summaryrefslogtreecommitdiff
path: root/third_party/webrtc/src/webrtc/modules/audio_processing/ns/nsx_core_neon.c
blob: 65788ae23011f1a2f1bee4a28cebbd5500c96518 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/audio_processing/ns/nsx_core.h"

#include <arm_neon.h>
#include <assert.h>

// Constants to compensate for shifting signal log(2^shifts).
const int16_t WebRtcNsx_kLogTable[9] = {
  0, 177, 355, 532, 710, 887, 1065, 1242, 1420
};

const int16_t WebRtcNsx_kCounterDiv[201] = {
  32767, 16384, 10923, 8192, 6554, 5461, 4681, 4096, 3641, 3277, 2979, 2731,
  2521, 2341, 2185, 2048, 1928, 1820, 1725, 1638, 1560, 1489, 1425, 1365, 1311,
  1260, 1214, 1170, 1130, 1092, 1057, 1024, 993, 964, 936, 910, 886, 862, 840,
  819, 799, 780, 762, 745, 728, 712, 697, 683, 669, 655, 643, 630, 618, 607,
  596, 585, 575, 565, 555, 546, 537, 529, 520, 512, 504, 496, 489, 482, 475,
  468, 462, 455, 449, 443, 437, 431, 426, 420, 415, 410, 405, 400, 395, 390,
  386, 381, 377, 372, 368, 364, 360, 356, 352, 349, 345, 341, 338, 334, 331,
  328, 324, 321, 318, 315, 312, 309, 306, 303, 301, 298, 295, 293, 290, 287,
  285, 282, 280, 278, 275, 273, 271, 269, 266, 264, 262, 260, 258, 256, 254,
  252, 250, 248, 246, 245, 243, 241, 239, 237, 236, 234, 232, 231, 229, 228,
  226, 224, 223, 221, 220, 218, 217, 216, 214, 213, 211, 210, 209, 207, 206,
  205, 204, 202, 201, 200, 199, 197, 196, 195, 194, 193, 192, 191, 189, 188,
  187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173,
  172, 172, 171, 170, 169, 168, 167, 166, 165, 165, 164, 163
};

const int16_t WebRtcNsx_kLogTableFrac[256] = {
  0, 1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21,
  22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42,
  44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62,
  63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81,
  82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99,
  100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116,
  117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
  132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,
  147, 148, 149, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160,
  161, 162, 163, 164, 165, 166, 167, 168, 169, 169, 170, 171, 172, 173, 174,
  175, 176, 177, 178, 178, 179, 180, 181, 182, 183, 184, 185, 185, 186, 187,
  188, 189, 190, 191, 192, 192, 193, 194, 195, 196, 197, 198, 198, 199, 200,
  201, 202, 203, 203, 204, 205, 206, 207, 208, 208, 209, 210, 211, 212, 212,
  213, 214, 215, 216, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
  225, 226, 227, 228, 228, 229, 230, 231, 231, 232, 233, 234, 234, 235, 236,
  237, 238, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 246, 247, 247,
  248, 249, 249, 250, 251, 252, 252, 253, 254, 255, 255
};

// Update the noise estimation information.
static void UpdateNoiseEstimateNeon(NoiseSuppressionFixedC* inst, int offset) {
  const int16_t kExp2Const = 11819; // Q13
  int16_t* ptr_noiseEstLogQuantile = NULL;
  int16_t* ptr_noiseEstQuantile = NULL;
  int16x4_t kExp2Const16x4 = vdup_n_s16(kExp2Const);
  int32x4_t twentyOne32x4 = vdupq_n_s32(21);
  int32x4_t constA32x4 = vdupq_n_s32(0x1fffff);
  int32x4_t constB32x4 = vdupq_n_s32(0x200000);

  int16_t tmp16 = WebRtcSpl_MaxValueW16(inst->noiseEstLogQuantile + offset,
                                        inst->magnLen);

