Nhxn;		/* Leave some guard bits, but come back some */
	  v += t;			/* The filter output */
	  Hp += Npc;		/* Filter coeff step */
	  Xp += Inc;		/* Input signal step. NO CHECK ON BOUNDS */
      }
    return(v);
}


static RES_WORD FilterUD(const RES_HWORD Imp[], const RES_HWORD ImpD[],
		     RES_UHWORD Nwing, RES_BOOL Interp,
		     const RES_HWORD *Xp, RES_HWORD Ph, RES_HWORD Inc, RES_UHWORD dhb)
{
    RES_HWORD a;
    const RES_HWORD *Hp, *Hdp, *End;
    RES_WORD v, t;
    RES_UWORD Ho;
    
    v=0;
    Ho = (Ph*(RES_UWORD)dhb)>>Np;
    End = &Imp[Nwing];
    if (Inc == 1)		/* If doing right wing...              */
    {				/* ...drop extra coeff, so when Ph is  */
	End--;			/*    0.5, we don't do too many mult's */
	if (Ph == 0)		/* If the phase is zero...           */
	  Ho += dhb;		/* ...then we've already skipped the */
    }				/*    first sample, so we must also  */
				/*    skip ahead in Imp[] and ImpD[] */
    if (Interp)
      while ((Hp = &Imp[Ho>>Na]) < End) {
	  t = *Hp;		/* Get IR sample */
	  Hdp = &ImpD[Ho>>Na];  /* get interp (lower Na) bits from diff table*/
	  a = Ho & Amask;	/* a is logically between 0 and 1 */
	  t += (((RES_WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
	  t *= *Xp;		/* Mult coeff by input sample */
	  if (t & 1<<(Nhxn-1))	/* Round, if needed */
	    t += 1<<(Nhxn-1);
	  t >>= Nhxn;		/* Leave some guard bits, but come back some */
	  v += t;			/* The filter output */
	  Ho += dhb;		/* IR step */
	  Xp += Inc;		/* Input signal step. NO CHECK ON BOUNDS */
      }
    else 
      while ((Hp = &Imp[Ho>>Na]) < End) {
	  t = *Hp;		/* Get IR sample */
	  t *= *Xp;		/* Mult coeff by input sample */
	  if (t & 1<<(Nhxn-1))	/* Round, if needed */
	    t += 1<<(Nhxn-1);
	  t >>= Nhxn;		/* Leave some guard bits, but come back some */
	  v += t;			/* The filter output */
	  Ho += dhb;		/* IR step */
	  Xp += Inc;		/* Input signal step. NO CHECK ON BOUNDS */
      }
    return(v);
}

/* Sampling rate up-conversion only subroutine;
 * Slightly faster than down-conversion;
 */
static int SrcUp(const RES_HWORD X[], RES_HWORD Y[], double pFactor, 
		 RES_UHWORD nx, RES_UHWORD pNwing, RES_UHWORD pLpScl,
		 const RES_HWORD pImp[], const RES_HWORD pImpD[], RES_BOOL Interp)
{
    const RES_HWORD *xp;
    RES_HWORD *Ystart, *Yend;
    RES_WORD v;
    
    double dt;                  /* Step through input signal */ 
    RES_UWORD dtb;                  /* Fixed-point version of Dt */
    RES_UWORD time = 0;
    RES_UWORD endTime;              /* When time reaches EndTime, return to user */
    
    dt = 1.0/pFactor;            /* Output sampling period */
    dtb = dt*(1<<Np) + 0.5;     /* Fixed-point representation */
    
    Ystart = Y;
    Yend = Ystart + (unsigned)(nx * pFactor);
    endTime = time + (1<<Np)*(RES_WORD)nx;
    while (time < endTime)
    {
	xp = &X[time>>Np];      /* Ptr to current input sample */
	/* Perform left-wing inner product */
	v = 0;
	v = FilterUp(pImp, pImpD, pNwing, Interp, xp, (RES_HWORD)(time&Pmask),-1);

