
Revision 3.1
FEB ’06

Preliminary Data Sheet OCT6100 API

Octasic Inc. www.octasic.com Copyright © 2006 Octasic Inc
4101 Molson St., Suite 300
Montreal, QC H1Y 3L1
Canada OCT61XXas5000-031

OCT6100 API
(Application Programming Interface)

Preliminary Specification
Revision 3.1

The OCT6100 API provides a layer of software for integrating the
OCT6100 Echo Cancellation device into customer designs. It provides a
flexible architecture that will integrate easily into several different target

OS models. The API allows the user to access all the flexibility and
features of the OCT6100 device from device initialization to configuring

and controlling voice streams.

Revision 3.1 Page 2 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

1 Introduction... 5
1.1 OCT6100 Product family... 5

2 System Architecture .. 6
3 Software Architecture .. 7

3.1 API Architecture .. 7
3.1.1 Instance Structure.. 7
3.1.2 Function Structures and Default Functions ... 7
3.1.3 Serialization ... 8
3.1.4 Sample Code ... 8

3.2 Interrupts ... 10
3.2.1 Chip Configuration ... 10
3.2.2 Interrupt Service Routine ... 10
3.2.3 Interrupt-Driven System... 10
3.2.4 Interrupt Polling-Driven System... 11

4 Using the OCT6100 API ... 12
4.1 Definitions.. 12
4.2 Documentation and Coding Conventions .. 12

4.2.1 Return Values .. 12
4.2.2 Code Header Files ... 13

5 API Functions Description .. 14
5.1 Chip Initialization Functions .. 15

5.1.1 Oct6100ChipOpen ... 15
5.1.2 Oct6100ChipClose... 23
5.1.3 Oct6100ChipGetStats .. 24
5.1.4 Oct6100ChipGetImageInfo .. 27
5.1.5 Oct6100GetInstanceSize... 34
5.1.6 Oct6100CreateLocalInstance .. 35
5.1.7 Oct6100DestroyLocalInstance... 37
5.1.8 Oct6100GetHwRevision... 38
5.1.9 Oct6100ApiGetVersion .. 39
5.1.10 Oct6100FreeResources... 40
5.1.11 Oct6100ProductionBist .. 41

5.2 Channel Functions.. 43
5.2.1 Oct6100ChannelOpen ... 43
5.2.2 Oct6100ChannelClose... 63
5.2.3 Oct6100ChannelModify ... 64
5.2.4 Oct6100ChannelCreateBiDir ... 78
5.2.5 Oct6100ChannelDestroyBiDir.. 80
5.2.6 Oct6100ChannelBroadcastTsstAdd .. 81
5.2.7 Oct6100ChannelBroadcastTsstRemove ... 83
5.2.8 Oct6100ChannelMute.. 85
5.2.9 Oct6100ChannelUnMute ... 86
5.2.10 Oct6100ChannelGetStats.. 87

5.3 Conference Bridge Functions.. 98
5.3.1 Oct6100ConfBridgeOpen .. 98
5.3.2 Oct6100ConfBridgeClose .. 100
5.3.3 Oct6100ConfBridgeChanAdd .. 101
5.3.4 Oct6100ConfBridgeChanRemove ... 103
5.3.5 Oct6100ConfBridgeChanMute... 104

Revision 3.1 Page 3 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.6 Oct6100ConfBridgeChanUnMute .. 105
5.3.7 Oct6100ConfBridgeDominantSpeakerSet ... 106
5.3.8 Oct6100ConfBridgeMaskChange .. 108
5.3.9 Oct6100ConfBridgeGetStats ... 109

5.4 Phasing TSST Functions.. 110
5.4.1 Oct6100PhasingTsstOpen... 110
5.4.2 Oct6100PhasingTsstClose .. 112

5.5 Tone Detection Functions.. 113
5.5.1 Oct6100ToneDetectionEnable... 114
5.5.2 Oct6100ToneDetectionDisable.. 115

5.6 Buffer Playout Functions ... 116
5.6.1 Oct6100BufferPlayoutLoad.. 116
5.6.2 Oct6100BufferPlayoutLoadBlockInit .. 118
5.6.3 Oct6100BufferPlayoutLoadBlock... 119
5.6.4 Oct6100BufferPlayoutUnload .. 121
5.6.5 Oct6100BufferPlayoutAdd ... 122
5.6.6 Oct6100BufferPlayoutStart .. 124
5.6.7 Oct6100BufferPlayoutStop .. 126

5.7 Caller ID Functions ... 128
5.7.1 Oct6100CallerIdInit .. 128
5.7.2 Oct6100CallerIdTerminate... 130
5.7.3 Oct6100CallerIdTransmit ... 131
5.7.4 Oct6100CallerIdTransmitAs... 134
5.7.5 Oct6100CallerIdAbort .. 136

5.8 Event functions ... 137
5.8.1 Oct6100EventGetTone .. 137
5.8.2 Oct6100BufferPlayoutGetEvent... 140

5.9 TSI Connection Functions.. 143
5.9.1 Oct6100TsiCnctOpen .. 143
5.9.2 Oct6100TsiCnctClose.. 145

5.10 ADPCM Channel Functions.. 146
5.10.1 Oct6100AdpcmChanOpen... 146
5.10.2 Oct6100AdpcmChanClose .. 150

5.11 Interrupt Functions.. 151
5.11.1 Oct6100InterruptServiceRoutine ... 152
5.11.2 Oct6100InterruptMask ... 155
5.11.3 Oct6100InterruptConfigure .. 156

5.12 Remote Debugging.. 159
5.12.1 Oct6100RemoteDebug .. 160

5.13 Monitoring Functions.. 162
5.13.1 Oct6100DebugSelectChannel ... 163
5.13.2 Oct6100DebugGetData ... 164

6 User Supplied Functions Description .. 168
6.1 Serialization Functions... 168

6.1.1 Oct6100UserCreateSerializeObject... 168
6.1.2 Oct6100UserDestroySerializeObject ... 169
6.1.3 Oct6100UserSeizeSerializeObject .. 170
6.1.4 Oct6100UserReleaseSerializeObject .. 171

Revision 3.1 Page 4 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.2 Write Functions ... 172
6.2.1 Oct6100UserWriteApi, Oct6100UserWriteOs.. 172
6.2.2 Oct6100UserWriteSmearApi, Oct6100UserWriteSmearOs 173
6.2.3 Oct6100UserWriteBurstApi, Oct6100UserWriteBurstOs....................................... 175

6.3 Read Functions ... 177
6.3.1 Oct6100UserReadApi, Oct6100UserReadOs ... 177
6.3.2 Oct6100UserReadBurstApi, Oct6100UserReadBurstOs 178

6.4 Time Functions.. 180
6.4.1 Oct6100UserGetTime.. 180

6.5 Memory Functions .. 181
6.5.1 Oct6100UserMemSet .. 181
6.5.2 Oct6100UserMemCopy ... 182

7 Echo Operation Mode .. 183
8 API access count per function.. 185
9 TSST to Timeslot Mapping .. 186
10 TSST Formats ... 187

10.1 Input TSST Formats .. 187
10.1.1 One TSST Format.. 187
10.1.2 Two TSST Format.. 188

10.2 Output TSST Formats ... 189
10.2.1 One TSST Format.. 189
10.2.2 Two TSST Format.. 190

11 Revision History ... 191

Revision 3.1 Page 5 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

1 Introduction
This document defines the C-language application programming interface (API) designed to
control the OCT6100 Echo Cancellation device. The API, provided by Octasic, enables the user
to quickly exploit the features offered by the OCT6100.

1.1 OCT6100 Product family
The OCT6100 represents a family of full-featured 128 ms tail G.168 (2002) compliant voice
processing devices with varying features and capacities. For an overview of all features, and for a
listing of specific devices and included features see appendix A of the HW specification.

Some of the available telephony functions performed by OCT6100 devices include: ADPCM
compression/decompression, Automatic Level Control (ALC), Adaptive Noise Reduction (ANR),
buffer play-out, tone detection, conferencing and echo cancellation on up to 672 channels. All
channels can be individually configured in either electric echo cancellation or acoustic echo
suppression modes.

This document describes the software API that allows integration of the OCT612x family of
devices. The OCT612x is the most complete line of voice processing device and provides echo
cancellation (Acoustic or Line), Automatic Level Control and Noise reduction. Furthermore, it
provides advanced voice processing gateway features such as buffer play-out for
announcements and tones, extensive signaling tone detection, conferencing and ADPCM
compression/decompression.

Revision 3.1 Page 6 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

2 System Architecture
The API code is designed stateless to allow one set of code to manage multiple devices.
All information regarding a chip serviced by the API is kept in a contiguous block of
shared memory allocated by the user. This shared memory is referred to as the chip’s
instance structure. This permits the API code to service multiple chips within the host
system. The instance structure has a one-to-one correspondence with a chip, and thus a
pointer to it is the first parameter for all function calls provided by the API.

To allow the API to identify a chip to the user software, the user provides a unique value
to the Oct6100ChipOpen function (parameter ulUserChipId). This value is the identifier
of the chip within the user’s system. The value is not directly used or interpreted by the
API: it is stored within the chip’s instance structure. When an I/O access must be
performed, the API provides the chip ID as a parameter to the I/O routine. This allows the
user’s I/O driver to access the proper device.

The figure below depicts an example of an interrupt driven system architecture servicing
multiple chips. The interrupts do not use deferred procedure calls. All API functions are
contained in the API block, with the exception of one function (Oct6100InterruptMask).

Because the masking of the chip’s interrupt pin is typically carried out at a priority level
higher than the call of the API’s ISR, the Oct6100InterruptMask function is contained in
an independent code block labeled APIMI. The user must write separate R/W user
functions for APIMI block.

API OS Interrupt Service
Routine Chip Interrupt

Keep Alive
Timer

(20 sec)
API Internal
Serialization

System Time
Routines

Oct6100DriveReadApi
or

Oct6100DriveWriteApi

C code provided by the API Serialization provided by the user/OS

C code provided by the user for the API API C code calling user provided functions
(i.e. the function definitions are included in the API specification
but the code is implemented by the user)

RW Serialization

Chip RW Accesses

User Application

Ke
rn

el
Sp

ac
e

Pr
og

ra
m

 S
pa

ce

Oct6100DriveReadOs
or

Oct6100DriveWriteOs

APIMI

IS
R

System Architecture without Deferred Interrupt Procedure Call

Revision 3.1 Page 7 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

In a Deferred Interrupt implementation with multiple OCT6100 devices, the user may
choose to use the chip ID as an index. The pointer to the instance structure of each chip
can be kept in a global array indexed by chip ID. The host application can thus refer to a
chip as an index, and use that index to obtain the instance structure when an API
function must be called.

3 Software Architecture
This section presents the API software architecture as well as how it interacts with the
host system, and in particular, how interrupts are handled by the API.

3.1 API Architecture
The API architecture section is broken down into four parts:

� Instance Structure
� Default Functions and Function Structures
� Serialization
� Example code

Each part is described in the sections below.

3.1.1 Instance Structure

The API code is stateless. This allows the same code to service multiple chips in the host
system. All information regarding the state of a chip serviced by the API is kept in an
instance structure.

The instance structure is a block of contiguous memory allocated by the user. When the
chip is configured via the OCT6100ChipOpen API function, the instance structure is
initialized.

A pointer to the instance structure’s memory is passed to each API function as a
parameter. As API functions are called to open and close voice streams, the instance
structure is updated to reflect the current state of the chip.

This structure is managed entirely by the API. It is not intended to be interpreted by the
user.

3.1.2 Function Structures and Default Functions

Each API function is associated with a parameter structure and default function. The
parameter structure contains all user parameters needed by an API function to perform
the required task. Both the function and the default function have a pointer to this
structure as an argument.

These parameter structures are a vehicle used to pass parameters to the API. These
structures can be created locally and then destroyed after an API call completes.

The default functions allow for forward-compatibility of enhanced functionality, and offers
default settings for most parameters.

Revision 3.1 Page 8 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

The names of the function, default function and structure respect a standard convention
within the API. For a function called “Example” the identifiers would be:

� API function: Oct6100ExampleFunction

� Associated default function Oct6100ExampleFunctionDef

� Associated function structure tOCT6100_EXAMPLE_FUNCTION

To demonstrate the use of the default functions, refer to the example provided in the
Sample Code section.

NOTE: The use of the default functions is not necessary but is strongly recommended
to ensure backward compatibility of user code with future releases of an API.

3.1.3 Serialization

Serialization is required for I/O accesses to the chip, and must be provided by the user’s
I/O driver. Serialization is needed because the chip’s internal registers and memories are
accessed via indirection registers. All I/O routines provided by the user must use a
common serialization object to ensure that API and APIMI R/W operations to the chip are
atomic.

3.1.4 Sample Code

The typical usage of functions respects the following sequence:

� A parameter structure is allocated.

� The Default function is called. Default configuration functions are identified by the
“Def” suffix at the end of the function name.

� The user changes the appropriate parameters in the structure as required.

� The actual function is called.

Revision 3.1 Page 9 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

The example below illustrates the chip initialization sequence:

#include “oct6100_api.h”
void main()
{
 tPOCT6100_INSTANCE_API pApiInstance;
 tOCT6100_CHIP_OPEN ChipOpen;
 tOCT6100_GET_INSTANCE_SIZE InstanceSize;
 UINT32 ulResult;

 /* Inserting default values into structure configuration parameters. */
 Oct6100ChipOpenDef (&ChipOpen);

 /* Change default parameters as needed (e.g. changing the clock frequency). /*
 ChipOpen.ulUpclkFreq = cOCT6100_UPCLK_FREQ_33_33_MHZ;

 /* Inserting default values into tOCT6100_GET_INSTANCE_SIZE structure parameters. */
 Oct6100GetInstanceSizeDef (&ChipOpen, &InstanceSize);

 /* Get the size of the OCT6100 instance structure. */
 ulResult = Oct6100GetInstanceSize (&ChipOpen, &InstanceSize);
 if (ulResult != cOCT6100_ERR_OK)
 {
 /* Error handling. */
 }

 /* Allocate memory for the API Instance structure */
 pApiInstance = (tPOCT6100_INSTANCE_API) malloc(InstanceSize.ulApiInstanceSize);
 if (pApiInstance == NULL)
 {
 /* Error handling. */
 }

 /* Perform the actual configuration of the chip. */
 ulResult = Oct6100ChipOpen (pApiInstance, &ChipOpen);
 if (ulResult != OCT6100_ERR_OK)
 {
 /* Error handling. */
 }
}

Almost all functions require a pointer to the chip’s API instance structure as the first
parameter. This instance structure is created by the user before the call to
Oct6100ChipOpen and is unique to each chip being managed by the software.

The structure keeps the state of an instance of a chip and is required to perform any
operations on the chip. See Section 2 - System Architecture.

Revision 3.1 Page 10 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

3.2 Interrupts

3.2.1 Chip Configuration

The OCT6100 device features an interrupt pin that can be configured to respect a
minimum time between successive interrupts.

Each individual event can be further configured to meet the host system’s needs and
capabilities. Each error or status report that the chip issues can be individually configured
to generate an interrupt or not. The interrupts are configured at start-up time
(Oct6100ChipOpen), and can be reconfigured during the chip operation
(Oct6100InterruptConfigure).

Each interrupt flag can be configured in one of three ways:

� Disable the interrupt - The corresponding Interrupt Enable is cleared and the
condition will not generate an interrupt.

� Enable the interrupt without timeouts - The corresponding Interrupt Enable is set.
If the same interrupt occurs repeatedly, each new event occurrence will cause the
interrupt pin to be asserted. This will cause the ISR to be called each time.

� Enable the interrupt and enforce timeouts The corresponding Interrupt Enable is
set. When an interrupt is generated and the API ISR is called, the API will disable the
corresponding Interrupt Enable in the device. The API will only re-enable this
Interrupt Enable after the user-specified timeout period. This allows the user to mask
Interrupts for long periods of time.

3.2.2 Interrupt Service Routine

The API provides an interrupt service routine (ISR), Oct6100InterruptServiceRoutine,
to service the events reported by the chip’s interrupt registers. The ISR updates chip and
channel statistics maintained by the API and empties the device’s tone event buffer
queuing the events in API memory to be read by the user software. The functions
performed by the ISR on an interrupt are determined by the current events in the interrupt
vector or the elapsed time since last servicing of the resource (e.g. offloading or
extending counters). The interrupt service routine can be used in either an interrupt-
driven system or a polling-driven system.

3.2.3 Interrupt-Driven System

Interrupts can be handled by the host system using one of two methods: with or without
deferred procedure calls (DPC). This choice is left to the system designer.

3.2.3.1 Interrupt-Driven System without DPCs
When DPCs are not used, the API’s ISR is called by the OS’s ISR directly at the interrupt
priority level. This means the interrupt is responded to very quickly, however, it will force
the OS ISR to include the servicing of the interrupt. An example of an interrupt-driven
system implemented without DPC is illustrated in the System Architecture section
above.

In non-DPC case, calling the Oct6100InterruptMask function is optional, as the
OCT6100 interrupt will be handled immediately.

Revision 3.1 Page 11 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

3.2.3.2 Interrupt-Driven system with DPCs
When using DPCs, the user causes a DPC to invoke the API’s ISR. In this case, the DPC
causes the ISR treatment to be delayed to a later time, and typically treated at a lower
priority level.

To prevent from flooding the OS with the same interrupt event, the chip’s interrupt pin
must be masked until the API ISR is called. The API provides the Oct6100InterruptMask
function to mask the interrupt pin. The mask interrupt routine will mask the interrupt time
for a period of 60 ms. Using this masking feature ensures convergence of the system; if
the OS does not answer the signaled interrupt, the chip will reactivate its interrupt pin
without software intervention. Once it is called, the API’s ISR will service all flagged
events and immediately re-enable the interrupt pin.

Once the interrupt is signaled to the OS, the OS queues the interrupt request to be
treated at a later time. When the host software decides to service the deferred interrupt,
the API’s Oct6100InterruptServiceRoutine function determines which error(s) or
event(s) generated the interrupt, and the API then performs the necessary actions to fix
the error(s) or service the event(s). Before the API’s ISR function exits, the chip’s
interrupt pin is re-enabled.

3.2.4 Interrupt Polling-Driven System

In the case of an interrupt polling-driven system, the chip’s interrupt pin is not used: The
API’s ISR must be called periodically by the host application. Also, because the API’s ISR
is responsible for updating the software extension of certain chip statistics, the API’s ISR
must be called a minimum of every 20 seconds to ensure that the integrity of these
statistics is maintained. Failure to do so will not impair the operational call integrity but
may cause some statistics to be invalid.

Revision 3.1 Page 12 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

4 Using the OCT6100 API

4.1 Definitions
Channel A channel is composed of 2 TDM voice streams.
TSST A TDM time-slot stream. A specific timeslot on a specific stream

of the TDM bus.
Conference Bridge Resource used to mix multiple voice streams.
Tone Detector Chip resource used to detect signaling tones on a voice stream.
SIN Port Hybrid side Send Input connection interface (near-end input).
SOUT Port Network side Send Output connection interface (far-end output)
RIN Port Network side Receive Input connection interface (far-end input).
ROUT Port Hybrid side Receive Output connection interface (near-end

output).