  // Guarantee a Q-domain as high as possible and still fit in int16
  inst->qNoise = 14 - (int) WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(kExp2Const,
                                                                 tmp16,
                                                                 21);

  int32x4_t qNoise32x4 = vdupq_n_s32(inst->qNoise);

  for (ptr_noiseEstLogQuantile = &inst->noiseEstLogQuantile[offset],
       ptr_noiseEstQuantile = &inst->noiseEstQuantile[0];
       ptr_noiseEstQuantile < &inst->noiseEstQuantile[inst->magnLen - 3];
       ptr_noiseEstQuantile += 4, ptr_noiseEstLogQuantile += 4) {

    // tmp32no2 = kExp2Const * inst->noiseEstLogQuantile[offset + i];
    int16x4_t v16x4 = vld1_s16(ptr_noiseEstLogQuantile);
    int32x4_t v32x4B = vmull_s16(v16x4, kExp2Const16x4);

    // tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac
    int32x4_t v32x4A = vandq_s32(v32x4B, constA32x4);
    v32x4A = vorrq_s32(v32x4A, constB32x4);

    // tmp16 = (int16_t)(tmp32no2 >> 21);
    v32x4B = vshrq_n_s32(v32x4B, 21);

    // tmp16 -= 21;// shift 21 to get result in Q0
    v32x4B = vsubq_s32(v32x4B, twentyOne32x4);

    // tmp16 += (int16_t) inst->qNoise;
    // shift to get result in Q(qNoise)
    v32x4B = vaddq_s32(v32x4B, qNoise32x4);

    // if (tmp16 < 0) {
    //   tmp32no1 >>= -tmp16;
    // } else {
    //   tmp32no1 <<= tmp16;
    // }
    v32x4B = vshlq_s32(v32x4A, v32x4B);

    // tmp16 = WebRtcSpl_SatW32ToW16(tmp32no1);
    v16x4 = vqmovn_s32(v32x4B);

    //inst->noiseEstQuantile[i] = tmp16;
    vst1_s16(ptr_noiseEstQuantile, v16x4);
  }

  // Last iteration:

  // inst->quantile[i]=exp(inst->lquantile[offset+i]);
  // in Q21
  int32_t tmp32no2 = kExp2Const * *ptr_noiseEstLogQuantile;
  int32_t tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac

  tmp16 = (int16_t)(tmp32no2 >> 21);
  tmp16 -= 21;// shift 21 to get result in Q0
  tmp16 += (int16_t) inst->qNoise; //shift to get result in Q(qNoise)
  if (tmp16 < 0) {
    tmp32no1 >>= -tmp16;
  } else {
    tmp32no1 <<= tmp16;
  }
  *ptr_noiseEstQuantile = WebRtcSpl_SatW32ToW16(tmp32no1);
}

// Noise Estimation
void WebRtcNsx_NoiseEstimationNeon(NoiseSuppressionFixedC* inst,
                                   uint16_t* magn,
                                   uint32_t* noise,
                                   int16_t* q_noise) {
  int16_t lmagn[HALF_ANAL_BLOCKL], counter, countDiv;
  int16_t countProd, delta, zeros, frac;
  int16_t log2, tabind, logval, tmp16, tmp16no1, tmp16no2;
  const int16_t log2_const = 22713;
  const int16_t width_factor = 21845;

  size_t i, s, offset;

  tabind = inst->stages - inst->normData;
  assert(tabind < 9);
  assert(tabind > -9);
  if (tabind < 0) {
    logval = -WebRtcNsx_kLogTable[-tabind];
  } else {
    logval = WebRtcNsx_kLogTable[tabind];
  }

  int16x8_t logval_16x8 = vdupq_n_s16(logval);

  // lmagn(i)=log(magn(i))=log(2)*log2(magn(i))
  // magn is in Q(-stages), and the real lmagn values are:
  // real_lmagn(i)=log(magn(i)*2^stages)=log(magn(i))+log(2^stages)
  // lmagn in Q8
  for (i = 0; i < inst->magnLen; i++) {
    if (magn[i]) {
      zeros = WebRtcSpl_NormU32((uint32_t)magn[i]);
      frac = (int16_t)((((uint32_t)magn[i] << zeros)
                        & 0x7FFFFFFF) >> 23);
      assert(frac < 256);
      // log2(magn(i))
      log2 = (int16_t)(((31 - zeros) << 8)
                       + WebRtcNsx_kLogTableFrac[frac]);
      // log2(magn(i))*log(2)
      lmagn[i] = (int16_t)((log2 * log2_const) >> 15);
      // + log(2^stages)
      lmagn[i] += logval;
    } else {
      lmagn[i] = logval;
    }
  }