	/* Perform right-wing inner product */
	v += FilterUp(pImp, pImpD, pNwing, Interp, xp+1,  (RES_HWORD)((-time)&Pmask),1);

	v >>= Nhg;		/* Make guard bits */
	v *= pLpScl;		/* Normalize for unity filter gain */
	*Y++ = WordToHword(v,NLpScl);   /* strip guard bits, deposit output */
	time += dtb;		/* Move to next sample by time increment */
    }
    return (Y - Ystart);        /* Return the number of output samples */
}


/* Sampling rate conversion subroutine */

static int SrcUD(const RES_HWORD X[], RES_HWORD Y[], double pFactor, 
		 RES_UHWORD nx, RES_UHWORD pNwing, RES_UHWORD pLpScl,
		 const RES_HWORD pImp[], const RES_HWORD pImpD[], RES_BOOL Interp)
{
    const RES_HWORD *xp;
    RES_HWORD *Ystart, *Yend;
    RES_WORD v;
    
    double dh;                  /* Step through filter impulse response */
    double dt;                  /* Step through input signal */
    RES_UWORD time = 0;
    RES_UWORD endTime;          /* When time reaches EndTime, return to user */
    RES_UWORD dhb, dtb;         /* Fixed-point versions of Dh,Dt */
    
    dt = 1.0/pFactor;            /* Output sampling period */
    dtb = dt*(1<<Np) + 0.5;     /* Fixed-point representation */
    
    dh = MIN(Npc, pFactor*Npc);  /* Filter sampling period */
    dhb = dh*(1<<Na) + 0.5;     /* Fixed-point representation */
    
    Ystart = Y;
    Yend = Ystart + (unsigned)(nx * pFactor);
    endTime = time + (1<<Np)*(RES_WORD)nx;
    while (time < endTime)
    {
	xp = &X[time>>Np];	/* Ptr to current input sample */
	v = FilterUD(pImp, pImpD, pNwing, Interp, xp, (RES_HWORD)(time&Pmask),
		     -1, dhb);	/* Perform left-wing inner product */
	v += FilterUD(pImp, pImpD, pNwing, Interp, xp+1, (RES_HWORD)((-time)&Pmask),
		      1, dhb);	/* Perform right-wing inner product */
	v >>= Nhg;		/* Make guard bits */
	v *= pLpScl;		/* Normalize for unity filter gain */
	*Y++ = WordToHword(v,NLpScl);   /* strip guard bits, deposit output */
	time += dtb;		/* Move to next sample by time increment */
    }
    return (Y - Ystart);        /* Return the number of output samples */
}


/* ***************************************************************************
 *
 * PJMEDIA RESAMPLE 
 *
 * ***************************************************************************
 */

struct pjmedia_resample
{
    double	 factor;	/* Conversion factor = rate_out / rate_in.  */
    pj_bool_t	 large_filter;	/* Large filter?			    */
    pj_bool_t	 high_quality;	/* Not fast?				    */
    unsigned	 xoff;		/* History and lookahead size, in samples   */
    unsigned	 frame_size;	/* Samples per frame.			    */
    pj_int16_t	*buffer;	/* Input buffer.			    */
};


PJ_DEF(pj_status_t) pjmedia_resample_create( pj_pool_t *pool,
					     pj_bool_t high_quality,
					     pj_bool_t large_filter,
					     unsigned rate_in,
					     unsigned rate_out,
					     unsigned samples_per_frame,
					     pjmedia_resample **p_resample)
{
    pjmedia_resample *resample;

    PJ_ASSERT_RETURN(pool && p_resample && rate_in &&
		     rate_out && samples_per_frame, PJ_EINVAL);

    resample = pj_pool_alloc(pool, sizeof(pjmedia_resample));
    PJ_ASSERT_RETURN(resample, PJ_ENOMEM);