4.2 Documentation and Coding Conventions
In this document:

– All addresses are byte addresses.

– Numbers are decimal unless otherwise specified.

– A word is 16 bits, and a byte is 8 bits.

– All memory locations are laid-out in the little-endian format.

– When a parameter value is greater than 32 bits, it is stored in an array where the
lowest indexed element contains the LSB.

All function parameters are passed in C structures to allow for compatibility of code
upgrades. Each parameter is documented here with 3 fields:

Direction – Indicates if the parameter is an input (IN), output (OUT), or input and output
(IO) of the function. When a parameter is a pointer, the direction is indicated
as direction/direction, where the first direction refers to the pointer itself
(typically IN) and the second direction (after the slash) refers to the memory
pointed to by the pointer. Thus, an IN/OUT pointer direction indicates that the
pointer is an input to the function (i.e. the value of the pointer will not be
modified), and the memory pointed to by the pointer is used for output.

Type – Indicates the C type of the parameter. A UINT32 is an unsigned 32-bit value.
Parameters may also be declared as arrays and are documented here as
UINT32[x] where x indicates the number of elements. Also used in the API
are unsigned characters (8-bit values) indicated as BYTEs. As with ULONGs,
parameters may also be declared as arrays and are documented here as
UINT8[x] where x indicates the number of elements.

Default – Indicates the default value to which the parameter is set by an associated
function for initializing the structure. All values of OCT6100_INVALIDXxx
means that the Def function will initialize the parameter to a value which
indicates invalid for that parameter. The API will return an error if the
parameter remains invalid when the structure is passed to a function that
uses the parameter as an input.

4.2.1 Return Values

Revision 3.1 Page 13 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

All API functions return the OCT6100_RC_OK value when they complete successfully.
Generally, functions return non-successful indications when there is an improper usage
of the API or device. For example, conflicting parameters or exceeding capacities (e.g.
allocating more channels than the device supports).

Some functions may not be successful due to transient conditions in the device. For
example, if a tone detection message is requested, but the buffer is empty, an error will
be returned. These return values will be indicated in a Return Value section of a function
description.

The description for all other return values can be found in the oct6100_errors.h file of the
API release.

Return values within the 0xDE000-0xDFFFF range indicate that the API software has
detected an internal fatal error. These errors should be reported to Octasic for resolution.

4.2.2 Code Header Files

The user must supply C code to the API for OS and hardware specific functions. These
functions are described in the User Supplied Functions Description section. The
definitions of the structures needed by all user-supplied functions are provided in the
oct6100_apiud.h file. The file is required by the user-supplied functions for the definitions
of the structures used.

Revision 3.1 Page 14 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5 API Functions Description
The usage of each function and their related parameters are detailed in this section.

Almost every function has a pointer to the chip’s API instance structure as its first parameter. This
instance structure is created by the user before the call to Oct6100ChipOpen and is unique to
each chip being managed by the software. This structure keeps the state of an instance of a chip
and is required to perform any operations on the chip. See the System Architecture section for
more details.

Revision 3.1 Page 15 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1 Chip Initialization Functions
Functions described in this section relate to the global operation of the OCT6100. They
allow an application to open, close and monitor a device.

5.1.1 Oct6100ChipOpen

This function uses the tOCT6100_CHIP_OPEN configuration structure provided to
perform all operations necessary to configure the chip and initialize the instance
structure.

Note that the Oct6100ChipOpenDef and Oct6100GetInstanceSize functions are
typically called, in their respective order, before this function.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChipOpenDef (
tPOCT6100_CHIP_OPEN f_pChipOpen);

UINT32 Oct6100ChipOpen (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHIP_OPEN f_pChipOpen);

Parameters

f_pApiInstance Pointer to the chip’s API instance structure. This structure will be filled
in by this function call. It contains information on the current state and
configuration of the chip. Once initialized by Oct6100ChipOpen, this
structure is supplied to all subsequent function calls. The structure
must be created and kept by the application software until
Oct6100ChipClose is called.

f_pChipOpen Pointer to an initial tOCT6100_CHIP_OPEN configuration structure.
The structure’s elements are defined below. The user allocates this
structure.

5.1.1.1 tOCT6100_CHIP_OPEN Structure

ulUserChipId identifier

This number is carried down to the user-supplied read/write routines to
distinguish which chip the API is servicing. This can be used as an array index of
the chip to be serviced to retrieve the correct instance pointer. If only one chip is
being serviced by the API, then this parameter can be ignored (see the System
Architecture description in the Overview section).
Direction: IN Type: UINT32
Default: 0

fMultiProcessSystem TRUE / FALSE

Indicates whether the host system is a multi-process one or not. See the
System Architecture and API Function Descriptions sections for the
implications of a multi-process system.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 16 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

pProcessContext pointer

In some systems the user-provided functions (read, write, serialization, time, etc)
may need a context structure in order to communicate with the host OS. This
pointer is passed to all user functions for such situations. However, the
parameter may be ignored by the user if it is not needed.
This parameter is copied in the instance only if fMultiProcessSystem is set to
FALSE in the tOCT6100_OPEN_CHIP structure. If the fMultiProcessSystem
flag is set to TRUE, the pProcessContext pointer can be stored in a local API
instance by calling the Oct6100CreateLocalInstance function.
Direction: IN Type: PVOID
Default: NULL

ulMaxRwAccesses 1 – 1024

The maximum number of device addresses that the API will attempt to read or
write in a single call of a user read or write function (e.g.
Oct6100DriverWriteBurstApi).
Direction: IN Type: UINT32
Default: 8

pbyImageFile pointer

Byte pointer to the image file to be loaded into the OCT6100.
Direction: IN Type: PUINT8
Default: NULL

ulImageSize 4096 - 1048576

Size of the image file, in bytes.
Direction: IN Type: UINT32
Default: 0

ulMaxChannels 1 – 672

Maximum number of channels that this chip instance will open concurrently. This
field determines the amount of memory needed by the chip’s instance structure
of the chip to keep track of all channels, and thus affects the required size of the
instance structure.
Direction: IN Type: UINT32
Default: 672

ulTailDisplacement 0 - 896

This parameter represents the offset of the echo cancellation window, in
milliseconds. This type of offset is often referred to as “bulk delay”. Note that the
actual tail displacement value used in the chip is in 16 ms increments. For
example, if the value set in ulTailDisplacement is 511 ms, the actual tail
displacement setting will be 496 ms.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 17 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulMaxBiDirChannels 0 – 255

Maximum number of bi-directional channels that this chip instance will open
concurrently. This field determines the amount of memory needed by the chip’s
instance structure of the chip to keep track of all channels, and thus affects the
required size of the instance structure.
The maximum value for this parameter is also limited by the number of echo
cancellation channels because each bi-directional channel requires two normal
echo cancellation channels.
Direction: IN Type: UINT32
Default: 0

ulMaxTsiCncts 0 – 1530

The maximum number of TSI connections that this chip instance will open
concurrently. This field determines the amount of memory needed by the chip’s
instance structure to keep track of all TSI connections, and thus affects the
required size of the instance structure.
Direction: IN Type: UINT32
Default: 0

ulMaxPlayoutBuffers 0 – 4678

The maximum number of playout buffer that can be loaded into the chip’s
external memory. This field determines the amount of memory needed by the
chip’s instance structure to keep track of all playout buffers, and thus affects the
required size of the instance structure.
The maximum number is 1344 if Caller ID is enabled (fEnableCallerId flag of the
tOCT6100_OPEN_CHIP structure set to TRUE) and 4678 if it is not.
Direction: IN Type: UINT32
Default: 0

ulMaxConfBridges 0 – 672

The maximum number of conference bridges that this chip instance will open
concurrently. This field determines the amount of memory needed by the chip’s
instance structure to keep track of all conference bridges, and thus affects the
required size of the instance structure.
Conference bridges can be tapped for lawful interception purposes. Each time
the ulTappedChannelHndl parameter is used when adding a monitoring
participant to a bridge, the API uses 1 extra conference bridge resource.
Therefore, the value of ulMaxConfBridges includes all conference bridges that
are open as well as the number of tapping participants.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 18 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulMaxFlexibleConfParticipants 0 – 672

The maximum number of flexible conference bridge participants that this chip
instance will support concurrently. This field determines the amount of memory
needed by the chip’s instance structure to keep track of all flexible conference
bridge participants, and thus affects the required size of the instance structure.
Refer to the conference bridge section in this document for an explanation on
flexible conference bridges.
Direction: IN Type: UINT32
Default: 0

ulMaxPhasingTssts 0 – 16

The maximum number of phasing TSSTs that this chip instance will open
concurrently. This field determines the amount of memory needed by the chip’s
instance structure to keep track of all phasing TSSTs, and thus affects the
required size of the instance structure.
Direction: IN Type: UINT32
Default: 0

ulMaxAdpcmChannels 0 – 672

Maximum number of ADPCM channels that this chip instance will open
concurrently. This field determines the amount of memory needed by the chip’s
instance structure to keep track of all ADPCM channels, and thus affects the
required size of the instance structure.
Direction: IN Type: UINT32
Default: 0

ulMemoryType cOCT6100_MEM_TYPE_SDR
cOCT6100_MEM_TYPE_DDR

The type of RAM memory used with the chip.
Direction: IN Type: UINT32
Default: cOCT6100_MEM_TYPE_DDR

ulMemoryChipSize cOCT6100_MEMORY_CHIP_SIZE_8MB
cOCT6100_MEMORY_CHIP_SIZE_16MB
cOCT6100_MEMORY_CHIP_SIZE_32MB
cOCT6100_MEMORY_CHIP_SIZE_64MB
cOCT6100_MEMORY_CHIP_SIZE_128MB

Indicates the size of each RAM chip used by the OCT6100. A chip size of 8
Megabytes is not supported when the memory type is set to DDR.
Direction: IN Type: UINT32
Default: cOCT6100_MEMORY_CHIP_SIZE_64MB

ulNumMemoryChips 1 – 2

Indicates the number of external RAM chips present (each of size
ulMemoryChipSize). When using a 32-bit wide SDR memory device, this
parameter must be set to 2 and ulMemoryChipSize must be set to half the size
of the RAM chip.
Direction: IN Type: UINT32
Default: 1

Revision 3.1 Page 19 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fEnableMemClkOut TRUE / FALSE

If ulMemoryType is set to cOCT6100_MEMORY_TYPE_SDR this parameter
indicates whether the pins SDRAM_CLK_O[0,1] are to be driven by the chip. If
DDR RAM is used it indicates whether pins DDRAM_[CK_O, NCK_O,
CK_LOCAL_O] are to be driven by the chip. If set to TRUE, then the clock is to
be generated internally at the frequency specified by ulMemClkFreq.
Direction: IN Type: BOOL
Default: TRUE

ulUpclkFreq cOCT6100_UPCLK_FREQ_33_33_MHZ

This is the frequency of upclk. The only value allowed is 33.33 MHz. Upclk is
used by the chip’s CPU interface and CPU registers.
Direction: IN Type: UINT32
Default: cOCT6100_UPCLK_FREQ_33_33_MHZ

ulMemClkFreq 133000000

The frequency of the memory interface, in Hz.
If fEnableMemClkOut is FALSE then this parameter indicates the frequency of
the oscillator.
If fEnableMemClkOut is TRUE, then this parameter indicates the clock
frequency that the chip will generate.
Direction: IN/OUT Type: UINT32
Default: 133000000 (133 MHz)

ulInterruptPolarity cOCT6100_ACTIVE_LOW_POLARITY
cOCT6100_ACTIVE_HIGH_POLARITY

Polarity and active status of the interrupt line. The line can be active high or low
and is in tri-state (open collector) when not active.
Direction: IN Type: UINT32
Default: cOCT6100_ACTIVE_LOW_POLARITY

ulMaxTdmStreams {4, 8, 16, 32}

The maximum number of H.100 streams that this chip instance will allocate
timeslots on concurrently. This parameter is used to allow the chip to operate at
lower clock frequencies. When less than 32 streams are specified the most
significant streams are removed first. For example, if ulMaxTdmStreams = 8
then only streams ct_d[7:0] can be used by this chip instance.
Direction: IN Type: UINT32
Default: 32

Revision 3.1 Page 20 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

aulTdmStreamFreqs[8] cOCT6100_TDM_STREAM_FREQ_2MHZ
cOCT6100_TDM_STREAM_FREQ_4MHZ
cOCT6100_TDM_STREAM_FREQ_8MHZ

The frequency at which the TDM data lines operate. The streams are organized
into quartets. Element 0 of this array indicates the operation frequency the TDM
lines ct_d[0:3], and element 7 lines ct_d[28:31].
If fEnableFastH100Mode is set to TRUE, this parameter is ignored because all
available streams must operate at 16 MHz.
Direction: IN Type: UINT32[8]
Default: cOCT6100_TDM_STREAM_FREQ_8MHZ

fEnableFastH100Mode TRUE / FALSE

Controls the state of the H.100 fast mode. If TRUE, the TDM bus operates at 16
MHz. Note that only streams 0 to 15 are available when operating at 16 MHz.
Setting this parameter to TRUE will cause the API to ignore the stream frequency
parameter aulTdmStreamFreqs.
Direction: IN Type: BOOL
Default: FALSE

ulTdmSampling cOCT6100_TDM_SAMPLE_AT_3_QUARTERS
cOCT6100_TDM_SAMPLE_AT_RISING_EDGE
cOCT6100_TDM_SAMPLE_AT_FALLING_EDGE

The point from which a bit is sampled from the CT_D[31:0] lines. The bit can be
sampled on the rising edge of the clock, the falling edge of the clock, or on the
3/4ths of the clock cycle.
If the fH100FastMode flag is set to TRUE, then only the
cOCT6100_TDM_SAMPLE_AT_RISING_EDGE mode can be used for the TDM
sampling.
Direction: IN Type: UINT32
Default: cOCT6100_TDM_SAMPLE_AT_3_QUARTERS

ulSoftToneEventsBufSize 2048 – 65535

Software buffer where the API stores tone events transferred from the chip. This
value is in number of events.
Direction: IN Type: UINT32
Default: 2048

fEnableExtToneDetection TRUE / FALSE

Setting this parameter to TRUE enables the extended tone detection mode of the
OCT6100 API.
This tone detection mode allows the user to perform tone detection of a specific
tone on the two voice streams of a channel (RIN and SIN). Without this mode
enabled, two separate tone detectors are necessary for the two voice streams.
This parameter should only be set to TRUE when not enough tone detectors are
available to cover the desired tone detection configuration. Activating this mode
reduces the maximum number of echo cancellation channels to 336.
Note: All tone detectors used with extended tone detection should be configured
by the OCT6100 image to perform detection on the SIN port only.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 21 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulSoftBufferPlayoutEventsBufSize 128 – 65535

Software buffer where the API stores buffer playout events detected from the
chip. This value is in number of events. Buffer playout events are not polled if
this value is left to cOCT6100_INVALID_VALUE.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

fEnableCallerId UNSUPPORTED FEATURE

Setting this parameter to TRUE enables the caller ID module of the OCT6100
API.
Direction: IN Type: BOOL
Default: FALSE

fEnableAcousticEcho TRUE / FALSE

Activates acoustic echo cancellation in the chip. If TRUE, enabling acoustic echo
cancellation will be permitted.
Direction: IN Type: BOOL
Default: FALSE

ulMaxRemoteDebugSessions 0 – 256

The maximum number of remote debugging sessions that can be supported by
this instance.
Direction: IN Type: UINT32
Default: 1

fEnableChannelRecording TRUE / FALSE

If TRUE, the API will configure the device to support recording of debug
information on a channel.
If ulMaxChannels is set to 672 and this flag is set to TRUE, the API will reserve
one channel for debugging purpose, leaving only 671 channels to perform echo
cancellation.
Direction: IN Type: BOOL
Default: FALSE

fEnableProductionBist TRUE / FALSE

If this parameter is set to TRUE, the chip will enter into production BIST mode.
This mode exhaustively tests the external memory of the chip. The status of the
BIST can be retrieved via a call to Oct6100ProductionBist. Note that the
Oct6100ChipOpen function must be called again with this flag set to FALSE to
use the chip normally.
The production BIST tests every bit of the external SDRAM and returns a
pass/fail indication with some debug information concerning the failed
address/data.
Direction: IN Type: BOOL

Revision 3.1 Page 22 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

Default: FALSE

ulNumProductionBistLoops 0x1 – 0xFFFFFFFF

Indicates the number of times the production BIST loop should be executed by
the firmware.
A production BIST loop is composed of the following steps:

1. Walking bit set to 1.
2. Walking bit set to 0.
3. Walking bit set to 1.

The following table summarizes the production BIST duration when
ulNumProductionBistLoops is equal to 1 for typical memory configurations:

External memory size Approximate duration
32 megabytes 296 seconds
64 megabytes 591 seconds

128 megabytes 1183 seconds
Note that the duration increases linearly with the number of loops specified.
Direction: IN Type: UINT32
Default: 1

Revision 3.1 Page 23 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.2 Oct6100ChipClose

This function closes all channels that may still be open and then puts the chip in soft
reset.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChipCloseDef (
tPOCT6100_CHIP_CLOSE f_pChipClose);

UINT32 Oct6100ChipClose (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHIP_CLOSE f_pChipClose);

Parameters

f_pApiInstance Pointer to the instance structure of the chip.

f_pChipClose Pointer to a tOCT6100_CHIP_CLOSE structure. The structure’s
elements are defined below. The user allocates this structure.

5.1.2.1 tOCT6100_CHIP_CLOSE Structure
At present, there are no parameters for this structure.

Revision 3.1 Page 24 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.3 Oct6100ChipGetStats

This function fills an OCT6100_CHIP_STATS structure with the current statistics for the
chip. All statistics returned by this function are initialized (e.g. counters set to 0) by the
Oct6100ChipOpen function.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChipGetStatsDef (
tPOCT6100_CHIP_STATS f_pChipStats);

UINT32 Oct6100ChipGetStats (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHIP_STATS f_pChipStats);

Parameters

f_pApiInstance Pointer to the instance structure of the chip.

f_pChipStats Pointer to a tOCT6100_CHIP_STATS structure. The structure’s
elements are defined below. The user allocates this structure.