  int16x4_t Q3_16x4  = vdup_n_s16(3);
  int16x8_t WIDTHQ8_16x8 = vdupq_n_s16(WIDTH_Q8);
  int16x8_t WIDTHFACTOR_16x8 = vdupq_n_s16(width_factor);

  int16_t factor = FACTOR_Q7;
  if (inst->blockIndex < END_STARTUP_LONG)
    factor = FACTOR_Q7_STARTUP;

  // Loop over simultaneous estimates
  for (s = 0; s < SIMULT; s++) {
    offset = s * inst->magnLen;

    // Get counter values from state
    counter = inst->noiseEstCounter[s];
    assert(counter < 201);
    countDiv = WebRtcNsx_kCounterDiv[counter];
    countProd = (int16_t)(counter * countDiv);

    // quant_est(...)
    int16_t deltaBuff[8];
    int16x4_t tmp16x4_0;
    int16x4_t tmp16x4_1;
    int16x4_t countDiv_16x4 = vdup_n_s16(countDiv);
    int16x8_t countProd_16x8 = vdupq_n_s16(countProd);
    int16x8_t tmp16x8_0 = vdupq_n_s16(countDiv);
    int16x8_t prod16x8 = vqrdmulhq_s16(WIDTHFACTOR_16x8, tmp16x8_0);
    int16x8_t tmp16x8_1;
    int16x8_t tmp16x8_2;
    int16x8_t tmp16x8_3;
    uint16x8_t tmp16x8_4;
    int32x4_t tmp32x4;

    for (i = 0; i + 7 < inst->magnLen; i += 8) {
      // Compute delta.
      // Smaller step size during startup. This prevents from using
      // unrealistic values causing overflow.
      tmp16x8_0 = vdupq_n_s16(factor);
      vst1q_s16(deltaBuff, tmp16x8_0);

      int j;
      for (j = 0; j < 8; j++) {
        if (inst->noiseEstDensity[offset + i + j] > 512) {
          // Get values for deltaBuff by shifting intead of dividing.
          int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i + j]);
          deltaBuff[j] = (int16_t)(FACTOR_Q16 >> (14 - factor));
        }
      }

      // Update log quantile estimate

      // tmp16 = (int16_t)((delta * countDiv) >> 14);
      tmp32x4 = vmull_s16(vld1_s16(&deltaBuff[0]), countDiv_16x4);
      tmp16x4_1 = vshrn_n_s32(tmp32x4, 14);
      tmp32x4 = vmull_s16(vld1_s16(&deltaBuff[4]), countDiv_16x4);
      tmp16x4_0 = vshrn_n_s32(tmp32x4, 14);
      tmp16x8_0 = vcombine_s16(tmp16x4_1, tmp16x4_0); // Keep for several lines.

      // prepare for the "if" branch
      // tmp16 += 2;
      // tmp16_1 = (Word16)(tmp16>>2);
      tmp16x8_1 = vrshrq_n_s16(tmp16x8_0, 2);

      // inst->noiseEstLogQuantile[offset+i] + tmp16_1;
      tmp16x8_2 = vld1q_s16(&inst->noiseEstLogQuantile[offset + i]); // Keep
      tmp16x8_1 = vaddq_s16(tmp16x8_2, tmp16x8_1); // Keep for several lines

      // Prepare for the "else" branch
      // tmp16 += 1;
      // tmp16_1 = (Word16)(tmp16>>1);
      tmp16x8_0 = vrshrq_n_s16(tmp16x8_0, 1);

      // tmp16_2 = (int16_t)((tmp16_1 * 3) >> 1);
      tmp32x4 = vmull_s16(vget_low_s16(tmp16x8_0), Q3_16x4);
      tmp16x4_1 = vshrn_n_s32(tmp32x4, 1);

      // tmp16_2 = (int16_t)((tmp16_1 * 3) >> 1);
      tmp32x4 = vmull_s16(vget_high_s16(tmp16x8_0), Q3_16x4);
      tmp16x4_0 = vshrn_n_s32(tmp32x4, 1);