    /*
     * If we're downsampling, always use the fast algorithm since it seems
     * to yield the same quality.
     */
    if (rate_out < rate_in) {
	//no this is not a good idea. It sounds pretty good with speech,
	//but very poor with background noise etc.
	//high_quality = 0;
    }

#if !defined(PJMEDIA_HAS_LARGE_FILTER) || PJMEDIA_HAS_LARGE_FILTER==0
    /*
     * If large filter is excluded in the build, then prevent application
     * from using it.
     */
    if (high_quality && large_filter) {
	large_filter = PJ_FALSE;
	PJ_LOG(5,(THIS_FILE, 
		  "Resample uses small filter because large filter is "
		  "disabled"));
    }
#endif

#if !defined(PJMEDIA_HAS_SMALL_FILTER) || PJMEDIA_HAS_SMALL_FILTER==0
    /*
     * If small filter is excluded in the build and application wants to
     * use it, then drop to linear conversion.
     */
    if (high_quality && large_filter == 0) {
	high_quality = PJ_FALSE;
	PJ_LOG(4,(THIS_FILE, 
		  "Resample uses linear because small filter is disabled"));
    }
#endif

    resample->factor = rate_out * 1.0 / rate_in;
    resample->large_filter = large_filter;
    resample->high_quality = high_quality;
    resample->frame_size = samples_per_frame;

    if (high_quality) {
	unsigned size;

	/* This is a bug in xoff calculation, thanks Stephane Lussier
	 * of Macadamian dot com.
	 *   resample->xoff = large_filter ? 32 : 6;
	 */
	if (large_filter)
	    resample->xoff = (LARGE_FILTER_NMULT + 1) / 2.0  *  
			     MAX(1.0, 1.0/resample->factor);
	else
	    resample->xoff = (SMALL_FILTER_NMULT + 1) / 2.0  *  
			     MAX(1.0, 1.0/resample->factor);


	size = (samples_per_frame + 2*resample->xoff) * sizeof(pj_int16_t);
	resample->buffer = pj_pool_alloc(pool, size);
	PJ_ASSERT_RETURN(resample->buffer, PJ_ENOMEM);

	pjmedia_zero_samples(resample->buffer, resample->xoff*2);


    } else {
	resample->xoff = 0;
    }

    *p_resample = resample;

    PJ_LOG(5,(THIS_FILE, "resample created: %s qualiy, %s filter, in/out "
			  "rate=%d/%d", 
			  (high_quality?"high":"low"),
			  (large_filter?"large":"small"),
			  rate_in, rate_out));
    return PJ_SUCCESS;
}



PJ_DEF(void) pjmedia_resample_run( pjmedia_resample *resample,
				   const pj_int16_t *input,
				   pj_int16_t *output )
{
    PJ_ASSERT_ON_FAIL(resample, return);

    if (resample->high_quality) {
	pj_int16_t *dst_buf;
	const pj_int16_t *src_buf;