5.1.3.1 tOCT6100_CHIP_STATS Structure

fResetChipStats TRUE / FALSE

If TRUE, the API resets all chip statistics counters to zero.
Direction: IN Type: BOOL
Default: FALSE

ulNumberChannels 0 – 672

The number of channels currently open.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulNumberTsiCncts 0 – 1530

The number of TSI connections currently open.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulNumberConfBridges 0 – 672

The number of conference bridges currently open.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulNumberPlayoutBuffers 0 – 1344

The number of playout buffers currently loaded in the chip’s external memory.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

Revision 3.1 Page 25 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulPlayoutFreeMemSize 0 - total space in external memory for playout

The amount of external memory left, in bytes, that can be used for buffer playout.
Note that this value is not necessarily a contiguous memory block.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulNumberPhasingTssts 0 – 16

The number of phasing TSSTs currently open.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulNumberAdpcmChannels 0 – 672

The number of ADPCM channels currently open.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulH100OutOfSynchCount 32 bit counter

A count of the number of times the H.100 slave of the chip lost its framing on the
H.100 bus. The count is an approximation based on the changes from inactive to
active state of the corresponding interrupt register.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulH100ClockABadCount 32 bit counter

A count of the number of times the H.100 clock CT_C8_A was deemed bad. The
count is an approximation based on the changes from inactive to active state of
the corresponding interrupt register.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulH100FrameABadCount 32 bit counter

A count of the number of times the H.100 frame CT_FRAME_A was deemed
bad. The count is an approximation based on the changes from inactive to active
state of the corresponding interrupt register.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulH100ClockBBadCount 32 bit counter

A count of the number of times the H.100 clock CT_C8_B was deemed bad. The
count is an approximation based on the changes from inactive to active state of
the corresponding interrupt register.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

Revision 3.1 Page 26 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulInternalReadTimeoutCount 32 bit counter

A count of the number of times that an internal read timeout error was detected.
The count is an approximation based on the changes from inactive to active state
of the corresponding interrupt register.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulSdramRefreshTooLateCount 32 bit counter

A count of the number of times that an SDRAM refresh too late error was
detected. The count is an approximation based on the changes from inactive to
active state of the corresponding interrupt register.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulPllJitterErrorCount 32 bit counter

A count of the number of times that a PLL jitter error was detected. The count is
an approximation based on the changes from inactive to active state of the
corresponding interrupt register.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulOverflowToneEventsCount 32 bit counter

A count of the number of times that the hardware tone event buffer has
overflowed. The count is an approximation based on the changes from inactive to
active state of the corresponding interrupt register. If such overflows occur, the
user should call the Interrupt Service Routine more often.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulSoftOverflowToneEventsCount 32 bit counter

A count of the number of times that the software tone event buffer has
overflowed. If such overflows occur, the user should retrieve tone events from the
API more often, using the Oct6100EventGetTone function.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulSoftOverflowBufferPlayoutEventsCount 32 bit counter

A count of the number of times that the software playout event buffer has
overflowed. The count is based on the number of times that buffer playout events
could not be copied to the software buffer because it was already full. To correct
this, the user should empty the software buffer more frequently using the
Oct6100BufferPlayoutGetEvent procedure.
Alternatively, the ulSoftBufferPlayoutEventsBufSize parameter may be set to a
larger value.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

Revision 3.1 Page 27 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.4 Oct6100ChipGetImageInfo

This function fills an OCT6100_CHIP_IMAGE_INFO structure with the description of the
build image loaded into the device.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChipGetImageInfoDef (
tPOCT6100_CHIP_IMAGE_INFO f_pChipImageInfo);

UINT32 Oct6100ChipGetImageInfo (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHIP_IMAGE_INFO f_pChipImageInfo);

Parameters

f_pApiInstance Pointer to the instance structure of the chip.

f_pChipImageInfo Pointer to a tOCT6100_CHIP_IMAGE_INFO structure. The structure’s
elements are defined below. The user allocates this structure.

5.1.4.1 tOCT6100_CHIP_IMAGE_INFO Structure

szVersionNumber[1016] String

This string contains the unique image build description of the image loaded into
the device.
Direction: OUT Type: UINT8 [1016]
Default: 0

ulBuildId 32-bit value

This field contains the unique build ID from the image loaded into the device.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulImageType cOCT6100_IMAGE_TYPE_WIRELINE
cOCT6100_IMAGE_TYPE_COMBINED

This field contains the type of image that has been loaded into the device.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulMaxChannels 16 - 672

This field contains the maximum number of channels supported by the image
loaded into the device.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 28 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulMaxTailDisplacement 0 - 896

This field contains the maximum tail displacement supported by the image
loaded into the device. A value of 0 indicates that tail displacement is not
supported.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

fPerChannelTailDisplacement TRUE / FALSE

If TRUE, the image loaded into the device supports per channel tail displacement
configuration.
Direction: OUT Type: BOOL
Default: FALSE

fPerChannelTailLength TRUE / FALSE

If TRUE, the image loaded into the device supports an independent tail length
configuration per channel.
Direction: OUT Type: BOOL
Default: FALSE

ulMaxTailLength 32 – 128 ms (increment of 4 ms)

This field contains the maximum tail length supported by the image loaded into
the device.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

fBufferPlayout TRUE/FALSE

If TRUE, the image loaded into the device supports buffer playout.
Direction: OUT Type: BOOL
Default: FALSE

fAdaptiveNoiseReduction TRUE / FALSE

If TRUE, the image loaded into the device supports adaptive noise reduction.
Direction: OUT Type: BOOL
Default: FALSE

fSoutNoiseBleaching TRUE / FALSE

If TRUE, the image loaded into the device supports Sout noise bleaching.
Direction: OUT Type: BOOL
Default: FALSE

fAnrSnrEnhancement TRUE / FALSE

If TRUE, the image loaded into the device supports configuration of the SOUT
adaptive noise reduction. This parameter controls the signal to noise ratio
enhancement.
Direction: OUT Type: BOOL
Default: FALSE

Revision 3.1 Page 29 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fAnrVoiceNoiseSegregation TRUE / FALSE

If TRUE, the image loaded into the device supports configuration of the SOUT
adaptive noise reduction. This parameter controls the voice-noise segregation.
Direction: OUT Type: BOOL
Default: FALSE

fRoutNoiseReduction TRUE / FALSE

If TRUE, the image loaded into the device supports noise reduction on the ROUT
port.
Direction: OUT Type: BOOL
Default: FALSE

fAutoLevelControl TRUE / FALSE

If TRUE, the image loaded into the device supports automatic level control.
Direction: OUT Type: BOOL
Default: FALSE

fResetAlcOnTones TRUE / FALSE

If TRUE, the image loaded into the device supports resets of automatic level
control algorithm upon tone detection.
Direction: OUT Type: BOOL
Default: FALSE

fAlcNoiseBleedOutTime TRUE / FALSE

If TRUE, the image loaded into the device supports configuration of the noise
bleed-out time for the automatic level control algorithm.
Direction: OUT Type: BOOL
Default: FALSE

fHighLevelCompensation TRUE / FALSE

If TRUE, the image loaded into the device supports high level compensation.
Direction: OUT Type: BOOL
Default: FALSE

fToneDisablerVqeActiveTime TRUE / FALSE

If TRUE, the image loaded into the device supports a configurable tone disabler
VQE re-activation time.
Direction: OUT Type: BOOL
Default: FALSE

fSilenceSuppression TRUE / FALSE

If TRUE, the image loaded into the device supports silence suppression.
Direction: OUT Type: BOOL
Default: FALSE

Revision 3.1 Page 30 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fToneRemoval TRUE / FALSE

If TRUE, the image loaded into the device supports DTMF tone removal. This
feature is available on the SIN port only.
Direction: OUT Type: BOOL
Default: FALSE

fAcousticEcho TRUE / FALSE

If TRUE, the image loaded into the device supports acoustic echo cancellation.
Direction: OUT Type: BOOL
Default: FALSE

fAecTailLength TRUE / FALSE

If TRUE, the image loaded into the device supports a configurable tail length for
acoustic echo cancellation.
Direction: OUT Type: BOOL
Default: FALSE

fDefaultErl TRUE / FALSE

If TRUE, the image loaded into the device supports configurable default ERL.
Direction: OUT Type: BOOL
Default: FALSE

fNonLinearityBehaviorA TRUE / FALSE

If TRUE, the image loaded into the device supports configurable non-linearity.
Direction: OUT Type: BOOL
Default: FALSE

fNonLinearityBehaviorB TRUE / FALSE

If TRUE, the image loaded into the device supports configurable non-linearity.
Direction: OUT Type: BOOL
Default: FALSE

fDoubleTalkBehavior TRUE / FALSE

If TRUE, the image loaded into the device supports configurable double talk
behavior.
Direction: OUT Type: BOOL
Default: FALSE

fListenerEnhancement TRUE / FALSE

If TRUE, the image loaded into the device supports automatic and natural
listener enhancement.
Direction: OUT Type: BOOL
Default: FALSE

Revision 3.1 Page 31 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fMusicProtection TRUE / FALSE

If TRUE, the image loaded into the device supports Octasic’s Music Protection
feature.
Direction: OUT Type: BOOL
Default: FALSE

fIdleCodeDetection TRUE / FALSE

If TRUE, the image loaded into the device supports the idle code detection
feature.
Direction: OUT Type: BOOL
Default: TRUE

fSinLevel TRUE / FALSE

If TRUE, the image loaded into the device supports the SIN level statistics.
Direction: OUT Type: BOOL
Default: TRUE

fConferencing TRUE / FALSE

If TRUE, the image loaded into the device supports conferencing.
Direction: OUT Type: BOOL
Default: FALSE

fConferencingNoiseReduction TRUE / FALSE

If TRUE, the image loaded into the device supports conferencing noise reduction.
Direction: OUT Type: BOOL
Default: FALSE

fDominantSpeaker TRUE / FALSE

If TRUE, the image loaded into the device supports Octasic’s conferencing
dominant speaker feature.
Direction: OUT Type: BOOL
Default: FALSE

fAdpcm TRUE / FALSE

If TRUE, the image loaded into the device supports ADPCM compression and
decompression.
Direction: OUT Type: BOOL
Default: FALSE

ulMaxPlayoutEvents 31, 127

This field contains the maximum number of buffer playout events supported by
the image loaded into the device.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 32 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulDebugEventSize 32, 256

This field contains the maximum number of debug events that can be recorded in
external memory. An event is generated every 512 milliseconds. Images that
support 32 events can record 16 seconds of data. Images that support 256
events can record over 2 minutes of data.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulToneProfileNumber 32-bits value

This field represents the tone profile number built in the image.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulNumTonesAvailable 0 - 56

This field represents the number of tone available in the image. It also
represents the number of valid entries within the aToneInfo array.
Direction: OUT Type: UINT32
Default: 0

aToneInfo[56] array of structure

Description of the tones supported for tone detection based on the image loaded
into the device.
Direction: OUT Type: tOCT6100_CHIP_TONE_INFO[56]
Default: see structure definition

5.1.4.2 tOCT6100_CHIP_TONE_INFO Structure

aszToneName[64] String

This field contains a unique string used to identify the tone.
Direction: OUT Type: UINT8 [64]
Default: 0

ulDetectionPort cOCT6100_CHANNEL_PORT_SIN
cOCT6100_CHANNEL_PORT_ROUT
cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_ROUT_SOUT

Port on which this tone can be detected.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_PORT

Revision 3.1 Page 33 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulToneID 32-bits value

Unique numerical value used to identify this tone.
This is the value required when enabling or disabling tone detection on a
channel. It is also the value returned upon detection of this tone in the
tOCT6100_EVENT_TONE structure. Please refer to the section on tone
detection for more details.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 34 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.5 Oct6100GetInstanceSize

This function uses the tOCT6100_CHIP_OPEN configuration structure to calculate the
amount of memory required for the tOCT6100_INSTANCE_API structure of the chip. A
tOCT6100_INSTANCE_API structure must be allocated and a pointer created by the
user before calling the Oct6100ChipOpen function; the pointer must point to a block of
contiguous memory which size is determined by this function.

Usage

#include “oct6100_api.h”

UINT32 Oct6100GetInstanceSizeDef (
tPOCT6100_GET_INSTANCE_SIZE f_pInstanceSize);

UINT32 Oct6100GetInstanceSize (
tPOCT6100_CHIP_OPEN f_pChipOpen,
tPOCT6100_GET_INSTANCE_SIZE f_pInstanceSize);

Parameters

f_pChipOpen Pointer to an initial tOCT6100_CHIP_OPEN configuration
structure. The definition of the structure is provided in Section 5 -
Configuration Parameters. See Oct6100ChipOpenDef for a
default configuration of the chip. The user allocates this structure.

f_pInstanceSize Pointer to a tOCT6100_GET_INSTANCE_SIZE structure. The
structure’s elements are defined below. The user allocates this
structure.

5.1.5.1 tOCT6100_GET_INSTANCE_SIZE Structure

ulApiInstanceSize

This value is returned by the function and indicates the minimum size, in bytes, of
the tOCT6100_INSTANCE_API memory block that must be allocated to support
the supplied configuration.
Direction: Out Type: UINT32
Default: NOT MODIFIED

Revision 3.1 Page 35 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.6 Oct6100CreateLocalInstance

This function is used only if the API is run on a multi-process system. The function
initializes a local API instance structure kept by each process communicating with a given
shared instance. The local structure contains all portions of the API instance which are
process specific (such as serialization object handles).

Two categories of processes call this function: the main process and other processes.
For example, this might occur in a system with a main process performing the channel
management and a secondary thread collecting statistics.

The main process performs the configuration of the chip. In this process, this function
must be called after the shared portion of the API instance is allocated but before the
Oct6100ChipOpen function is called (see the System Architecture and API Function
Descriptions).

Other processes simply connect to the chip and its shared instance once the chip is
configured. This function serves as the connection function and must be called before all
other API function calls (see the System Architecture and API Function Descriptions).

If the host system uses a single process then this function is not necessary, and must not
be called.

Usage

#include “oct6100_api.h”

UINT32 Oct6100CreateLocalInstance (
tPOCT6100_CREATE_LOCAL_INSTANCE f_pCreateLocalInst);

Parameters

f_pCreateLocalInst pointer to a tOCT6100_CREATE_LOCAL_INSTANCE structure.
The definitions of the structure’s elements are listed below. The
user allocates this structure and keeps it as long as the chip is in
operation.

5.1.6.1 Structure tOCT6100_CREATE_LOCAL_INSTANCE

pApiInstShared pointer

Pointer to the shared portion of the API instance (created by the main process).
This pointer will be stored within the local instance structure (pApiInstLocal).
Direction: IN Type: tPOCT6100_INSTANCE_API
Default: NULL

pApiInstLocal pointer

Pointer to the process-specific portion of the API instance (created by all
processes on their local stack). This pointer will be used to all subsequent API
function calls.
Direction: IN Type: tPOCT6100_INSTANCE_API
Default: NULL

Revision 3.1 Page 36 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

pProcessContext pointer

In some systems the user-provided functions (read, write, serialization, time, etc)
may need a context structure in order to communicate with the host OS. The API
passes this pointer to all user functions allowing the user function to retrieve the
correct context. This parameter may be ignored by the user if it is not needed.
Direction: IN Type: PVOID
Default: NULL

ulUserChipId identifier

This value is passed to create the unique semaphore names that are associated
to a single API instance.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 37 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.7 Oct6100DestroyLocalInstance

This function should only be called in a multi-process or multi-thread environment. This
function will destroy any resources reserved by a call to Oct6100CreateLocalInstance.

Usage

#include “oct6100_api.h”

UINT32 Oct6100DestroyLocalInstanceDef (
tPOCT6100_DESTROY_LOCAL_INSTANCE f_pDestroyLocalInst);

UINT32 Oct6100DestroyLocalInstance (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_DESTROY_LOCAL_INSTANCE f_pDestroyLocalInst);

Parameters

f_pDestroyLocalInst pointer to a tOCT6100_DESTROY_LOCAL_INSTANCE structure.
The definitions of the structure’s elements are listed below. The
user allocates this structure and keeps it as long as the chip is in
operation.

5.1.7.1 Structure tOCT6100_DESTROY_LOCAL_INSTANCE

ulDummy 32 bit value

The API does not use this structure member. It exists only to preserve the
OCT6100 API functions format.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 38 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.8 Oct6100GetHwRevision

This routine returns the hardware revision number of the OCT6100. The revision number
is contained in a register of the device. This function may be called before the device is
open and only requires upclk to be present on the device.

Usage

#include “oct6100_api.h”

UINT32 Oct6100GetHwRevision (
tPOCT6100_GET_HW_REVISION f_pRevision);

Parameters

f_pRevision pointer to a tOCT6100_GET_HW_REVISION structure. The
definitions of the structure’s elements are listed below. The user
allocates this structure.

5.1.8.1 Structure tOCT6100_GET_HW_REVISION

ulUserChipId identifier

This value is passed to the user-supplied read/write routines to distinguish which
chip the API is servicing. This can be used as an array index of the chip to be
serviced to retrieve the correct instance pointer. If only one chip is being serviced
by the API this parameter can be ignored. See section 1.3 System Architecture.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_CHIP_ID

pProcessContext pointer

In some systems the user-provided functions (read, write, serialization, time, etc)
may need a context structure in order to communicate with the host OS. This
pointer is passed to all user functions for such situations. However, the
parameter may be ignored by the user if it is not needed.
Direction: IN Type: PVOID
Default: NULL

ulRevisionNum

This value is returned by the function and indicates the revision of the device.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 39 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.9 Oct6100ApiGetVersion

This routine returns the version of the API as a null-terminated string. The user can call
this function even if the chip is not open. This function does not require the
tOCT6100_INSTANCE_API structure.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ApiGetVersionDef (
tPOCT6100_API_GET_VERSION f_pApiGetVersion);

UINT32 Oct6100ApiGetVersion (
tPOCT6100_API_GET_VERSION f_pApiGetVersion);

Parameters

f_pApiGetVersion pointer to a tOCT6100_API_GET_VERSION structure. The
definitions of the structure’s elements are listed below. The user
allocates this structure.

5.1.9.1 Structure tOCT6100_API_GET_VERSION

achApiVersion array

This character array contains the string version of the API. This string is always
terminated with a null-character.
Direction: OUT Type: UINT8[64]
Default: achApiVersion [0 - 63] = ‘\0’;

Revision 3.1 Page 40 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.10 Oct6100FreeResources

This routine closes all open channels and removes them from any dependencies, such
as conference bridges. Optionally, other function parameters allow the user to close
these other resources, such as conference bridges or TSI connections.

Usage

#include “oct6100_api.h”

UINT32 Oct6100FreeResourcesDef (
 tPOCT6100_ FREE_RESOURCES f_pFreeResources);

UINT32 Oct6100FreeResources (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_FREE_RESOURCES f_pFreeResources);

Parameters

f_pFreeResources pointer to a tOCT6100_FREE_RESOURCES structure. The
definitions of the structure’s elements are listed below. The user
allocates this structure.

5.1.10.1 Structure tOCT6100_FREE_RESOURCES

fFreeTsiConnections TRUE / FALSE

If this parameter is set to TRUE, all opened TSI connections will be closed.
Direction: IN Type: BOOL
Default: FALSE

fFreeConferenceBridges TRUE / FALSE

If this parameter is set to TRUE, all opened conference bridges will be closed.
Direction: IN Type: BOOL
Default: FALSE

fFreePlayoutBuffers TRUE / FALSE

If this parameter is set to TRUE, all loaded playout buffers in external memory
will be unloaded.
Direction: IN Type: BOOL
Default: FALSE

fFreePhasingTssts TRUE / FALSE

If this parameter is set to TRUE, all opened phasing TSSTs will be closed.
Direction: IN Type: BOOL
Default: FALSE

fFreeAdpcmChannels TRUE / FALSE

If this parameter is set to TRUE, all opened ADPCM channels will be closed.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 41 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.1.11 Oct6100ProductionBist

This routine returns the current production BIST status information through the
tOCT6100_PRODUCTION_BIST structure members. Typically, the user will call this
function periodically until the ulBistStatus member changes from
cOCT6100_BIST_IN_PROGRESS to another value. This function is only available if the
fEnableProductionBist flag of the tOCT6100_CHIP_OPEN structure was set to TRUE.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ProductionBistDef (
 tPOCT6100_PRODUCTION_BIST f_pProductionBist);

UINT32 Oct6100ProductionBist (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_PRODUCTION_BIST f_pProductionBist);

Parameters

f_pProductionBist pointer to a tOCT6100_PRODUCTION_BIST structure. The
definitions of the structure’s elements are listed below. The user
allocates this structure.