      // inst->noiseEstLogQuantile[offset + i] - tmp16_2;
      tmp16x8_0 = vcombine_s16(tmp16x4_1, tmp16x4_0); // keep
      tmp16x8_0 = vsubq_s16(tmp16x8_2, tmp16x8_0);

      // logval is the smallest fixed point representation we can have. Values
      // below that will correspond to values in the interval [0, 1], which
      // can't possibly occur.
      tmp16x8_0 = vmaxq_s16(tmp16x8_0, logval_16x8);

      // Do the if-else branches:
      tmp16x8_3 = vld1q_s16(&lmagn[i]); // keep for several lines
      tmp16x8_4 = vcgtq_s16(tmp16x8_3, tmp16x8_2);
      tmp16x8_2 = vbslq_s16(tmp16x8_4, tmp16x8_1, tmp16x8_0);
      vst1q_s16(&inst->noiseEstLogQuantile[offset + i], tmp16x8_2);

      // Update density estimate
      // tmp16_1 + tmp16_2
      tmp16x8_1 = vld1q_s16(&inst->noiseEstDensity[offset + i]);
      tmp16x8_0 = vqrdmulhq_s16(tmp16x8_1, countProd_16x8);
      tmp16x8_0 = vaddq_s16(tmp16x8_0, prod16x8);

      // lmagn[i] - inst->noiseEstLogQuantile[offset + i]
      tmp16x8_3 = vsubq_s16(tmp16x8_3, tmp16x8_2);
      tmp16x8_3 = vabsq_s16(tmp16x8_3);
      tmp16x8_4 = vcgtq_s16(WIDTHQ8_16x8, tmp16x8_3);
      tmp16x8_1 = vbslq_s16(tmp16x8_4, tmp16x8_0, tmp16x8_1);
      vst1q_s16(&inst->noiseEstDensity[offset + i], tmp16x8_1);
    }  // End loop over magnitude spectrum

    // Last iteration over magnitude spectrum:
    // compute delta
    if (inst->noiseEstDensity[offset + i] > 512) {
      // Get values for deltaBuff by shifting intead of dividing.
      int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i]);
      delta = (int16_t)(FACTOR_Q16 >> (14 - factor));
    } else {
      delta = FACTOR_Q7;
      if (inst->blockIndex < END_STARTUP_LONG) {
        // Smaller step size during startup. This prevents from using
        // unrealistic values causing overflow.
        delta = FACTOR_Q7_STARTUP;
      }
    }
    // update log quantile estimate
    tmp16 = (int16_t)((delta * countDiv) >> 14);
    if (lmagn[i] > inst->noiseEstLogQuantile[offset + i]) {
      // +=QUANTILE*delta/(inst->counter[s]+1) QUANTILE=0.25, =1 in Q2
      // CounterDiv=1/(inst->counter[s]+1) in Q15
      tmp16 += 2;
      inst->noiseEstLogQuantile[offset + i] += tmp16 / 4;
    } else {
      tmp16 += 1;
      // *(1-QUANTILE), in Q2 QUANTILE=0.25, 1-0.25=0.75=3 in Q2
      // TODO(bjornv): investigate why we need to truncate twice.
      tmp16no2 = (int16_t)((tmp16 / 2) * 3 / 2);
      inst->noiseEstLogQuantile[offset + i] -= tmp16no2;
      if (inst->noiseEstLogQuantile[offset + i] < logval) {
        // logval is the smallest fixed point representation we can have.
        // Values below that will correspond to values in the interval
        // [0, 1], which can't possibly occur.
        inst->noiseEstLogQuantile[offset + i] = logval;
      }
    }

    // update density estimate
    if (WEBRTC_SPL_ABS_W16(lmagn[i] - inst->noiseEstLogQuantile[offset + i])
        < WIDTH_Q8) {
      tmp16no1 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
                   inst->noiseEstDensity[offset + i], countProd, 15);
      tmp16no2 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
                   width_factor, countDiv, 15);
      inst->noiseEstDensity[offset + i] = tmp16no1 + tmp16no2;
    }


    if (counter >= END_STARTUP_LONG) {
      inst->noiseEstCounter[s] = 0;
      if (inst->blockIndex >= END_STARTUP_LONG) {
        UpdateNoiseEstimateNeon(inst, offset);
      }
    }
    inst->noiseEstCounter[s]++;