	/* Okay chaps, here's how we do resampling.
	 *
	 * The original resample algorithm requires xoff samples *before* the
	 * input buffer as history, and another xoff samples *after* the
	 * end of the input buffer as lookahead. Since application can only
	 * supply framesize buffer on each run, PJMEDIA needs to arrange the
	 * buffer to meet these requirements.
	 *
	 * So here comes the trick.
	 *
	 * First of all, because of the history and lookahead requirement, 
	 * resample->buffer need to accomodate framesize+2*xoff samples in its
	 * buffer. This is done when the buffer is created.
	 *
	 * On the first run, the input frame (supplied by application) is
	 * copied to resample->buffer at 2*xoff position. The first 2*xoff
	 * samples are initially zeroed (in the initialization). The resample
	 * algorithm then invoked at resample->buffer+xoff ONLY, thus giving
	 * it one xoff at the beginning as zero, and one xoff at the end
	 * as the end of the original input. The resample algorithm will see
	 * that the first xoff samples in the input as zero.
	 *
	 * So here's the layout of resample->buffer on the first run.
	 *
	 * run 0 
	 *     +------+------+--------------+
	 *     | 0000 | 0000 |  frame0...   |
	 *     +------+------+--------------+
	 *     ^      ^      ^              ^
         *     0    xoff  2*xoff       size+2*xoff 
         *
	 * (Note again: resample algorithm is called at resample->buffer+xoff)
	 *
	 * At the end of the run, 2*xoff samples from the end of 
	 * resample->buffer are copied to the beginning of resample->buffer.
	 * The first xoff part of this will be used as history for the next
	 * run, and the second xoff part of this is actually the start of
	 * resampling for the next run.
	 *
	 * And the first run completes, the function returns.
	 *
	 * 
	 * On the next run, the input frame supplied by application is again
	 * copied at 2*xoff position in the resample->buffer, and the 
	 * resample algorithm is again invoked at resample->buffer+xoff 
	 * position. So effectively, the resample algorithm will start its
	 * operation on the last xoff from the previous frame, and gets the
	 * history from the last 2*xoff of the previous frame, and the look-
	 * ahead from the last xoff of current frame.
	 *
	 * So on this run, the buffer layout is:
	 *
	 * run 1
	 *     +------+------+--------------+
	 *     | frm0 | frm0 |  frame1...   |
	 *     +------+------+--------------+
	 *     ^      ^      ^              ^
         *     0    xoff  2*xoff       size+2*xoff 
	 *
	 * As you can see from above diagram, the resampling algorithm is
	 * actually called from the last xoff part of previous frame (frm0).
	 *
	 * And so on the process continues for the next frame, and the next,
	 * and the next, ...
	 *
	 */
	dst_buf = resample->buffer + resample->xoff*2;
	pjmedia_copy_samples(dst_buf, input, resample->frame_size);
	    
	if (resample->factor >= 1) {

	    if (resample->large_filter) {
		SrcUp(resample->buffer + resample->xoff, output,
		      resample->factor, resample->frame_size,
		      LARGE_FILTER_NWING, LARGE_FILTER_SCALE,
		      LARGE_FILTER_IMP, LARGE_FILTER_IMPD,
		      PJ_TRUE);
	    } else {
		SrcUp(resample->buffer + resample->xoff, output,
		      resample->factor, resample->frame_size,
		      SMALL_FILTER_NWING, SMALL_FILTER_SCALE,
		      SMALL_FILTER_IMP, SMALL_FILTER_IMPD,
		      PJ_TRUE);
	    }

	} else {

	    if (resample->large_filter) {

		SrcUD( resample->buffer + resample->xoff, output,
		       resample->factor, resample->frame_size,
		       LARGE_FILTER_NWING, 
		       LARGE_FILTER_SCALE * resample->factor + 0.5,
		       LARGE_FILTER_IMP, LARGE_FILTER_IMPD,
		       PJ_TRUE);

	    } else {

		SrcUD( resample->buffer + resample->xoff, output,
		       resample->factor, resample->frame_size,
		       SMALL_FILTER_NWING, 
		       SMALL_FILTER_SCALE * resample->factor + 0.5,
		       SMALL_FILTER_IMP, SMALL_FILTER_IMPD,
		       PJ_TRUE);

	    }

	}

	dst_buf = resample->buffer;
	src_buf = input + resample->frame_size - resample->xoff*2;
	pjmedia_copy_samples(dst_buf, src_buf, resample->xoff * 2);

    } else {
	SrcLinear( input, output, resample->factor, resample->frame_size);
    }
}

PJ_DEF(unsigned) pjmedia_resample_get_input_size(pjmedia_resample *resample)
{
    PJ_ASSERT_RETURN(resample != NULL, 0);
    return resample->frame_size;
}