5.1.11.1 Structure tOCT6100_PRODUCTION_BIST

ulCurrentLoop 0 - ulNumProductionBistLoops

The current BIST loop. The upper range of this parameter is defined by the
ulNumProductionBistLoops of the tOCT6100_OPEN_CHIP structure.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulCurrentAddress 32-bit value

The current address in external memory being checked.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulCurrentTest 1 – 3

The current test being executed:
1. Walking bit set to ‘1’.
2. Walking bit set to ‘0’.
3. Walking bit set to ‘1’.

Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 42 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulBistStatus cOCT6100_BIST_IN_PROGRESS
cOCT6100_BIST_CONFIGURATION_FAILED
cOCT6100_BIST_STATUS_CRC_FAILED
cOCT6100_BIST_MEMORY_FAILED
cOCT6100_BIST_SUCCESS

The current external memory BIST status. Here is a brief description of each
status.
cOCT6100_BIST_IN_PROGRESS
The BIST is in progress and no errors have been detected yet. ulCurrentLoop
and ulCurrentAddress give an approximation of the progress.
cOCT6100_BIST_CONFIGURATION_FAILED
The initial configuration of the internal processors failed. The BIST could not take
place.
cOCT6100_BIST_STATUS_CRC_FAILED
The current status event’s CRC did not match the computed value. The small
region in external memory used to exchange information between the API and
the firmware is corrupted.
cOCT6100_BIST_MEMORY_FAILED
The external memory BIST failed at location ulFailedAddress. The firmware
read value ulReadValue while expecting ulExpectedValue.
cOCT6100_BIST_SUCCESS
The BIST completed successfully. No errors were detected.
Direction: OUT Type: UINT32
Default: cOCT6100_BIST_IN_PROGRESS

ulFailedAddress 0x08000000 – (0x08000000 + external memory size)
cOCT6100_INVALID_VALUE

If ulBistStatus is set to cOCT6100_BIST_MEMORY_FAILED, this parameter
represents the address in external memory where the failure occurred.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulReadValue 32-bit value

If ulBistStatus is set to cOCT6100_BIST_MEMORY_FAILED, this parameter
represents the value read at the failed location.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulExpectedValue 32-bit value

If ulBistStatus is set to cOCT6100_BIST_MEMORY_FAILED, this parameter
represents the expected value that should have been read at the failed location.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 43 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2 Channel Functions
These functions are used to open, close and monitor echo channels.

Here is a short list of the features supported by a channel:

- ADPCM Compression / decompression

- Silence suppression

- Adaptive noise reduction

- DC offset removal

- RIN/SOUT level control

5.2.1 Oct6100ChannelOpen

This function opens an echo cancellation channel.

The channel configuration is broken down into 4 configuration sections: the main
channel, the TDM, the VQE and the CODEC configuration sections.

If opened with all the default parameters, the channel’s echo cancellation operation mode
is set to power-down. The echo cancellation process must remain in this mode until the
input ports (RIN and SIN) are assigned a valid H.100 TDM timeslot. Note that traffic can
still go through the channel if the echo cancellation operation mode is in power-down but
VQE features are not available.

Assignment of a timeslot can be done with the Oct6100ChannelOpen or
Oct6100ChannelModify functions. Calling Oct6100ChannelModify will activate the
echo cancellation process of a channel if ulEchoOperationMode is set to
cOCT6100_ECHO_OP_MODE_NORMAL and the two input ports are assigned to a valid
H.100 TDM timeslot.

This function returns a handle by which the API identifies this channel.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelOpenDef (
tPOCT6100_CHANNEL_OPEN f_pChannelOpen);

UINT32 Oct6100ChannelOpen (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_OPEN f_pChannelOpen);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelOpen Pointer to a tOCT6100_CHANNEL_OPEN structure. The structure’s
elements are defined below. The user allocates this structure.

Revision 3.1 Page 44 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.1.1 tOCT6100_CHANNEL_OPEN Structure

pulChannelHndl handle

The parameter returns the handle for the created channel. This handle is a
unique value that identifies the channel in all future function calls that affects this
channel. The user allocates the memory for this pointer.
Direction: IN/OUT Type: PUINT32
Default: NULL

ulUserChanId 32-bit value

User specified field stored in the API channel structure. This parameter is
returned with the channel handle when an event is detected for the current
channel.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 45 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulEchoOperationMode cOCT6100_ECHO_OP_MODE_NORMAL
cOCT6100_ECHO_OP_MODE_HT_FREEZE
cOCT6100_ECHO_OP_MODE_HT_RESET
cOCT6100_ECHO_OP_MODE_POWER_DOWN
cOCT6100_ECHO_OP_MODE_NO_ECHO
cOCT6100_ECHO_OP_MODE_SPEECH_RECOGNITION

This parameter indicates the echo channel operation mode.
To bypass the echo canceller this parameter must be set to
cOCT6100_ECHO_OP_MODE_POWER_DOWN. Use this mode for BERT
testing or TDM bypass tests. The state of the channel should be set to
cOCT6100_ECHO_OP_MODE_POWER_DOWN and then set to
cOCT6100_ECHO_OP_MODE_NORMAL at the start of each call. This will reset
the AF and NLP context. Resetting the echo-point model at the beginning of the
call will ensure that the OCT6100 converges as quickly as possible on the new
echo-point.
Setting the mode to cOCT6100_ECHO_OP_MODE_HT_FREEZE prevents the
AF from updating its echo-point model. The OCT6100 will keep the last echo-
point model found and apply it to the signal. This mode is typically only used for
validation tests such as G.168 tests and is not used in applications.
Setting the mode to cOCT6100_ECHO_OP_MODE_HT_RESET clears the echo-
point model of the AF making the OCT6100 transparent. This mode is also
typically used for validation tests.
If using the cOCT6100_ECHO_OP_MODE_NO_ECHO operation mode, the
fEnableNlp parameter of the voice quality enhancement configuration structure
must be set to TRUE. This mode allows voice quality features (adaptive noise
reduction, automatic level control, buffer playout, tone detection, etc…) to be
used without performing echo cancellation.
Finally, the cOCT6100_ECHO_OP_MODE_SPEECH_RECOGNITION operation
mode is used when echo cancellation needs to be enabled but not the NLP,
while still allowing voice quality features. For this mode to work correctly, the
fEnableNlp parameter of the voice quality enhancement configuration structure
also needs to be set to TRUE, even though the NLP will not act on the signal.
Also, the ulComfortNoiseMode must not be set to
cOCT6100_COMFORT_NOISE_OFF.
Certain features can only be enabled in certain operation modes. Refer to the
Echo Operation Mode section at the end of this document for a detailed table.
Direction: IN Type: UINT32
Default: cOCT6100_ECHO_OP_MODE_POWER_DOWN

fEnableToneDisabler TRUE / FALSE

If TRUE, echo cancellation and the NLP will be disabled on the channel upon
detection of a 2100 Hz signal with phase reversals, and only the NLP will be
disabled on the channel upon detection of a 2100 Hz signal without phase
reversals. Echo cancellation on the channel will resume upon detection of a
guard-band following the disabling signal.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 46 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fEnableExtToneDetection TRUE / FALSE

Setting this parameter to TRUE enables the extended tone detection mode for
this channel. This mode allows detection of tones on both RIN and SIN, but at
half the channel capacity.
To activate this mode, the API must be configured to support extended tone
detection (done by setting fEnableExtToneDetection (tOCT6100_CHIP_OPEN)
to TRUE). Note that the tone profile used should be one with all tones detected
on the SIN port. Enabling this mode will then also perform tone detection on the
RIN port.
Direction: IN Type: BOOL
Default: FALSE

TdmConfig structure

This structure contains all parameters related to the TDM interface of a channel.
The RIN, ROUT, SIN and SOUT port values are assigned within this structure.
Direction: IN Type: tOCT6100_CHANNEL_OPEN_TDM
Default: see structure description

VqeConfig structure

This structure contains all the voice quality enhancement parameters.
Direction: IN Type: tOCT6100_CHANNEL_OPEN_VQE
Default: see structure description

CodecConfig structure

This structure contains all encoder/decoder related parameters.
Direction: IN Type: tOCT6100_CHANNEL_OPEN_CODEC
Default: see structure description

Revision 3.1 Page 47 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.1.2 tOCT6100_CHANNEL_OPEN_TDM Structure

ulSinPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW

This parameter represents the PCM law of the samples read from the SIN port of
the channel.
Direction: IN Type: UINT32
Default: cOCT6100_PCM_U_LAW

ulSinNumTssts 1, 2

This parameter indicates the number of TSSTs used for the SIN port. See the
TSST Formats section for more information.
Direction: IN Type: UINT32
Default: 1

ulSinTimeslot 0 – 255 for 16 MHz stream frequency
0 – 127 for 8 MHz stream frequency
0 – 63 for 4 MHz stream frequency
0 – 31 for 2 MHz stream frequency
cOCT6100_UNASSIGNED

The TDM timeslot of the channel’s SIN port. Note that allowed values are
affected by the frequency of the clock that controls the ulSinStream.
If the value of ulSinTimeslot is unknown when the channel is opened, this
parameter must be set to cOCT6100_UNASSIGNED. Note that if ulSinTimeslot
is set to cOCT6100_UNASSIGNED, ulSinStream must also be set to
cOCT6100_UNASSIGNED. This parameter can be configured later by a call to
Oct6100ChannelModify.
Direction: IN Type: UINT32
Default: cOCT6100_UNASSIGNED

ulSinStream 0 – 31 for ulMaxTdmStreams of 32
0 – 15 for ulMaxTdmStreams of 16
0 – 7 for ulMaxTdmStreams of 8
0 – 3 for ulMaxTdmStreams of 4
cOCT6100_UNASSIGNED

The TDM stream of the channel’s SIN port. Note that allowed values are affected
by the ulMaxTdmStreams value specified at the Oct6100ChipOpen call.
If the value of ulSinStream is unknown when the channel is opened, this
parameter must be set to cOCT6100_UNASSIGNED. Note that if ulSinStream is
set to cOCT6100_UNASSIGNED, ulSinTimeslot must also be set to
cOCT6100_UNASSIGNED. This parameter can be configured later by a call to
Oct6100ChannelModify.

Direction: IN Type: UINT32
Default: cOCT6100_UNASSIGNED

Revision 3.1 Page 48 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulRinPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW

This parameter represents the PCM law of the samples read from the RIN port of
the channel.
Direction: IN Type: UINT32
Default: cOCT6100_PCM_U_LAW

ulRinNumTssts 1, 2

This parameter indicates the number of TSSTs used for the RIN port. Refer to
the TSST Formats section for more information.
Direction: IN Type: UINT32
Default: 1

ulRinTimeslot see ulSinTimeslot parameter

The TDM timeslot of the channel’s RIN port. Note that allowed values are
affected by the frequency of the clock that controls the ulRinStream.
If the value of ulRinTimeslot is unknown when the channel is opened, this
parameter must be set to cOCT6100_UNASSIGNED. Note that if ulRinTimeslot
is set to cOCT6100_UNASSIGNED, ulRinStream must also be set to
cOCT6100_UNASSIGNED. This parameter can be configured later by a call to
Oct6100ChannelModify.
Direction: IN Type: UINT32
Default: cOCT6100_UNASSIGNED

ulRinStream see ulSinStream parameter

The TDM stream of the channel’s RIN port. Note that allowed values are also
affected by the ulMaxTdmStreams value specified at the Oct6100ChipOpen
call.
If the value of ulRinStream is unknown when the channel is opened, this
parameter must be set to cOCT6100_UNASSIGNED. Note that if ulRinStream is
set to cOCT6100_UNASSIGNED, ulRinTimeslot must also be set to
cOCT6100_UNASSIGNED. This parameter can be configured later by a call to
Oct6100ChannelModify.
Direction: IN Type: UINT32
Default: cOCT6100_UNASSIGNED

ulSoutPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW

This parameter represents the PCM law of the samples driven by the SOUT port
of the channel.
Direction: IN Type: UINT32
Default: cOCT6100_PCM_U_LAW

ulSoutNumTssts 1, 2

This parameter indicates the number of TSSTs used for the SOUT port. Refer to
the TSST Formats section for more information.
Direction: IN Type: UINT32
Default: 1

Revision 3.1 Page 49 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulSoutTimeslot see ulSinTimeslot parameter

The TDM timeslot of the channel’s SOUT port. Note that allowed values are
affected by the frequency of the clock that controls the ulSoutStream.
If the value of ulSoutTimeslot is unknown when the channel is opened, this
parameter must be set to cOCT6100_UNASSIGNED. Note that if
ulSoutTimeslot is set to cOCT6100_UNASSIGNED, ulSoutStream must also
be set to cOCT6100_UNASSIGNED. This parameter can be configured later by
a call to Oct6100ChannelModify.
Direction: IN Type: UINT32
Default: cOCT6100_UNASSIGNED

ulSoutStream see ulSinStream parameter

The TDM stream of the channel’s SOUT port. Note that allowed values are also
affected by the ulMaxTdmStreams value specified at the Oct6100ChipOpen
call.
If the value of ulSoutStream is unknown when the channel is opened, this
parameter must be set to cOCT6100_UNASSIGNED. Note that if ulSoutStream
is set to cOCT6100_UNASSIGNED, ulSoutTimeslot must also be set to
cOCT6100_UNASSIGNED. This parameter can be configured later by a call to
Oct6100ChannelModify.
Direction: IN Type: UINT32
Default: cOCT6100_UNASSIGNED

ulRoutPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW

This parameter represents the PCM law of the samples driven by the ROUT port
of the channel.
Direction: IN Type: UINT32
Default: cOCT6100_PCM_U_LAW

ulRoutNumTssts 1, 2

This parameter indicates the number of TSSTs used for the Rout port. Refer to
the TSST Formats section for more information.
Direction: IN Type: UINT32
Default: 1

ulRoutTimeslot see ulSinTimeslot parameter

The TDM timeslot of the channel’s ROUT port. Note that allowed values are
affected by the frequency of the clock that controls the ulRoutStream.
If the value of ulRoutTimeslot is unknown when the channel is opened, this
parameter must be set to cOCT6100_UNASSIGNED. Note that if
ulRoutTimeslot is set to cOCT6100_UNASSIGNED, ulRoutStream must also
be set to cOCT6100_UNASSIGNED. This parameter can be configured later by
a call to Oct6100ChannelModify.
Direction: IN Type: UINT32
Default: cOCT6100_UNASSIGNED

Revision 3.1 Page 50 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulRoutStream see ulSinStream parameter

The TDM stream of the channel’s ROUT port. Note that allowed values are also
affected by the ulMaxTdmStreams value specified at the Oct6100ChipOpen
call.
If the value of ulRoutStream is unknown when the channel is opened, this
parameter must be set to cOCT6100_UNASSIGNED. Note that if ulRoutStream
is set to cOCT6100_UNASSIGNED, ulRoutTimeslot must also be set to
cOCT6100_UNASSIGNED. This parameter can be configured later by a call to
Oct6100ChannelModify.
Direction: IN Type: UINT32
Default: cOCT6100_UNASSIGNED

Revision 3.1 Page 51 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.1.3 tOCT6100_CHANNEL_OPEN_VQE Structure

fEnableNlp TRUE / FALSE

If TRUE, the NLP will be activated on this channel.
Some features cannot be used when this parameter is set to FALSE. Refer to
Echo operation mode section at the end of this document for more information.
Direction: IN Type: BOOL
Default: TRUE

fEnableTailDisplacement TRUE / FALSE

If TRUE, tail displacement will be supported by this channel. The
ulTailDisplacement parameter specifies the offset of the echo cancellation
window.
Direction: IN Type: BOOL
Default: FALSE

ulTailDisplacement 0 - 896
cOCT6100_AUTO_SELECT_TAIL

This parameter represents the offset of the echo cancellation window, in
milliseconds. Setting this parameter to cOCT6100_AUTO_SELECT_TAIL uses
the tail displacement value specified when the chip was opened. This parameter
is ignored if fEnableTailDisplacement is set to FALSE. Note that the actual tail
displacement value used in the chip is in 16 ms increments. For example, if the
value set in ulTailDisplacement is 511 ms, the actual tail displacement setting
will be 496 ms.
Direction: IN Type: UINT32
Default: cOCT6100_AUTO_SELECT_TAIL

ulTailLength 32 – 128 ms (increment of 4 ms)
cOCT6100_AUTO_SELECT_TAIL

This parameter represents the maximum tail length, in milliseconds, to be used
on the channel. The value is specified in increments of 4 milliseconds. This
value cannot be modified once the channel is opened. Setting this parameter to
cOCT6100_AUTO_SELECT_TAIL uses the maximum tail length supported by
the image.
Direction: IN Type: UINT32
Default: cOCT6100_AUTO_SELECT_TAIL

fSinDcOffsetRemoval TRUE / FALSE

If TRUE, the DC Offset Removal module will remove the DC offset of the SIN
signal.
Direction: IN Type: BOOL
Default: TRUE

Revision 3.1 Page 52 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fRinDcOffsetRemoval TRUE / FALSE

If TRUE, the DC Offset Removal module will remove the DC offset of the RIN
signal.
Direction: IN Type: BOOL
Default: TRUE

fRinLevelControl TRUE / FALSE

If FALSE, the Level Control module will be bypassed. Note that the
fRinAutomaticLevelControl flag must be set to FALSE for the Level Control
module to perform correctly.
Direction: IN Type: BOOL
Default: FALSE

lRinLevelControlGainDb -24 – 24

If fRinLevelControl is set to TRUE, then this parameter is the gain applied to the
RIN signal.
Direction: IN Type: INT32
Default: 0

fSoutLevelControl TRUE / FALSE

If FALSE, the Level Control module will be bypassed. Note that the
fSoutAutomaticLevelControl flag must be set to FALSE for the Level Control
module to perform correctly.
Direction: IN Type: BOOL
Default: FALSE

lSoutLevelControlGainDb -24 – 24

If fSoutLevelControl is set to TRUE, then this parameter is the gain applied to
the SOUT signal.
Direction: IN Type: INT32
Default: 0

fRinAutomaticLevelControl TRUE / FALSE

When set to TRUE, the Automatic Level Control (ALC) module will be activated
on the RIN path. ALC allows the user to specify a target level for the voice of the
talker on the line. The level is set using the
lRinAutomaticLevelControlTargetDb parameter. Note that the
fRinLevelControl and fRinHighLevelCompensation flags must be set to
FALSE for the Automatic Level Control module to perform correctly.
Direction: IN Type: BOOL
Default: FALSE

lRinAutomaticLevelControlTargetDb -40 – 0

If fRinAutomaticLevelControl is set to TRUE, then this parameter is the target
level, in dBm0, to be reached on the RIN signal.
Direction: IN Type: INT32
Default: -20