  }  // end loop over simultaneous estimates

  // Sequentially update the noise during startup
  if (inst->blockIndex < END_STARTUP_LONG) {
    UpdateNoiseEstimateNeon(inst, offset);
  }

  for (i = 0; i < inst->magnLen; i++) {
    noise[i] = (uint32_t)(inst->noiseEstQuantile[i]); // Q(qNoise)
  }
  (*q_noise) = (int16_t)inst->qNoise;
}

// Filter the data in the frequency domain, and create spectrum.
void WebRtcNsx_PrepareSpectrumNeon(NoiseSuppressionFixedC* inst,
                                   int16_t* freq_buf) {
  assert(inst->magnLen % 8 == 1);
  assert(inst->anaLen2 % 16 == 0);

  // (1) Filtering.

  // Fixed point C code for the next block is as follows:
  // for (i = 0; i < inst->magnLen; i++) {
  //   inst->real[i] = (int16_t)((inst->real[i] *
  //      (int16_t)(inst->noiseSupFilter[i])) >> 14);  // Q(normData-stages)
  //   inst->imag[i] = (int16_t)((inst->imag[i] *
  //      (int16_t)(inst->noiseSupFilter[i])) >> 14);  // Q(normData-stages)
  // }

  int16_t* preal = &inst->real[0];
  int16_t* pimag = &inst->imag[0];
  int16_t* pns_filter = (int16_t*)&inst->noiseSupFilter[0];
  int16_t* pimag_end = pimag + inst->magnLen - 4;

  while (pimag < pimag_end) {
    int16x8_t real = vld1q_s16(preal);
    int16x8_t imag = vld1q_s16(pimag);
    int16x8_t ns_filter = vld1q_s16(pns_filter);

    int32x4_t tmp_r_0 = vmull_s16(vget_low_s16(real), vget_low_s16(ns_filter));
    int32x4_t tmp_i_0 = vmull_s16(vget_low_s16(imag), vget_low_s16(ns_filter));
    int32x4_t tmp_r_1 = vmull_s16(vget_high_s16(real),
                                  vget_high_s16(ns_filter));
    int32x4_t tmp_i_1 = vmull_s16(vget_high_s16(imag),
                                  vget_high_s16(ns_filter));

    int16x4_t result_r_0 = vshrn_n_s32(tmp_r_0, 14);
    int16x4_t result_i_0 = vshrn_n_s32(tmp_i_0, 14);
    int16x4_t result_r_1 = vshrn_n_s32(tmp_r_1, 14);
    int16x4_t result_i_1 = vshrn_n_s32(tmp_i_1, 14);

    vst1q_s16(preal, vcombine_s16(result_r_0, result_r_1));
    vst1q_s16(pimag, vcombine_s16(result_i_0, result_i_1));
    preal += 8;
    pimag += 8;
    pns_filter += 8;
  }

  // Filter the last element
  *preal = (int16_t)((*preal * *pns_filter) >> 14);
  *pimag = (int16_t)((*pimag * *pns_filter) >> 14);

  // (2) Create spectrum.

  // Fixed point C code for the rest of the function is as follows:
  // freq_buf[0] = inst->real[0];
  // freq_buf[1] = -inst->imag[0];
  // for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) {
  //   freq_buf[j] = inst->real[i];
  //   freq_buf[j + 1] = -inst->imag[i];
  // }
  // freq_buf[inst->anaLen] = inst->real[inst->anaLen2];
  // freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2];

  preal = &inst->real[0];
  pimag = &inst->imag[0];
  pimag_end = pimag + inst->anaLen2;
  int16_t * freq_buf_start = freq_buf;
  while (pimag < pimag_end) {
    // loop unroll
    int16x8x2_t real_imag_0;
    int16x8x2_t real_imag_1;
    real_imag_0.val[1] = vld1q_s16(pimag);
    real_imag_0.val[0] = vld1q_s16(preal);
    preal += 8;
    pimag += 8;
    real_imag_1.val[1] = vld1q_s16(pimag);
    real_imag_1.val[0] = vld1q_s16(preal);
    preal += 8;
    pimag += 8;