Revision 3.1 Page 53 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fResetRinAlcOnTones TRUE / FALSE

When set to TRUE, the RIN Automatic Level Control (ALC) module will reset its
gain to 1.0 upon detection of a continuous tone (greater than 250 milliseconds)
on the RIN path.
Direction: IN Type: BOOL
Default: FALSE

fSoutAutomaticLevelControl TRUE / FALSE

When set to TRUE, the Automatic Level Control (ALC) module will be activated
on the SOUT path. ALC allows the user to specify a target level for the voice of
the talker on the line. The level is set using the
lSoutAutomaticLevelControlTargetDb parameter. Note that the
fSoutLevelControl flag must be set to FALSE for the Automatic Level Control
module to perform correctly.
Direction: IN Type: BOOL
Default: FALSE

lSoutAutomaticLevelControlTargetDb -40 – 0

If fSoutAutomaticLevelControl is set to TRUE, then this parameter is the target
level, in dBm0, to be reached on the SOUT signal.
Direction: IN Type: INT32
Default: -20

fResetSoutAlcOnTones TRUE / FALSE

When set to TRUE, the SOUT Automatic Level Control (ALC) module will reset
its gain to 1.0 upon detection of a continuous tone (greater than 250
milliseconds) on the SOUT path.
Direction: IN Type: BOOL
Default: FALSE

ulAlcNoiseBleedOutTime 0 – 63750 ms

Number of milliseconds of continuous noise before the Automatic Level Control
(ALC) algorithm (RIN or SOUT) decides to lower the gain applied on the line
back to unity. If the gain applied on the line was less then unity, no change will
occur.
A value of 0 disables this feature, meaning that the ALC algorithm will never
change its gain on noise. The rate of change of the gain will be around 3-4 dB
per second, which is the same rate of change as for the rest of the ALC
algorithm.
Note that the actual noise bleed out time value used in the chip is in increments
of 250 ms. For example, if the value set in ulAlcNoiseBleedOutTime is 5100
ms, the actual noise bleed out time setting will be 5000 ms or 5 seconds.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 54 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fRinHighLevelCompensation TRUE / FALSE

When set to TRUE, the High Level Compensation (HLC) module will be activated
on the RIN path. HLC reduces the signal level when it approaches saturation, to
avoid the introduction of non-linearities into the echo path. The threshold for
saturation is set using the lRinHighLevelCompensationThresholdDb
parameter. Note that the fRinLevelControl and fRinAutomaticLevelControl
flags must be set to FALSE for the High Level Compensation module to perform
correctly.
Direction: IN Type: BOOL
Default: FALSE

lRinHighLevelCompensationThresholdDb -40 – 0

If fRinHighLevelCompensation is set to TRUE, then this parameter represents,
in dBm0, the automatically adjusted threshold on the RIN signal.
Direction: IN Type: INT32
Default: -10

fSoutAdaptiveNoiseReduction TRUE / FALSE

If FALSE, the Adaptive Noise Reduction module is bypassed. This feature is
available only with OCT61x6 devices. If this feature is enabled in an OCT61x2 or
OCT61x4 device, the function will return the error
cOCT6100_ERR_NOT_SUPPORTED_CHANNEL_ANR.
Direction: IN Type: BOOL
Default: FALSE

fRoutNoiseReduction TRUE / FALSE

If FALSE, the ROUT Noise Reduction module is bypassed. This feature is
available only with OCT61x6 devices. If this feature is enabled in an OCT61x2 or
OCT61x4 device, the function will return the error
cOCT6100_ERR_NOT_SUPPORTED_CHANNEL_ROUT_NR.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 55 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulComfortNoiseMode cOCT6100_COMFORT_NOISE_NORMAL
cOCT6100_COMFORT_NOISE_FAST_LATCH
cOCT6100_COMFORT_NOISE_EXTENDED
cOCT6100_COMFORT_NOISE_OFF

This parameter represents the comfort noise applied to the channel. Here is a
brief description of each mode.
cOCT6100_COMFORT_NOISE_NORMAL
This mode gives optimal subjective results. It may not pass certain objective
tests.
cOCT6100_COMFORT_NOISE_FAST_LATCH
This mode is similar to the normal mode but delivers rapid latching of background
noise at the beginning of a call. Certain wireless carriers prefer this mode of
operation. It may not pass certain objective tests.
cOCT6100_COMFORT_NOISE_EXTENDED
This mode is fully G.168 compliant. It delivers good subjective quality.
cOCT6100_COMFORT_NOISE_OFF
This mode turns off the comfort noise generation. This may be required in certain
machine-connected applications such as speech recognition or power
measurements.
Direction: IN Type: UINT32
Default: cOCT6100_COMFORT_NOISE_NORMAL

fDtmfToneRemoval TRUE / FALSE

If TRUE, the OCT6100 will remove any DTMF tones detected on the SIN port.
This feature is available only with OCT61x6 devices. If this feature is enabled in
an OCT61x2 or OCT61x4 device, the function will return the error
cOCT6100_ERR_NOT_SUPPORTED_CHANNEL_TONE_REMOVAL.
Direction: IN Type: BOOL
Default: FALSE

fAcousticEcho TRUE / FALSE

If TRUE, acoustic echo cancellation will be performed on the channel.
Direction: IN Type: BOOL
Default: FALSE

fSoutNoiseBleaching TRUE / FALSE

If TRUE, the SOUT noise bleaching module is enabled. This parameter activates
a noise reduction algorithm that completely removes all background noise
present while silence is detected. The target application of this algorithm is for
pre-processing of the signal before mixing with another signal (such as music).
Note that using this algorithm alone (without post-mixing) will not provide good
subjective quality because it removes all ambient sound during silence periods.
This feature is only available with OCT61x6 devices. If this feature is enabled in
an OCT61x2 or OCT61x4 device, the function will return the error
cOCT6100_ERR_NOT_SUPPORTED_CHANNEL_NOISE_BLEACHING.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 56 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fSoutConferencingNoiseReduction TRUE / FALSE

If FALSE, the conferencing noise reduction module is bypassed. This feature is
available only with OCT61x6 devices. If this feature is enabled in an OCT61x2 or
OCT61x4 device, the function will return the error
cOCT6100_ERR_NOT_SUPPORTED_CHANNEL_CNR.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 57 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulNonLinearityBehaviorA 0 - 13

This parameter adjusts the behavior of the echo canceller when non-linear white
noise affects the echo-cancelled path.
Here is a table describing the behavior of the algorithm based on the selected
value.

Parameter value Risk of double talk
clipping

Risk of residual echo

0 Decreased Increased
 13 Increased Decreased

Direction: IN Type: UINT32
Default: 1

ulNonLinearityBehaviorB 0 - 8

This parameter adjusts the behavior of the echo canceller when spectrally rich
noise affects the echo-cancelled path.
Here is a table describing the behavior of the algorithm based on the selected
value.

Parameter value Risk of double talk
clipping

Risk of residual echo

0 Decreased Increased
8 Increased Decreased

Direction: IN Type: UINT32
Default: 0

ulDoubleTalkBehavior cOCT6100_DOUBLE_TALK_BEH_NORMAL
cOCT6100_DOUBLE_TALK_BEH_LESS_AGGRESSIVE

This parameter configures the behavior of the algorithm on double talk. Setting
this parameter to cOCT6100_DOUBLE_TALK_BEH_NORMAL will give the best
optimal subjective results. When setting this parameter to
cOCT6100_DOUBLE_TALK_BEH_LESS_AGGRESSIVE, the NLP will be less
aggressive, resulting in slightly improved double talk behavior, but may leave
residual echo.
The parameter cOCT6100_DOUBLE_TALK_BEH_LESS_AGGRESSIVE should
only be used in network situations where the echo response is known to be very
linear.
Direction: IN Type: UINT32
Default: cOCT6100_DOUBLE_TALK_BEH_NORMAL

lDefaultErlDb 0, -3, -6, -9 or -12 dB

The default ERL that is assumed by the NLP when not converged, e.g. at the
beginning of a call.
Direction: IN Type: INT32
Default: -6 dB

Revision 3.1 Page 58 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

lAecDefaultErlDb 0, -3 or -6 dB

The acoustic echo cancellation default ERL that is assumed.
Direction: IN Type: INT32
Default: 0 dB

ulAecTailLength 128, 256, 512 or 1024 ms

This parameter represents the maximum tail length, in milliseconds, to be used
on the channel, when performing acoustic echo cancellation. This value must be
greater than the configured channel tail length (ulTailLength) plus the requested
tail displacement (ulTailDisplacement).
Direction: IN Type: UINT32
Default: 128 ms

ulSoutAutomaticListenerEnhancementGainDb 0 - 30

The SOUT automatic listener enhancement gain that will be applied. This feature
adjusts the level of the Sin Path to compensate for loud noise present in the
environment of the listener. This value determines by how many dBs the user
wants the SIN voice to be above the RIN noise. Setting this parameter to 0 will
disable this feature.
Direction: IN Type: UINT32
Default: 0

fSoutNaturalListenerEnhancement TRUE / FALSE

If TRUE, the SOUT natural listener enhancement module will be activated. The
natural listener enhancement algorithm will adjust the voice level of the SOUT
talker to the RIN voice level or to the value above the noise set by
ulSoutAutomaticListenerEnhancementGainDb. The algorithm will use as a target
the highest of the two.
Direction: IN Type: BOOL
Default: FALSE

ulSoutNaturalListenerEnhancementGainDb 0 - 30

The SOUT natural listener enhancement gain that will be applied. This value
determines by how many dBs the user wants the SIN voice to be above the RIN
background noise.
Direction: IN Type: UINT32
Default: 0

lAnrSnrEnhancementDb -9, -12, -15, -18, -21, -24, -27 or -30 dB

If the SOUT adaptive noise reduction module is activated, this parameter
represents the attenuation that will be applied to the noise signal.
Direction: IN Type: INT32
Default: -18 dB

Revision 3.1 Page 59 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulAnrVoiceNoiseSegregation 0 - 15

This parameter affects the behavior of the SOUT adaptive noise reduction
algorithm. It is used to adjust the algorithm that differentiates between noise and
voice. This will determine which part of the signal is reduced.
Here is a table describing the behavior of the algorithm based on the selected
values.

Parameter value Aggressiveness in considering what is a noise signal

0 Least – Only very pure background noise will be considered
as background noise

6 Default - For optimal operation
15 Most – All low energy voice will be considered as

background noise

Direction: IN Type: UINT32
Default: 6

ulToneDisablerVqeActivationDelay 300, 300 + N*512, 16172 ms
(increments of 512 ms)

The following feature only applies if the tone disabler is activated. After detection
of a 2100 Hz tone or 2100 Hz tone with phase reversal, the tone disabler
disables VQE features. After the data transmission is complete, this parameter
specifies the required silence period before the re-activation of the VQE features.
The value is specified in increments of 512 milliseconds.
Direction: IN Type: UINT32
Default: 300

fEnableMusicProtection TRUE / FALSE

If TRUE, the Octasic Music Protection module will be activated.
Direction: IN Type: BOOL
Default: FALSE

fIdleCodeDetection TRUE / FALSE

If TRUE, the idle code detection module will be activated. The idle code detector
will reinitialize the state of the adaptive filter between calls to achieve faster
convergence at the beginning of each call. The idle code detector module will
also reset the context of the following modules:

- Automatic Level Control
- Automatic Listener Enhancement
- High Level Compensation
- Natural Listener Enhancement

The idle code detector triggers when a low energy signal or constant DC offset is
detected on RIN and SIN ports for 1 second.
Direction: IN Type: BOOL
Default: TRUE

Revision 3.1 Page 60 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.1.4 tOCT6100_CHANNEL_OPEN_CODEC Structure

ulAdpcmNibblePosition cOCT6100_ADPCM_IN_LOW_BITS
cOCT6100_ADPCM_IN_HIGH_BITS

This is the position of the ADPCM bits within the H.100 TDM timeslot.
Direction: IN Type: UINT32
Default: cOCT6100_ADPCM_IN_LOW_BITS

ulEncoderPort cOCT6100_CHANNEL_PORT_ROUT
cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_NO_ENCODING

This parameter is the channel port used by the encoder.
If set to cOCT6100_NO_ENCODING, no encoding can take place on this
channel.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_SOUT

ulEncodingRate cOCT6100_G711_64KBPS
cOCT6100_G726_40KBPS
cOCT6100_G726_32KBPS
cOCT6100_G726_24KBPS
cOCT6100_G726_16KBPS
cOCT6100_G727_40KBPS_4_1
cOCT6100_G727_40KBPS_3_2
cOCT6100_G727_40KBPS_2_3
cOCT6100_G727_32KBPS_4_0
cOCT6100_G727_32KBPS_3_1
cOCT6100_G727_32KBPS_2_2
cOCT6100_G727_24KBPS_3_0
cOCT6100_G727_24KBPS_2_1
cOCT6100_G727_16KBPS_2_0

This parameter represents the rate of the encoder. G.727 defines contain a
suffix: The first number is the number of core bits, and the second is the number
of enhanced bits.
The API ignores this parameter if ulEncoderPort is set to
cOCT6100_NO_ENCODING.
Direction: IN Type: UINT32
Default: cOCT6100_G711_64KBPS

ulDecoderPort cOCT6100_CHANNEL_PORT_RIN
cOCT6100_CHANNEL_PORT_SIN
cOCT6100_NO_DECODING

This parameter is the channel port used by the Decoder. The Decoder reads
samples coming from the TDM interface. The samples read are decoded and
then fed to the Echo Canceller module.
If set to cOCT6100_NO_DECODING, no decoding can take place on this
channel.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_RIN

Revision 3.1 Page 61 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulDecodingRate cOCT6100_G711_64KBPS
cOCT6100_G726_40KBPS
cOCT6100_G726_32KBPS
cOCT6100_G726_24KBPS
cOCT6100_G726_16KBPS
cOCT6100_G727_2C_ENCODED
cOCT6100_G727_3C_ENCODED
cOCT6100_G727_4C_ENCODED
cOCT6100_G726_ENCODED
cOCT6100_G711_G726_ENCODED
cOCT6100_G711_G727_2C_ENCODED
cOCT6100_G711_G727_3C_ENCODED
cOCT6100_G711_G727_4C_ENCODED

This parameter represents the rate of the decoder. G.727 defines contain a
suffix: The first number is the number of core bits, and the second is the number
of enhanced bits
If the decoding rate is a combination of G.711 with either G.726 or G.727, the
number of TSSTs assigned to the Decoder input port must be set to 2.
The API ignores this parameter if ulDecoderPort is set to
cOCT6100_NO_DECODING.
Direction: IN Type: UINT32
Default: cOCT6100_G711_64KBPS

fEnableSilenceSuppression TRUE / FALSE

Silence suppression can be enabled only if ulEncoderPort is set to
cOCT6100_CHANNEL_PORT_SOUT. Silence suppression is only active when
the ulEchoOperationMode parameter is not set to
cOCT6100_ECHO_OP_MODE_POWER_DOWN.
Silence suppression requires a valid phasing TSST.
The API ignores this parameter if ulEncoderPort is set to
cOCT6100_NO_ENCODING.
Direction: IN Type: BOOL
Default: FALSE

ulPhasingType cOCT6100_SINGLE_PHASING
cOCT6100_DUAL_PHASING
cOCT6100_NO_PHASING

It indicates how ulPhase is interpreted. See ulPhase description for more
information. Setting this parameter to cOCT6100_NO_PHASING specifies that
no phasing TSST is associated with this channel.
The API ignores this parameter if ulEncoderPort is set to
cOCT6100_NO_ENCODING.
Note that silence suppression cannot be enabled (fEnableSilenceSuppression
set to TRUE) if this parameter is set to cOCT6100_NO_PHASING. The
OCT6100 device requires a valid phasing TSST to output the silence
suppression information on the H.100 bus.
Direction: IN Type: UINT32
Default: cOCT6100_NO_PHASING

Revision 3.1 Page 62 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulPhase 1 – ulPhasing_length –1

If ulPhasingType specifies cOCT6100_SINGLE_PHASING or
cOCT6100_DUAL_PHASING, then the specific phase value used to identify the
beginning of a packetization boundary must be specified. The ulPhase indicates
the frame in which the external agent SAR is fetching the first sample used to
assemble the next packet.
When cOCT6100_DUAL_PHASING is specified, the ulPhase indicates the
beginning of an ADPCM packet boundary and must be even. A PCM packet
boundary must also exist at (ulPhase + (ulPhasingLength/2)) MOD
ulPhasingLength.
ulPhasingLength is specified when a phasing TSST is opened by the
Oct6100PhasingTsstOpen function.
If ulPhasingType is set to cOCT6100_NO_PHASING, this parameter is ignored.
The API ignores this parameter if ulEncoderPort is set to
cOCT6100_NO_ENCODING.
Direction: IN Type: UINT32
Default: 1

ulPhasingTsstHndl phasing TSST handle

If silence suppression is enabled, a valid phasing TSST handle must be
specified. A phasing TSST handle is returned by the Oct6100PhasingTsstOpen
function.
If ulEncoderPort is set to cOCT6100_NO_ENCODING or ulPhasingType is set
to cOCT6100_NO_PHASING, this parameter is ignored.

Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 63 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.2 Oct6100ChannelClose

This function closes a channel.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelCloseDef (
tPOCT6100_CHANNEL_CLOSE f_pChannelClose);

UINT32 Oct6100ChannelClose (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_CLOSE f_pChannelClose);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelClose Pointer to a tOCT6100_CHANNEL_CLOSE structure. The
structure’s elements are defined below. The user allocates this
structure.

5.2.2.1 tOCT6100_CHANNEL_CLOSE Structure

ulChannelHndl handle

This is the handle of the channel to be closed. This value was returned by a call
to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 64 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.3 Oct6100ChannelModify

This function allows the user to dynamically change some of the channel configuration
parameters.

In addition to the main channel state, parameters are separated into three categories:
TSST, CODEC and VQE.

Each categories is a member of the modify structure and has a modified flag within that
main structure (except for the main state). The API will process the changes within a
category only if the modified flag is set to TRUE.

Setting a parameter to cOCT6100_KEEP_PREVIOUS_SETTING leaves its value
unchanged. Leaving all default values unchanged (except ulChannelHndl) will result in
no modifications being performed on the channel.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelModifyDef (
 tPOCT6100_CHANNEL_MODIFY f_pChannelModify);

UINT32 Oct6100ChannelModify (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_MODIFY f_pChannelModify);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelModify Pointer to a tOCT6100_CHANNEL_MODIFY structure. The
structure’s elements are defined below. The user allocates
this structure.