    real_imag_0.val[1] = vnegq_s16(real_imag_0.val[1]);
    real_imag_1.val[1] = vnegq_s16(real_imag_1.val[1]);
    vst2q_s16(freq_buf_start, real_imag_0);
    freq_buf_start += 16;
    vst2q_s16(freq_buf_start, real_imag_1);
    freq_buf_start += 16;
  }
  freq_buf[inst->anaLen] = inst->real[inst->anaLen2];
  freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2];
}

// For the noise supress process, synthesis, read out fully processed segment,
// and update synthesis buffer.
void WebRtcNsx_SynthesisUpdateNeon(NoiseSuppressionFixedC* inst,
                                   int16_t* out_frame,
                                   int16_t gain_factor) {
  assert(inst->anaLen % 16 == 0);
  assert(inst->blockLen10ms % 16 == 0);

  int16_t* preal_start = inst->real;
  const int16_t* pwindow = inst->window;
  int16_t* preal_end = preal_start + inst->anaLen;
  int16_t* psynthesis_buffer = inst->synthesisBuffer;

  while (preal_start < preal_end) {
    // Loop unroll.
    int16x8_t window_0 = vld1q_s16(pwindow);
    int16x8_t real_0 = vld1q_s16(preal_start);
    int16x8_t synthesis_buffer_0 = vld1q_s16(psynthesis_buffer);

    int16x8_t window_1 = vld1q_s16(pwindow + 8);
    int16x8_t real_1 = vld1q_s16(preal_start + 8);
    int16x8_t synthesis_buffer_1 = vld1q_s16(psynthesis_buffer + 8);

    int32x4_t tmp32a_0_low = vmull_s16(vget_low_s16(real_0),
                                       vget_low_s16(window_0));
    int32x4_t tmp32a_0_high = vmull_s16(vget_high_s16(real_0),
                                        vget_high_s16(window_0));

    int32x4_t tmp32a_1_low = vmull_s16(vget_low_s16(real_1),
                                       vget_low_s16(window_1));
    int32x4_t tmp32a_1_high = vmull_s16(vget_high_s16(real_1),
                                        vget_high_s16(window_1));

    int16x4_t tmp16a_0_low = vqrshrn_n_s32(tmp32a_0_low, 14);
    int16x4_t tmp16a_0_high = vqrshrn_n_s32(tmp32a_0_high, 14);

    int16x4_t tmp16a_1_low = vqrshrn_n_s32(tmp32a_1_low, 14);
    int16x4_t tmp16a_1_high = vqrshrn_n_s32(tmp32a_1_high, 14);

    int32x4_t tmp32b_0_low = vmull_n_s16(tmp16a_0_low, gain_factor);
    int32x4_t tmp32b_0_high = vmull_n_s16(tmp16a_0_high, gain_factor);

    int32x4_t tmp32b_1_low = vmull_n_s16(tmp16a_1_low, gain_factor);
    int32x4_t tmp32b_1_high = vmull_n_s16(tmp16a_1_high, gain_factor);

    int16x4_t tmp16b_0_low = vqrshrn_n_s32(tmp32b_0_low, 13);
    int16x4_t tmp16b_0_high = vqrshrn_n_s32(tmp32b_0_high, 13);

    int16x4_t tmp16b_1_low = vqrshrn_n_s32(tmp32b_1_low, 13);
    int16x4_t tmp16b_1_high = vqrshrn_n_s32(tmp32b_1_high, 13);

    synthesis_buffer_0 = vqaddq_s16(vcombine_s16(tmp16b_0_low, tmp16b_0_high),
                                    synthesis_buffer_0);
    synthesis_buffer_1 = vqaddq_s16(vcombine_s16(tmp16b_1_low, tmp16b_1_high),
                                    synthesis_buffer_1);
    vst1q_s16(psynthesis_buffer, synthesis_buffer_0);
    vst1q_s16(psynthesis_buffer + 8, synthesis_buffer_1);

    pwindow += 16;
    preal_start += 16;
    psynthesis_buffer += 16;
  }

  // Read out fully processed segment.
  int16_t * p_start = inst->synthesisBuffer;
  int16_t * p_end = inst->synthesisBuffer + inst->blockLen10ms;
  int16_t * p_frame = out_frame;
  while (p_start < p_end) {
    int16x8_t frame_0 = vld1q_s16(p_start);
    vst1q_s16(p_frame, frame_0);
    p_start += 8;
    p_frame += 8;
  }