5.2.3.1 tOCT6100_CHANNEL_MODIFY Structure

ulChannelHndl handle

The handle of the channel on which parameters are to be changed. This value is
returned by a call to Oct6100ChannelOpen. This parameter will be ignored if
fApplyToAllChannels is set to TRUE.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulUserChanId 32-bit value
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 65 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulEchoOperationMode cOCT6100_ECHO_OP_MODE_NORMAL
cOCT6100_ECHO_OP_MODE_HT_FREEZE
cOCT6100_ECHO_OP_MODE_HT_RESET
cOCT6100_ECHO_OP_MODE_POWER_DOWN
cOCT6100_ECHO_OP_MODE_NO_ECHO
cOCT6100_ECHO_OP_MODE_SPEECH_RECOGNITION
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fEnableToneDisabler TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fApplyToAllChannels TRUE / FALSE

If TRUE, the changes specified by this function call will be applied to all channels
that are currently open. Note that the API semaphore will be held in locked state
during the whole time it takes to modify all channels.
Direction: IN Type: BOOL
Default: FALSE

fDisableToneDetection TRUE / FALSE

If TRUE, tone detection will be disabled, for all tones currently detected on the
channel.
Direction: IN Type: BOOL
Default: FALSE

fStopBufferPlayout TRUE / FALSE

If TRUE, buffer playout will be stopped as soon as possible, without necessarily
reaching the end of the buffer. This will also clear the buffer playout list.
Direction: IN Type: BOOL
Default: FALSE

fRemoveConfBridgeParticipant TRUE / FALSE

If TRUE, the channel will be removed from any conference bridge that it is on.
The API will not return an error if the channel is not a participant on a conference
bridge.
Direction: IN Type: BOOL
Default: FALSE

fRemoveBroadcastTssts TRUE / FALSE

If TRUE, all broadcast timeslots associated to the channel will be removed. The
API will not return an error if no broadcast timeslots are associated to the
channel.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 66 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fTdmConfigModified TRUE / FALSE

This flag indicates modifications are requested in the TdmConfig structure.
Setting this flag to FALSE will cause the API to ignore any modifications
requested in the TdmConfig structure.
Direction: IN Type: BOOL
Default: FALSE

fVqeConfigModified TRUE / FALSE

This flag indicates modifications are requested in the VqeConfig structure.
Setting this flag to FALSE will cause the API to ignore any modifications
requested in the VqeConfig structure.
Direction: IN Type: BOOL
Default: FALSE

fCodecConfigModified TRUE / FALSE

This flag indicates modifications are requested in the CodecConfig structure.
Setting this flag to FALSE will cause the API to ignore any modifications
requested in the CodecConfig structure.
Direction: IN Type: BOOL
Default: FALSE

TdmConfig structure

This structure contains all parameters related to the TDM interface of a channel.
The RIN, ROUT, SIN and SOUT port values are assigned within this structure.
Direction: IN Type: tOCT6100_CHANNEL_MODIFY_TDM
Default: see structure description

VqeConfig structure

This structure contains all the voice quality enhancement parameters.
Direction: IN Type: tOCT6100_CHANNEL_MODIFY_VQE
Default: see structure description

CodecConfig structure

This structure contains all encoder/decoder related parameters.
Direction: IN Type: tOCT6100_CHANNEL_MODIFY_CODEC
Default: see structure description

Revision 3.1 Page 67 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.3.2 tOCT6100_CHANNEL_MODIFY_TDM Structure

ulSinPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSinNumTssts 1, 2
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSinTimeslot 0 – 255 for 16 MHz stream frequency
0 – 127 for 8 MHz stream frequency
0 – 63 for 4 MHz stream frequency
0 – 31 for 2 MHz stream frequency
cOCT6100_UNASSIGNED
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
If fApplyToAllChannels is set to TRUE, this parameter must be either
cOCT6100_UNASSIGNED or cOCT6100_KEEP_PREVIOUS_SETTING.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSinStream 0 – 31 for ulMaxTdmStreams of 32
0 – 15 for ulMaxTdmStreams of 16
0 – 7 for ulMaxTdmStreams of 8
0 – 3 for ulMaxTdmStreams of 4
cOCT6100_UNASSIGNED
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
If fApplyToAllChannels is set to TRUE, this parameter must be either
cOCT6100_UNASSIGNED or cOCT6100_KEEP_PREVIOUS_SETTING.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulRinPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 68 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulRinNumTssts 1, 2
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulRinTimeslot see ulSinTimeslot parameter

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulRinStream see ulSinStream parameter

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSoutPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSoutNumTssts 1, 2
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSoutTimeslot see ulSinTimeslot parameter

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSoutStream see ulSinStream parameter

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulRoutPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 69 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulRoutNumTssts 1, 2
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulRoutTimeslot see ulSinTimeslot parameter

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulRoutStream see ulSinStream parameter

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 70 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.3.3 tOCT6100_CHANNEL_MODIFY_VQE Structure

fEnableNlp TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fEnableTailDisplacement TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulTailDisplacement 0 – 896
cOCT6100_KEEP_PREVIOUS_SETTING
cOCT6100_AUTO_SELECT_TAIL

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fSinDcOffsetRemoval TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fRinDcOffsetRemoval TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fRinLevelControl TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

lRinLevelControlGainDb -24 – 24
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 71 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fSoutLevelControl TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

lSoutLevelControlGainDb -24 – 24
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fRinAutomaticLevelControl TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

lRinAutomaticLevelControlTargetDb -40 – 0
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: INT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fResetRinAlcOnTones TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fSoutAutomaticLevelControl TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

lSoutAutomaticLevelControlTargetDb -40 – 0
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: INT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fResetSoutAlcOnTones TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 72 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulAlcNoiseBleedOutTime 0 – 63750 ms
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fRinHighLevelCompensation TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

lRinHighLevelCompensationThresholdDb -40 – 0
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: INT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fSoutAdaptiveNoiseReduction TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fRoutNoiseReduction TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulComfortNoiseMode cOCT6100_COMFORT_NOISE_NORMAL
cOCT6100_COMFORT_NOISE_FAST_LATCH
cOCT6100_COMFORT_NOISE_EXTENDED
cOCT6100_COMFORT_NOISE_OFF
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fDtmfToneRemoval TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 73 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fAcousticEcho TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fSoutConferencingNoiseReduction TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fSoutConferencingNoiseReduction TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 74 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulNonLinearityBehaviorA 0 - 13
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulNonLinearityBehaviorB 0 – 8
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulDoubleTalkBehavior cOCT6100_DOUBLE_TALK_BEH_NORMAL
cOCT6100_DOUBLE_TALK_BEH_LESS_AGGRESSIVE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

lDefaultErlDb 0, -3, -6, -9 or -12 dB
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: INT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

lAecDefaultErlDb 0, -3 or -6 dB
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: INT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulAecTailLength 128, 256, 512 or 1024 ms
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSoutAutomaticListenerEnhancementGainDb 0 – 30
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 75 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fSoutNaturalListenerEnhancement TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulSoutNaturalListenerEnhancementGainDb 0 - 30

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: 0

lAnrSnrEnhancementDb -9, -12, -15, -18, -21, -24, -27 or -30 dB
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: INT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulAnrVoiceNoiseSegregation 0 – 15
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulToneDisablerVqeActivationDelay 300, 300 + N*512, 16172 ms
(increment of 512 ms)
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fEnableMusicProtection TRUE / FALSE

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fIdleCodeDetection TRUE / FALSE

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 76 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.3.4 tOCT6100_CHANNEL_MODIFY_CODEC Structure

ulEncoderPort cOCT6100_CHANNEL_PORT_ROUT
cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_NO_ENCODING
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulEncodingRate cOCT6100_G711_64KBPS
cOCT6100_G726_40KBPS
cOCT6100_G726_32KBPS
cOCT6100_G726_24KBPS
cOCT6100_G726_16KBPS
cOCT6100_G727_40KBPS_4_1
cOCT6100_G727_40KBPS_3_2
cOCT6100_G727_40KBPS_2_3
cOCT6100_G727_32KBPS_4_0
cOCT6100_G727_32KBPS_3_1
cOCT6100_G727_32KBPS_2_2
cOCT6100_G727_24KBPS_3_0
cOCT6100_G727_24KBPS_2_1
cOCT6100_G727_16KBPS_2_0
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulDecoderPort cOCT6100_CHANNEL_PORT_RIN
cOCT6100_CHANNEL_PORT_SIN
cOCT6100_NO_DECODING
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 77 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulDecodingRate cOCT6100_G711_64KBPS
cOCT6100_G726_40KBPS
cOCT6100_G726_32KBPS
cOCT6100_G726_24KBPS
cOCT6100_G726_16KBPS
cOCT6100_G727_2C_ENCODED
cOCT6100_G727_3C_ENCODED
cOCT6100_G727_4C_ENCODED
cOCT6100_G726_ENCODED
cOCT6100_G711_G726_ENCODED
cOCT6100_G711_G727_2C_ENCODED
cOCT6100_G711_G727_3C_ENCODED
cOCT6100_G711_G727_4C_ENCODED
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

fEnableSilenceSuppression TRUE / FALSE
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: BOOL
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulPhasingType cOCT6100_SINGLE_PHASING
cOCT6100_DUAL_PHASING
cOCT6100_NO_PHASING
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulPhase 0 – ulPhasing_length –1
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

ulPhasingTsstHndl phasing TSST handle
cOCT6100_KEEP_PREVIOUS_SETTING

See tOCT6100_CHANNEL_OPEN Structure.
Direction: IN Type: UINT32
Default: cOCT6100_KEEP_PREVIOUS_SETTING

Revision 3.1 Page 78 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.4 Oct6100ChannelCreateBiDir

This function creates a bi-directional channel. A bi-directional channel is composed of two
echo canceller channels where the SOUT port of each channel is connected to the RIN
port of the other channel, as illustrated in the following drawing:

Sin

Rin

Sout

Rout

Rin

Sin

Rout

Sout

Half-echo
Channel

Bi-directional echo channel

Half-echo
Channel

A bi-directional channel requires that only 4 ports (SIN * 2 and ROUT * 2) be connected
to the TDM bus to perform echo cancellation on both echo cancellation channels.

To do this, the API binds two channels into a bi-directional channel. The channels must
be properly configured for the bind operation to succeed. A channel is deemed properly
configured if it supports the following configuration:

- The timeslot and stream values for the SOUT and RIN port must be set to
cOCT6100_UNASSIGNED

- No PCM law translation

- No ADPCM compression or decompression

- No silence suppression

- No conferencing

After the user binds the channels together using this function, each channel can still be
modified independently using the Oct6100ChannelModify function.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelCreateBiDirDef (
tPOCT6100_CHANNEL_CREATE_BIDIR f_pChannelCreateBiDir);

UINT32 Oct6100ChannelCreateBiDir (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_CREATE_BIDIR f_pChannelCreateBiDir);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelCreateBiDir Pointer to a tOCT6100_CHANNEL_CREATE_BIDIR structure.
The structure’s elements are defined below. The user allocates
this structure.

Revision 3.1 Page 79 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.4.1 tOCT6100_CHANNEL_CREATE_BIDIR Structure

pulBiDirChannelHndl handle

This parameter returns the handle for the newly created bi-directional channel.
This handle is a unique value that identifies the bi-directional channel in all future
function calls that affects this bi-directional channel. The user allocates the
memory for this pointer.
Direction: IN/OUT Type: PUINT32
Default: NULL

ulFirstChannelHndl handle

This is the handle of one of the two channels used to create the bi-directional
channel. This value was returned by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulSecondChannelHndl handle

This is the handle of the second channel used to create the bi-directional
channel. This value was returned by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 80 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.5 Oct6100ChannelDestroyBiDir

This function destroys a bi-directional channel.

Calling this function does not close any resource. The two channels that were used to
create the channel remain open but the API severs the link between them.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelDestroyBiDirDef (
tPOCT6100_CHANNEL_DESTROY_BIDIR f_pChannelDestroyBiDir
);

UINT32 Oct6100ChannelDestroyBiDir (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_DESTROY_BIDIR f_pChannelDestroyBiDir
);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelDestroyBiDir Pointer to a tOCT6100_CHANNEL_DESTROY_BIDIR structure.
The structure’s elements are defined below. The user allocates
this structure.

5.2.5.1 tOCT6100_CHANNEL_DESTROY_BIDIR Structure

ulBiDirChannelHndl handle

This is the handle of the bi-directional channel for the API to destroy. This value
was returned by a call to Oct6100ChannelCreateBiDir.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 81 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.6 Oct6100ChannelBroadcastTsstAdd

This function is used to broadcast an output to multiple timeslots. It assigns a broadcast
H.100 timeslot to one of the output port (ROUT or SOUT) of the echo channel specified
by ulChannelHndl. TSSTs assigned to a port with this function cannot be modified by a
call to Oct6100ChannelModify.

To remove a broadcast TSST from a port, the user must call the function
Oct6100ChannelBroadcastTsstRemove.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelBroadcastTsstAddDef (
 tPOCT6100_CHANNEL_BROADCAST_TSST_ADD

 f_pChannelBroadcastTsstAdd);

UINT32 Oct6100ChannelAssignTsst(
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_BROADCAST_TSST_ADD

 f_pChannelBroadcastTsstAdd);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelBroadcastTsstAdd Pointer to a
tOCT6100_CHANNEL_BROADCAST_TSST_ADD structure.
The structure’s elements are defined below. The user allocates
this structure.

5.2.6.1 tOCT6100_CHANNEL_BROADCAST_TSST_ADD Structure

ulChannelHndl handle

Channel handle. This handle is returned by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulPort cOCT6100_CHANNEL_PORT_ROUT
cOCT6100_CHANNEL_PORT_SOUT

This parameter represents the port on which the broadcast TSST will be
attached.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_PORT

Revision 3.1 Page 82 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulTimeslot 0 – 255 for 16 MHz stream frequency
0 – 127 for 8 MHz stream frequency
0 – 63 for 4 MHz stream frequency
0 – 31 for 2 MHz stream frequency

This is the H.100 timeslot of the channel’s selected port. Note that allowed values
are affected by the frequency of the clock that controls the ulStream.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TIMESLOT

ulStream 0 – 31 for ulMaxTdmStreams of 32
0 – 15 for ulMaxTdmStreams of 16
0 – 7 for ulMaxTdmStreams of 8
0 – 3 for ulMaxTdmStreams of 4

This is the TDM stream of the channel’s selected port. Note that allowed values
are also affected by the ulMaxTdmStreams value specified at the
Oct6100ChipOpen call.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_STREAM

Revision 3.1 Page 83 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.7 Oct6100ChannelBroadcastTsstRemove

This function removes the bound created between an H.100 timeslot and one of the ports
(ROUT or SOUT) of the echo channel specified by ulChannelHndl.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelBroadcastTsstRemoveDef (
 tPOCT6100_CHANNEL_BROADCAST_TSST_REMOVE

 f_pChanBroadcastTsstRemove);

UINT32 Oct6100ChannelReleaseTsst (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_BROADCAST_TSST_REMOVE

 f_pChanBroadcastTsstRemove);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChanBroadcastTsstRemove Pointer to a
tOCT6100_CHANNEL_BROADCAST_TSST_REMOVE
structure. The structure’s elements are defined below. The user
allocates this structure.

5.2.7.1 tOCT6100_CHANNEL_BROADCAST_TSST_REMOVE Structure

ulChannelHndl handle

Channel’s handle. This handle is returned by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulPort cOCT6100_CHANNEL_PORT_ROUT
cOCT6100_CHANNEL_PORT_SOUT

This parameter represents the port on which the broadcast TSST is attached.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_PORT

ulTimeslot 0 – 255 for 16 MHz stream frequency
0 – 127 for 8 MHz stream frequency
0 – 63 for 4 MHz stream frequency
0 – 31 for 2 MHz stream frequency

This is the H.100 timeslot of the channel’s selected port. Note that allowed values
are affected by the frequency of the clock that controls the ulStream.
This parameter is ignored if fRemoveAll is set to TRUE.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TIMESLOT

Revision 3.1 Page 84 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulStream 0 – 31 for ulMaxTdmStreams of 32
0 – 15 for ulMaxTdmStreams of 16
0 – 7 for ulMaxTdmStreams of 8
0 – 3 for ulMaxTdmStreams of 4

This is the TDM stream of the channel’s selected port. Note that allowed values
are also affected by the ulMaxTdmStreams value specified at the
Oct6100ChipOpen call.
This parameter is ignored if fRemoveAll is set to TRUE.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_STREAM

fRemoveAll TRUE/FALSE

If TRUE, all broadcast TSSTs present on the selected output port of the channel
will be removed.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 85 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.8 Oct6100ChannelMute

This function mutes the selected ports of the echo channel specified by ulChannelHndl.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelMuteDef (
 tPOCT6100_CHANNEL_MUTE f_pChannelMute);

UINT32 Oct6100ChannelMute (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_MUTE f_pChannelMute);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelMute Pointer to a tOCT6100_CHANNEL_MUTE structure. The
structure’s elements are defined below. The user allocates this
structure.

5.2.8.1 tOCT6100_CHANNEL_MUTE Structure

ulChannelHndl handle

Channel’s handle. This handle is returned by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulPortMask cOCT6100_CHANNEL_MUTE_PORT_RIN
cOCT6100_CHANNEL_MUTE_PORT_ROUT
cOCT6100_CHANNEL_MUTE_PORT_SIN
cOCT6100_CHANNEL_MUTE_PORT_SIN_WITH
_FEATURES
cOCT6100_CHANNEL_MUTE_PORT_SOUT
cOCT6100_CHANNEL_MUTE_NONE

This parameter represents the port mask on which muting should be applied.
Many ports can be muted by ORing the required defines together.
If this function is called more than once, the value for ulPortMask is not
replaced, but accumulated. For example, if RIN is masked on the first function
call, and ROUT and SOUT are masked on the second function call, then RIN,
ROUT and SOUT will now be masked. To remove a mask, the un-mute function
must be used.
The cOCT6100_CHANNEL_MUTE_PORT_SIN_WITH_FEATURES port mask
will mute the signal on the SIN port, but will allow features such as buffer playout
and tone detection on that port to continue working.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_MUTE_NONE

Revision 3.1 Page 86 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.9 Oct6100ChannelUnMute

This function un-mutes the selected ports of the echo channel specified by
ulChannelHndl.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelUnMuteDef (
 tPOCT6100_CHANNEL_UNMUTE f_pChannelUnMute);

UINT32 Oct6100ChannelUnMute (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_UNMUTE f_pChannelUnMute);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelUnMute Pointer to a tOCT6100_CHANNEL_UNMUTE structure. The
structure’s elements are defined below. The user allocates this
structure.

5.2.9.1 tOCT6100_CHANNEL_UNMUTE Structure

ulChannelHndl handle

Channel’s handle. This handle is returned by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulPortMask cOCT6100_CHANNEL_MUTE_PORT_RIN
cOCT6100_CHANNEL_MUTE_PORT_ROUT
cOCT6100_CHANNEL_MUTE_PORT_SIN
cOCT6100_CHANNEL_MUTE_PORT_SIN_WITH
_FEATURES
cOCT6100_CHANNEL_MUTE_PORT_SOUT
cOCT6100_CHANNEL_MUTE_PORT_NONE

This parameter represents the port mask on which un-muting should be applied.
Many ports can be unmuted by ORing the required defines together.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_MUTE_NONE

Revision 3.1 Page 87 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.10 Oct6100ChannelGetStats

This function retrieves the channel-related statistics.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ChannelGetStatsDef (
tPOCT6100_CHANNEL_STATS f_pChannelStats);

UINT32 Oct6100ChannelGetStats (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CHANNEL_STATS f_pChannelStats);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pChannelStats Pointer to a tOCT6100_CHANNEL_STATS structure. The structure’s
elements are defined below. The user allocates this structure.

5.2.10.1 tOCT6100_CHANNEL_STATS Structure

ulChannelHndl handle

The channel’s handle for which the statistics are requested. This value was
returned by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

fResetStats TRUE / FALSE

If TRUE, the API resets the following channel statistics: lMaxERL, lMaxERLE and
ulMaxEchoDelay.
Direction: IN Type: BOOL
Default: FALSE

ulUserChanId See tOCT6100_CHANNEL_OPEN structure.

ulEchoOperationMode See tOCT6100_CHANNEL_OPEN structure.

fEnableToneDisabler See tOCT6100_CHANNEL_OPEN structure.

ulMutePortsMask cOCT6100_CHANNEL_MUTE_PORT_RIN
cOCT6100_CHANNEL_MUTE_PORT_ROUT
cOCT6100_CHANNEL_MUTE_PORT_SIN
cOCT6100_CHANNEL_MUTE_PORT_SIN_WITH
_FEATURES
cOCT6100_CHANNEL_MUTE_PORT_SOUT
cOCT6100_CHANNEL_MUTE_NONE

Ports that are currently muted, resulting from a call to Oct6100ChannelMute.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_MUTE_NONE

fEnableExtToneDetection See tOCT6100_CHANNEL_OPEN structure.

Revision 3.1 Page 88 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

lCurrentERL -127 – 127 dB

Current Echo Return Loss.
ERL defines the echo return loss estimated by the echo canceller. This value
becomes valid as the Adaptive filter is converged. In technical terms, it is the
decrease in power of the receive signal as it passes through the local path hybrid
and returns to the echo canceller on the send path through Sin. This parameter is
measured over a certain period of time
The API returns cOCT6100_INVALID_SIGNED_STAT if the channel is not
converged.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

lCurrentERLE -127 – 127 dB

Current Echo Return Loss Enhancement.
ERLE refers to the attenuation of the echo signal as it passes through the Send
Path (Send In to Send Out) of the echo canceller. This specifically excludes any
non-linear processing on the output of the canceller to provide further
attenuation.
The API returns cOCT6100_INVALID_SIGNED_STAT if the channel is not
converged.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

lMaxERL -127 – 127 dB

Maximum value of the ERL since the last reset or in the last measurement
period.
The API returns cOCT6100_INVALID_SIGNED_STAT if the channel is not
converged.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

lMaxERLE -127 – 127 dB

Maximum value of the ERLE since the last reset or in the last measurement
period.
The API returns cOCT6100_INVALID_SIGNED_STAT if the channel is not
converged.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

ulNumEchoPathChanges 32-bits value

This counter is incremented when a change is detected on the echo path.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

Revision 3.1 Page 89 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulCurrentEchoDelay 32-bits value

The delay in milliseconds at which the algorithm has detected energy on Sin
correlated to the receive path. Technically, this defines the furthest in the H
register that significant values are found.
The API returns cOCT6100_INVALID_STAT if the channel is not converged.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulMaxEchoDelay 32-bits value

The longest delay in milliseconds at which the algorithm has found energy on Sin
correlated to the receive path since the last reset of the statistics. Technically,
this defines the furthest in the H register that significant values are found.
The API returns cOCT6100_INVALID_STAT if the channel is not converged.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulToneDisablerStatus cOCT6100_TONE_DISABLER_EC_DISABLED
cOCT6100_TONE_DISABLER_EC_ENABLED

Status of the tone disabler for the current channel. This parameter will only
return cOCT6100_TONE_DISABLER_EC_DISABLED if the tone disabler is
enabled (fEnableToneDisabler has been set to TRUE) and a 2100 Hz tone is
present for the requested channel.
If the tone disabler is enabled and the tone detector detects a 2100 Hz tone with
phase reversals on the channel, both echo cancellation and the NLP will be
disabled. If the tone disabler is enabled and a 2100 Hz tone without phase
reversals is detected on the channel, only the NLP will be disabled on the
channel. In both cases, the API will return
cOCT6100_TONE_DISABLER_EC_DISABLED.
If there is no 2100 Hz tone with or without phase reversals, the tone disabler will
not disable echo cancellation or the NLP on the channel. In this case, the API will
return cOCT6100_TONE_DISABLER_EC_ENABLED.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

fSinVoiceDetected TRUE / FALSE

If TRUE, voice activity is currently detected on the Sin port signal. This feature is
available only with OCT61x6 devices. This will always be FALSE when running
the API on OCT61x2 or OCT61x4 devices..
Direction: OUT Type: BOOL
Default: FALSE

fEchoCancellerConverged TRUE / FALSE

If TRUE, the echo canceller has detected and converged on an echo point and is
removing echo.
The API returns FALSE if the channel is not converged.
Direction: OUT Type: BOOL
Default: FALSE

Revision 3.1 Page 90 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

lRinLevel -127 – 127 dBm0

Average power of the signal level on the Rin port.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

lSinLevel -127 – 127 dBm0

Average power of the signal level on the Sin port.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

lRinAppliedGain -24 – 24 dB

Current gain applied to the signal level on the Rin port.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

lSoutAppliedGain -24 – 24 dB

Current gain applied to the signal level on the Sout port.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

lComfortNoiseLevel -127 – 127 dBm0

Average power of the comfort noise injected.
Direction: OUT Type: INT32
Default: cOCT6100_INVALID_SIGNED_STAT

TdmConfig structure

This structure contains all the configurations and statistics related to the TDM
interface of a channel.
Direction: IN Type: tOCT6100_CHANNEL_STATS_TDM
Default: see structure description

VqeConfig structure

This structure contains all the configurations and statistics related to the voice
quality enhancement parameters.
Direction: IN Type: tOCT6100_CHANNEL_STATS_VQE
Default: see structure description

CodecConfig structure

This structure contains all the configurations and statistics related to the
encoder/decoder related parameters.
Direction: IN Type: tOCT6100_CHANNEL_STATS_CODEC
Default: see structure description

Revision 3.1 Page 91 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.10.2 tOCT6100_CHANNEL_STATS_TDM Structure

ulSinPcmLaw See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulSinNumTssts See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulSinTimeslot See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulSinStream See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulRinPcmLaw See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulRinNumTssts See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulRinTimeslot See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulRinStream See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulSoutPcmLaw See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulSoutNumTssts See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulSoutTimeslot See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulSoutStream See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulRoutPcmLaw See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulRoutNumTssts See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulRoutTimeslot See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulRoutStream See tOCT6100_CHANNEL_OPEN_TDM
structure.

ulMaxBroadcastTssts 0 – 4096

Revision 3.1 Page 92 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

This parameter defines the maximum number of entry allowed in the broadcast
TSSTs arrays pulRoutBroadcastStream, pulRoutBroadcastTimeslot,
pulSoutBroadcastStream and pulSoutBroadcastTimeslot.
The actual number of valid entry returned by the API will be specified by
ulNumRoutBroadcastTssts and ulNumSoutBroadcastTssts.
Direction: IN Type: UINT32
Default: 0

ulNumRoutBroadcastTssts 0 – ulMaxBroadcastTssts

This parameter defines the number of H.100 TDM timeslot associated to the
ROUT port of the echo channel returned by this function call. Since broadcasting
is supported on output ports, more then one TSST can be associated to the
ROUT port.
The number of valid entries present in the arrays pulRoutBroadcastTimeslot
and pulRoutBroadcastStream is defined by this parameter.
Direction: OUT Type: UINT32
Default: 0

ulNumSoutBroadcastTssts 0 – ulMaxBroadcastTssts

This parameter defines the number of H.100 TDM timeslot associated to the
SOUT port of the echo channel returned by this function call. Since broadcasting
is supported on output ports, more then one TSST can be associated to the
SOUT port.
The number of valid entries present in the arrays pulSoutBroadcastTimeslot
and pulSoutBroadcastStream is defined by this parameter.
Direction: OUT Type: UINT32
Default: 0

pulSoutBroadcastTimeslot array.

This contains valid H.100 TDM timeslot values associated to the SOUT port of
the echo channel. The user allocates the memory for this array. Its size is
specified by ulMaxOutputTssts.
Direction: OUT Type: PUINT32
Default: NULL

pulSoutBroadcastStream array.

This contains valid H.100 TDM steam values associated to the SOUT port of the
echo channel. The user allocates the memory for this array. Its size is specified
by ulMaxBroadcastTssts.
Direction: OUT Type: PUINT32
Default: NULL

pulRoutBroadcastTimeslot array

This contains valid H.100 TDM timeslot values associated to the ROUT port of
the echo channel. The user allocates the memory for this array. Its size is
specified by ulMaxBroadcastTssts.
Direction: OUT Type: PUINT32
Default: NULL

pulRoutBroadcastStream array.

Revision 3.1 Page 93 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

This contains valid H.100 TDM steam values associated to the ROUT port of the
echo channel. The user allocates the memory for this array. Its size is specified
by ulMaxBroadcastTssts.
Direction: OUT Type: PUINT32
Default: NULL

fMoreRoutBroadcastTssts TRUE / FALSE

If TRUE, not all ROUT broadcast TSSTs were returned during this function call
because ulMaxBroadcastTssts was too small.
Direction: OUT Type: BOOL
Default: FALSE

fMoreSoutBroadcastTssts TRUE / FALSE

If TRUE, not all SOUT broadcast TSSTs were returned during this function call
because ulMaxBroadcastTssts was too small.
Direction: OUT Type: BOOL
Default: FALSE

Revision 3.1 Page 94 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.10.3 tOCT6100_CHANNEL_STATS_VQE Structure

fEnableNlp See tOCT6100_CHANNEL_OPEN_VQE
structure.

fEnableTailDisplacement See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulTailDisplacement See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulTailLength See tOCT6100_CHANNEL_OPEN_VQE
structure.

fSinDcOffsetRemoval See tOCT6100_CHANNEL_OPEN_VQE
structure.

fRinDcOffsetRemoval See tOCT6100_CHANNEL_OPEN_VQE
structure.

fRinLevelControl See tOCT6100_CHANNEL_OPEN_VQE
structure.

lRinLevelControlGainDb See tOCT6100_CHANNEL_OPEN_VQE
structure.

fSoutLevelControl See tOCT6100_CHANNEL_OPEN_VQE
structure.

lSoutLevelControlGainDb See tOCT6100_CHANNEL_OPEN_VQE
structure.

fRinAutomaticLevelControl See tOCT6100_CHANNEL_OPEN_VQE
structure.

lRinAutomaticLevelControlTargetDb See tOCT6100_CHANNEL_OPEN_VQE
structure.

fResetRinAlcOnTones See tOCT6100_CHANNEL_OPEN_VQE
structure.

fSoutAutomaticLevelControl See tOCT6100_CHANNEL_OPEN_VQE
structure.

lSoutAutomaticLevelControlTargetDb See tOCT6100_CHANNEL_OPEN_VQE
structure.

fResetSoutAlcOnTones See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulAlcNoiseBleedOutTime See tOCT6100_CHANNEL_OPEN_VQE
structure.

Revision 3.1 Page 95 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fRinHighLevelCompensation See tOCT6100_CHANNEL_OPEN_VQE
structure.

lRinHighLevelCompensationThresholdDb See
tOCT6100_CHANNEL_OPEN_VQE structure.

fSoutAdaptiveNoiseReduction See tOCT6100_CHANNEL_OPEN_VQE
structure.

fRoutNoiseReduction See tOCT6100_CHANNEL_OPEN_VQE
structure.

fSoutNoiseBleaching See tOCT6100_CHANNEL_OPEN_VQE
structure.

fSoutConferencingNoiseReduction See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulComfortNoiseMode See tOCT6100_CHANNEL_OPEN_VQE
structure.

fDtmfToneRemoval See tOCT6100_CHANNEL_OPEN_VQE
structure.

fAcousticEcho See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulNonLinearityBehaviorA See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulNonLinearityBehaviorB See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulDoubleTalkBehavior See tOCT6100_CHANNEL_OPEN_VQE
structure.

lDefaultErlDb See tOCT6100_CHANNEL_OPEN_VQE
structure.

lAecDefaultErlDb See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulAecTailLength See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulSoutAutomaticListenerEnhancementGainDb See
tOCT6100_CHANNEL_OPEN_VQE structure.

fSoutNaturalListenerEnhancement See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulSoutNaturalListenerEnhancementGainDb See
tOCT6100_CHANNEL_OPEN_VQE structure.

Revision 3.1 Page 96 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

lAnrSnrEnhancementDb See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulAnrVoiceNoiseSegregation See tOCT6100_CHANNEL_OPEN_VQE
structure.

ulToneDisablerVqeActivationDelay See tOCT6100_CHANNEL_OPEN_VQE
structure.

fEnableMusicProtection See tOCT6100_CHANNEL_OPEN_VQE
structure.

fIdleCodeDetection See tOCT6100_CHANNEL_OPEN_VQE
structure.

Revision 3.1 Page 97 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.2.10.4 tOCT6100_CHANNEL_STATS_CODEC Structure

ulAdpcmNibblePosition See tOCT6100_CHANNEL_OPEN_CODEC
structure.

ulEncoderPort See tOCT6100_CHANNEL_OPEN_CODEC
structure.

ulEncodingRate See tOCT6100_CHANNEL_OPEN_CODEC
structure.

ulDecoderPort See tOCT6100_CHANNEL_OPEN_CODEC
structure.

ulDecodingRate See tOCT6100_CHANNEL_OPEN_CODEC
structure.

fEnableSilenceSuppression See tOCT6100_CHANNEL_OPEN_CODEC
structure.

ulPhasingType See tOCT6100_CHANNEL_OPEN_CODEC
structure.

ulPhase See tOCT6100_CHANNEL_OPEN_CODEC
structure.

ulPhasingTsstHndl See tOCT6100_CHANNEL_OPEN_CODEC
structure.

Revision 3.1 Page 98 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3 Conference Bridge Functions
Conference bridge functions are used to open, close, and monitor the conference bridge
structure. Functions to add and remove channels to a conference bridge are also
described in this section.

A simple conference bridge mixes all the SOUT or RIN port signals of the channels
present on the bridge. Each channel will receive the resulting signal (minus its own
signal) as its RIN port signal.

A flexible conference bridge can be used to mask the signal of certain participants from
other participants, i.e. each channel will receive the sum of all the channels present on
the bridge minus its own and the masked channels. These flexible bridges are limited to
32 participants. This is typically used for call monitoring, or “coaching” where a third party
wishes to hear many participants, but only be heard by one participant.

5.3.1 Oct6100ConfBridgeOpen

This function opens a conference bridge. Initially, there is no channel connected to the
bridge. Channels are added to the bridge by calling Oct6100ConfBridgeAddChan. A
channel is removed from the bridge by calling the function
Oct6100ConfBridgeRemoveChan.

This function returns a handle by which the API identifies this bridge.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeOpenDef (
tPOCT6100_CONF_BRIDGE_OPEN f_pConfBridgeOpen);

UINT32 Oct6100ConfBridgeOpen (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_OPEN f_pConfBridgeOpen);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pConfBridgeOpen Pointer to a tOCT6100_CONF_BRIDGE_OPEN structure. The
structure’s elements are defined below. The user allocates this
structure.

5.3.1.1 tOCT6100_CONF_BRIDGE_OPEN Structure

pulConfBridgeHndl handle

The parameter returns the handle for the newly created conference bridge. This
handle is a unique value that identifies the bridge in all future function calls
affecting this bridge. The user allocates the memory for this pointer.
Direction: IN/OUT Type: PUINT32
Default: NULL

Revision 3.1 Page 99 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fFlexibleConferencing TRUE / FALSE

If TRUE, flexible conferencing is enabled. In this mode, the user can choose
which signals are masked for every participant in the conference. Enabling this
mode will limit the number of participants to be added to the conference bridge to
32.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 100 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.2 Oct6100ConfBridgeClose

This function closes a conference bridge.

A conference bridge can only be closed if no channels are present on the bridge.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeCloseDef (
tPOCT6100_CONF_BRIDGE_CLOSE f_pConfBridgeClose);

UINT32 Oct6100ConfBridgeClose (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_CLOSE f_pConfBridgeClose);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pConfBridgeClose Pointer to a tOCT6100_CONF_BRIDGE_CLOSE structure. The
structure’s elements are defined below. The user allocates this
structure.

5.3.2.1 tOCT6100_CONF_BRIDGE_CLOSE Structure

ulConfBridgeHndl handle

Handle of the conference bridge to be closed. This value is returned by a call to
Oct6100ConfBridgeOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 101 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.3 Oct6100ConfBridgeChanAdd

This function adds a channel to an already opened conference bridge. The conference
bridge and channel handles must be valid to perform a valid addition.

A channel can only be part of one conference bridge at a time. To move a channel from a
bridge to another, the user must remove the channel from the first bridge and add it to the
second.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeChanAddDef (
tPOCT6100_CONF_BRIDGE_CHAN_ADD f_pConfBridgeAdd);

UINT32 Oct6100ConfBridgeChanAdd (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_CHAN_ADD f_pConfBridgeAdd);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pConfBridgeAdd Pointer to a tOCT6100_CONF_BRIDGE_ADD_CHAN structure.
The structure’s elements are defined below. The user allocates
this structure.

5.3.3.1 tOCT6100_CONF_BRIDGE_CHAN_ADD Structure

ulConfBridgeHndl handle

Handle of the conference bridge. This value is returned by a call to
Oct6100ConfBridgeOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulChannelHndl handle

Handle of the echo cancellation channel to be added to the conference bridge.
This value is returned by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulInputPort cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_RIN

This parameter indicates which channel port of the channel will be added to the
conference bridge.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_SOUT

Revision 3.1 Page 102 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulListenerMaskIndex 0 - 31

When flexible conference bridges are enabled, this is the index of the current
channel. This Index or channel number is used to identify the listener in the
ulListenerMask parameter.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulListenerMask 32-bit value

When flexible conference bridges are enabled, this bit mask dictates which
conference bridge participants cannot be heard by this channel. The user sets
the bit at position ulListenerMaskIndex to subtract the signal from the specified
participant. For example, setting the mask to 0x8 would remove channel with
ulListenerMaskIndex equal to 3 from the mixed signal for this channel.
Direction: IN Type: UINT32
Default: 0x0

fMute TRUE / FALSE

If TRUE, this channel will be added muted to the conference bridge.
Direction: IN Type: BOOL
Default: FALSE

ulTappedChannelHndl handle

This parameter is used when the channel being added to the conference bridge
is to perform lawful interception. When this parameter is not set to
cOCT6100_INVALID_HANDLE, it represents the echo cancellation channel to be
tapped in the conference bridge.
When this parameter is used, the participant added to the bridge will hear the
SOUT ports of all participants, as well as the ROUT port of the tapped
participant.
The ulRinStream and ulRinTimeslot parameters of the TDM configuration of
the channel specified by this handle must be set to cOCT6100_UNASSIGNED
for tapping to work correctly. This is done automatically when adding the
participant, but the user should take care of never modifying the channel to re-
assign the TSST.
An error will be returned by the API if the user tries to remove a tapped channel
from a conference bridge. The channel tapping the participant should be
removed first.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 103 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.4 Oct6100ConfBridgeChanRemove

This function removes a channel from a conference bridge.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeChanRemoveDef (
tPOCT6100_CONF_BRIDGE_CHAN_REMOVE f_pConfBridgeRemove);

UINT32 Oct6100ConfBridgeChanRemove (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_CHAN_REMOVE f_pConfBridgeRemove);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pConfBridgeRemove Pointer to a tOCT6100_CONF_BRIDGE_CHAN_REMOVE
structure. The structure’s elements are defined below. The user
allocates this structure.