  // Update synthesis buffer.
  int16_t* p_start_src = inst->synthesisBuffer + inst->blockLen10ms;
  int16_t* p_end_src = inst->synthesisBuffer + inst->anaLen;
  int16_t* p_start_dst = inst->synthesisBuffer;
  while (p_start_src < p_end_src) {
    int16x8_t frame = vld1q_s16(p_start_src);
    vst1q_s16(p_start_dst, frame);
    p_start_src += 8;
    p_start_dst += 8;
  }

  p_start = inst->synthesisBuffer + inst->anaLen - inst->blockLen10ms;
  p_end = p_start + inst->blockLen10ms;
  int16x8_t zero = vdupq_n_s16(0);
  for (;p_start < p_end; p_start += 8) {
    vst1q_s16(p_start, zero);
  }
}

// Update analysis buffer for lower band, and window data before FFT.
void WebRtcNsx_AnalysisUpdateNeon(NoiseSuppressionFixedC* inst,
                                  int16_t* out,
                                  int16_t* new_speech) {
  assert(inst->blockLen10ms % 16 == 0);
  assert(inst->anaLen % 16 == 0);

  // For lower band update analysis buffer.
  // memcpy(inst->analysisBuffer, inst->analysisBuffer + inst->blockLen10ms,
  //     (inst->anaLen - inst->blockLen10ms) * sizeof(*inst->analysisBuffer));
  int16_t* p_start_src = inst->analysisBuffer + inst->blockLen10ms;
  int16_t* p_end_src = inst->analysisBuffer + inst->anaLen;
  int16_t* p_start_dst = inst->analysisBuffer;
  while (p_start_src < p_end_src) {
    int16x8_t frame = vld1q_s16(p_start_src);
    vst1q_s16(p_start_dst, frame);

    p_start_src += 8;
    p_start_dst += 8;
  }

  // memcpy(inst->analysisBuffer + inst->anaLen - inst->blockLen10ms,
  //     new_speech, inst->blockLen10ms * sizeof(*inst->analysisBuffer));
  p_start_src = new_speech;
  p_end_src = new_speech + inst->blockLen10ms;
  p_start_dst = inst->analysisBuffer + inst->anaLen - inst->blockLen10ms;
  while (p_start_src < p_end_src) {
    int16x8_t frame = vld1q_s16(p_start_src);
    vst1q_s16(p_start_dst, frame);

    p_start_src += 8;
    p_start_dst += 8;
  }

  // Window data before FFT.
  int16_t* p_start_window = (int16_t*) inst->window;
  int16_t* p_start_buffer = inst->analysisBuffer;
  int16_t* p_start_out = out;
  const int16_t* p_end_out = out + inst->anaLen;

  // Load the first element to reduce pipeline bubble.
  int16x8_t window = vld1q_s16(p_start_window);
  int16x8_t buffer = vld1q_s16(p_start_buffer);
  p_start_window += 8;
  p_start_buffer += 8;

  while (p_start_out < p_end_out) {
    // Unroll loop.
    int32x4_t tmp32_low = vmull_s16(vget_low_s16(window), vget_low_s16(buffer));
    int32x4_t tmp32_high = vmull_s16(vget_high_s16(window),
                                     vget_high_s16(buffer));
    window = vld1q_s16(p_start_window);
    buffer = vld1q_s16(p_start_buffer);

    int16x4_t result_low = vrshrn_n_s32(tmp32_low, 14);
    int16x4_t result_high = vrshrn_n_s32(tmp32_high, 14);
    vst1q_s16(p_start_out, vcombine_s16(result_low, result_high));

    p_start_buffer += 8;
    p_start_window += 8;
    p_start_out += 8;
  }
}