5.3.4.1 tOCT6100_CONF_BRIDGE_CHAN_REMOVE Structure

ulConfBridgeHndl handle

Handle of the conference bridge from which the channel is removed. This value
is returned by a call to Oct6100ConfBridgeOpen. This parameter is ignored if
fRemoveAll is set to FALSE.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulChannelHndl handle

Handle of the echo cancellation channel to be removed from the conference
bridge. This value is returned by a call to Oct6100ChannelOpen. This
parameter is ignored if fRemoveAll is set to TRUE.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

fRemoveAll TRUE / FALSE

If TRUE, all channels currently on the conference bridge will be removed.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 104 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.5 Oct6100ConfBridgeChanMute

This function will mute a channel currently on a conference bridge.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeChanMuteDef (
tPOCT6100_CONF_BRIDGE_CHAN_MUTE f_pConfBridgeMute);

UINT32 Oct6100ConfBridgeChanMute (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_CHAN_MUTE f_pConfBridgeMute);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pConfBridgeMute Pointer to a tOCT6100_CONF_BRIDGE_CHAN_MUTE
structure. The structure’s elements are defined below. The user
allocates this structure.

5.3.5.1 tOCT6100_CONF_BRIDGE_CHAN_MUTE Structure

ulChannelHndl handle

Handle of the echo cancellation channel to be muted. This value is returned by a
call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 105 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.6 Oct6100ConfBridgeChanUnMute

This function will un-mute a channel currently on a conference bridge. The channel will
now be broadcast onto its conference bridge

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeChanUnMuteDef (
tPOCT6100_CONF_BRIDGE_CHAN_UNMUTE f_pConfBridgeUnMute);

UINT32 Oct6100ConfBridgeChanUnMute (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_CHAN_UNMUTE f_pConfBridgeUnMute);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pConfBridgeUnMute Pointer to a tOCT6100_CONF_BRIDGE_CHAN_UNMUTE
structure. The structure’s elements are defined below. The user
allocates this structure.

5.3.6.1 tOCT6100_CONF_BRIDGE_CHAN_UNMUTE Structure

ulChannelHndl handle

Handle of the echo cancellation channel to be un-muted. This value is returned
by a call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 106 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.7 Oct6100ConfBridgeDominantSpeakerSet

This function determines which member of a conference bridge is the dominant speaker.
The signal level of the other participants on the bridge is reduced when the dominant
speaker is talking. This allows the dominant speaker to interrupt and talk-over whenever
needed, while allowing feedback from other callers. This feature is available only with
OCT61x6 devices. If this is executed on an OCT61x2 or OCT61x4 device, the function
will return the error cOCT6100_ERR_NOT_SUPPORTED_DOMINANT_SPEAKER.
NOTE: The fEnableNlp and fSoutConferencingNoiseReduction variables of the
channel must be set to TRUE for this feature to work properly.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeDominantSpeakerSetDef (
tPOCT6100_CONF_BRIDGE_DOMINANT_SPEAKER_SET

 f_pConfBridgeDominantSpeaker);

UINT32 Oct6100ConfBridgeDominantSpeakerSet (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_DOMINANT_SPEAKER_SET

 f_pConfBridgeDominantSpeaker);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pConfBridgeDominantSpeaker

 Pointer to a
 tOCT6100_CONF_BRIDGE_DOMINANT_SPEAKER_SET

structure. The structure’s elements are defined below. The user
allocates this structure.

5.3.7.1 tOCT6100_CONF_BRIDGE_DOMINANT_SPEAKER_SET Structure

ulConfBridgeHndl handle

This parameter is used to remove a dominant speaker attribute from a
conference bridge.
This parameter is the handle of the conference bridge for which the dominant
speaker is set. This value is returned by a call to Oct6100ConfBridgeOpen.
This parameter is ignored if ulChannelHndl is given a value.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 107 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulChannelHndl handle

This parameter is used to add the dominant speaker attribute to a conference
bridge participant.
This parameter is the handle of the echo cancellation channel that will be set as
the dominant speaker of the conference bridge. This value is returned by a call to
Oct6100ChannelOpen. To remove the dominant speaker attribute of a
conference bridge participant, the ulConfBridgeHndl parameter is used, and
this parameter should be set to
cOCT6100_CONF_NO_DOMINANT_SPEAKER_HNDL.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 108 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.8 Oct6100ConfBridgeMaskChange

This function changes the listener mask of a flexible bridge participant.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeMaskChangeDef (
tPOCT6100_CONF_BRIDGE_MASK_CHANGE

 f_pConfBridgeMaskChange);

UINT32 Oct6100ConfBridgeMaskChange (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_MASK_CHANGE

 f_pConfBridgeMaskChange);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pConfBridgeMaskChange

 Pointer to a
 tOCT6100_CONF_BRIDGE_MASK_CHANGE structure. The

structure’s elements are defined below. The user allocates this
structure.

5.3.8.1 tOCT6100_CONF_BRIDGE_MASK_CHANGE Structure

ulChannelHndl handle

This parameter is the handle of the echo cancellation channel representing the
flexible bridge participant where the listener mask will be updated.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulNewListenerMask 32-bit value

This parameter is the new listener mask to apply for the selected participant in
the flexible bridge. Refer to the ulListenerMask member of the conference
channel add function for a description of the listener mask.
Direction: IN Type: UINT32
Default: 0x0

Revision 3.1 Page 109 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.3.9 Oct6100ConfBridgeGetStats

This function fills a tOCT6100_CONF_BRIDGE_STATS structure with the current
statistics for the specified conference bridge. All statistics returned by this function are
initialized by the Oct6100ConfBridgeOpen function.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ConfBridgeGetStatsDef (
 tPOCT6100_CONF_BRIDGE_STATS f_pConfBridgeStats);

UINT32 Oct6100ConfBridgeGetStats (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CONF_BRIDGE_STATS f_pConfBridgeStats);

Parameters

f_pApiInstance Pointer to an instance structure of the chip

f_pConfBridgeStats Pointer to a tOCT6100_CONF_BRIDGE_STATS statistics
structure to be filled in by this routine. The structure’s elements
are defined below. The user allocates this structure.

5.3.9.1 tOCT6100_CONF_BRIDGE_STATS Structure

ulConfBridgeHndl handle

Handle of the conference bridge for which statistics are requested. This value is
returned by a call to Oct6100ConfBridgeOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulNumChannels 0 – 447

This is the number of channels currently present on the conference bridge. This
count does not include the channels which are taps in the conference bridge.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

ulNumTappedChannels 0 – 447

This is the number of channels currently being tapped on the conference bridge.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_STAT

fFlexibleConferencing TRUE / FALSE

If TRUE, this is a flexible conference bridge.
Direction: OUT Type: BOOL
Default: cOCT6100_INVALID_STAT

Revision 3.1 Page 110 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.4 Phasing TSST Functions
Phasing TSST functions are used for silence suppression and compression changes on
an echo cancellation channel.

5.4.1 Oct6100PhasingTsstOpen

This function opens a phasing counter on a TDM H.1x0 timeslot. The TSST is used to
synchronize compression rate changes by the OCT6100 device with packetization
boundaries of a SAR device. Incremental values are driven by an external source
(possibly the SAR device). The value range is between 0 and ulPhasingLength – 1. The
configured ulPhase value (see tOCT6100_CHANNEL_OPEN structure) indicates that
the external agent SAR is now fetching the first sample used to assemble the next
packet. For example, a packet that consists of 40 samples of voice could be phased with
a phasing TSST counting from 0 to 39.

With the phasing TSST and a phase, the OCT6100 device can determine the
packetization boundary.

Phasing TSSTs are also used to allow silence suppression indications to be sent to the
packetization device at the right moment. On the last byte of every packet (i.e. byte
preceding packetization boundary) the chip can be configured to indicate whether the
current packet should be suppressed. The device needs a phasing TSST from the SAR
device to indicate the packetization boundaries.

The device supports up to 16 independent phasing TSSTs.

In cases where continuous (every H.1x0 frame) silence suppression and compression
changes information is desired, the external agent should always drive a value of
(ulPhase – 1) on the TDM timeslot used as the phasing counter. For example, if
ulPhasingLength is 40 and ulPhase is 39, the external agent should continuously drive
38 on the TDM timeslot to receive silence suppression or compression changes
information at every frame.

Usage

#include “oct6100_api.h”

UINT32 Oct6100PhasingTsstOpenDef (
tPOCT6100_PHASING_TSST_OPEN f_pPhasingTsstOpen);

UINT32 Oct6100PhasingTsstOpen (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_PHASING_TSST_OPEN f_pPhasingTsstOpen);

Parameters

f_pApiInstance Pointer to an instance structure of the chip

f_pPhasingTsstOpen Pointer to a tOCT6100_PHASING_TSST_OPEN structure. The
structure’s elements are defined below.

Revision 3.1 Page 111 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.4.1.1 tOCT6100_PHASING_TSST_OPEN Structure

pulPhasingTsstHndl handle

Pointer to a single UINT32 that returns the handle for the created phasing TSST.
This handle is a unique value that identifies the phasing TSST in all future
function calls affecting this phasing TSST. The user allocates the UINT32 for the
handle.
Direction: IN/OUT Type: PUINT32
Default: NULL

ulPhasingLength 2 – 240

The external agent driving the phasing TSST will drive incremental values within
the 0 - (ulPhasingLength – 1) range.
Direction: IN Type: UINT32
Default: 88

ulTimeslot 0 – 255 for 16 MHz stream frequency
0 – 127 for 8 MHz stream frequency
0 – 63 for 4 MHz stream frequency
0 – 31 for 2 MHz stream frequency

This is the timeslot component of the phasing H.100 timeslot. Note that allowed
values are affected by the frequency of the clock that controls the
ulInputStream.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TIMESLOT

ulStream 0 – 31 for ulMaxStream of 32
0 – 15 for ulMaxStream of 16
0 – 7 for ulMaxStream of 8
0 – 3 for ulMaxStream of 4

This is the stream component of the phasing H.100 timeslot. Note that this value
is also affected by the ulMaxStream value specified at the Oct6100ChipOpen
call.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_STREAM

Revision 3.1 Page 112 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.4.2 Oct6100PhasingTsstClose

This function closes the specified phasing TSST.

Usage

#include “oct6100_api.h”

UINT32 Oct6100PhasingTsstCloseDef (
 tPOCT6100_PHASING_TSST_CLOSE f_pPhasingTsstClose);

UINT32 Oct6100PhasingTsstClose (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_PHASING_TSST_CLOSE f_pPhasingTsstClose);

Parameters

f_pApiInstance Pointer to an instance structure of the chip

f_pPhasingTsstClose Pointer to a tOCT6100_PHASING_TSST_CLOSE structure. The
structure’s elements are defined below.

5.4.2.1 tOCT6100_PHASING_TSST_CLOSE Structure

ulPhasingTsstHndl handle

Handle that identifies the phasing TSST to be closed. This handle is returned by
the Oct6100PhasingTsstOpen call that opened the phasing TSST.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 113 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.5 Tone Detection Functions
The OCT6100 firmware includes a tone profile, which defines the group of tones that can
be detected on any open channel. Each tone of the profile is identified by its Tone
Number, which determines the specific tone and detection port. The list of available
tones is always provided with the firmware in an accompanying text file. For example,
the text file contains lines such as the following:

#define ROUT_DTMF_1 0x10000011

This means that tone number 0x10000011 corresponds with the detection of the DTMF 1
tone on the Rout port. To enable the detection of that tone on a specific channel, the
user must call the Oct6100ToneDetectionEnable function, passing it the targeted
channel handle (returned from the call to Oct6100ChannelOpen) as well as
0x10000011, the Tone Number.

Once enabled, the channel will generate a tone event every time a DTMF 1 tone is
detected on the Rout port. The user must call the Oct6100InterruptServiceRoutine
regularly and check the tOCT6100_INTERRUPT_FLAGS parameter
fToneEventsPending to see if any tone events are pending.

If fToneEventsPending is TRUE the user must call the Oct6100EventGetTone function
to retrieve the pending tone events. A given channel may be configured to detect any
combination of available tones by calling Oct6100ToneDetectionEnable multiple times
with the ulToneNumber parameter set to the desired tone number.

The following table indicates delays before the generation of present and stop events.
Those delays may vary depending on the energy and the frequency of the tone. A new
tone is detected if there is a signal change longer than 10ms.

Tones Delay before
PRESENT event (ms)

Delay between
PRESENT events (ms)

Delay before
STOP event (ms)

2100HB_END 252 252 N/A
2100GB_ON 70-125 N/A N/A

2100GB_WSPR 250 425* N/A
1100GB_ON 425 N/A 20

SS5 30 N/A 20
SS7 400 N/A 20

DTMF 40 N/A 20
MF-R1 30 N/A 20
MF-R2 30 N/A 20

* The 2100Hz tone must continue for 50ms after the phase reversal to get the
2100GB_WSPR event.

WSPR = well space phase reversal

HB = Hold Band = silence

GB = Guard Band

Revision 3.1 Page 114 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.5.1 Oct6100ToneDetectionEnable

This function allows the user to enable the detection of a preprogrammed tone on a
channel.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ToneDetectionEnableDef (
tPOCT6100_TONE_DETECTION_ENABLE f_pToneDetectEnable);

UINT32 Oct6100ToneDetectionEnable (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_TONE_DETECTION_ENABLE f_pToneDetectEnable);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pToneDetectEnable Pointer to a tOCT6100_TONE_DETECTION_ENABLE structure.
The structure’s elements are defined below. The user allocates
this structure.

5.5.1.1 tOCT6100_TONE_DETECTION_ENABLE Structure

ulChannelHndl handle

The handle that identifies the channel for which tone detection is enabled. The
handle is returned by the call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulToneNumber see Tone Detection Functions Section

Selects the tone to be detected on the specified channel.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TONE

Revision 3.1 Page 115 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.5.2 Oct6100ToneDetectionDisable

This function allows the user to disable the detection of a specific tone on a channel.

Usage

#include “oct6100_api.h”

UINT32 Oct6100ToneDetectionDisableDef (
tPOCT6100_TONE_DETECTION_DISABLE f_pToneDetectDisable);

UINT32 Oct6100ToneDetectionDisable (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_TONE_DETECTION_DISABLE f_pToneDetectDisable);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pToneDetectDisable Pointer to a tOCT6100_TONE_DETECTION_DISABLE
structure. The structure’s elements are defined below. The user
allocates this structure.

5.5.2.1 tOCT6100_TONE_DETECTION_DISABLE Structure

ulChannelHndl handle

The handle that identifies the channel for which tone detection is to be disabled.
The handle is returned by the call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulToneNumber see Tone Detection Functions Section

Selects the tone to be disabled for the specified channel.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TONE

fDisableAll TRUE / FALSE

Setting this flag to TRUE will disable tone detection on all enabled tones. The
ulToneNumber parameter is ignored when this is set to TRUE.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 116 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.6 Buffer Playout Functions
These functions are used to manage buffer playout on a channel. Three functions are
used to manage the playout: add, start and stop functions. The
Oct6100BufferPlayoutAdd function is used to add a buffer to the buffer list for the
selected channel port. Up to 127 buffers can be added to a channel port.

Once all the buffers are added to the channel’s list, they can be played out by calling
Oct6100BufferPlayoutStart. The playout will stop once all buffers have been played out
or when the function Oct6100BufferPlayoutStop is called by the user.

Other supporting functions are used to load or unload buffers into the chip’s external
memory: load, load in blocks and unload functions. This can be done at initialization or
while the chip is operating.

Since loading buffers into the external memory of the chip can be a long process,
depending on the size of the buffer to be loaded, the user is supplied with two types of
load functions. Oct6100BufferPlayoutLoad loads the buffer directly into memory in one
call, blocking the user application until this is done. Oct6100BufferPlayoutLoadBlock
loads the buffer in blocks specified by the user, yielding control to the application after
each block is loaded into external memory.

5.6.1 Oct6100BufferPlayoutLoad

This function allows the user to load a buffer into external memory.

Usage

#include “oct6100_api.h”

UINT32 Oct6100BufferPlayoutLoadDef (
tPOCT6100_BUFFER_LOAD f_pBufferLoad);

UINT32 Oct6100BufferPlayoutLoad (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_BUFFER_LOAD f_pBufferLoad);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pBufferLoad Pointer to a tOCT6100_BUFFER_LOAD structure. The
structure’s elements are defined below. The user allocates this
structure.

5.6.1.1 tOCT6100_BUFFER_LOAD Structure

pulBufferIndex 0-1343

Buffer index in the buffer memory. This value is used in future
Oct6100BufferPlayout function calls to reference this buffer.
Direction: OUT Type: PUINT32
Default: NULL

Revision 3.1 Page 117 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

pulPlayoutFreeMemSize 0 - total space in external memory for playout

Optional parameter that returns the amount of external memory, in bytes, left that
can be used for buffer playout after loading the specified buffer. Note that this
value does not necessarily refer to a contiguous memory block.
Direction: OUT Type: PUINT32
Default: NULL

pbyBufferPattern pointer

A byte pointer pointing to a valid buffer to be loaded into the chip’s external
memory.
Direction: IN Type: PUINT8
Default: NULL

ulBufferSize 64 – max space left in external memory

Size of the buffer loaded into external memory. This value must be modulo 16.
This size is specified in bytes. Note that the actual external memory size used is
the specified size rounded up to be modulo 64.
Direction: IN Type: UINT32
Default: 64

ulBufferPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW

PCM law of the buffer being loaded into external memory.
Direction: IN Type: UINT32
Default: cOCT6100_PCM_U_LAW

Revision 3.1 Page 118 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.6.2 Oct6100BufferPlayoutLoadBlockInit

This function allows the user to initialize loading a buffer into external memory using
blocks. The external memory is reserved after this function returns, but the user must
call the Oct6100BufferPlayoutLoadBlock function to copy the actual buffer into external
memory.

Usage

#include “oct6100_api.h”

UINT32 Oct6100BufferPlayoutLoadBlockInitDef (
tPOCT6100_BUFFER_LOAD_BLOCK_INIT f_pBufferLoadBlockInit);

UINT32 Oct6100BufferPlayoutLoadBlockInit (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_BUFFER_LOAD_BLOCK_INIT f_pBufferLoadBlockInit);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pBufferLoadBlockInit Pointer to a tOCT6100_BUFFER_LOAD_BLOCK_INIT structure.
The structure’s elements are defined below. The user allocates
this structure.

5.6.2.1 tOCT6100_BUFFER_LOAD_BLOCK_INIT Structure

pulBufferIndex 0-1343

Buffer index in the buffer memory. This value is used in future
Oct6100BufferPlayout function calls to reference this buffer.
Direction: OUT Type: PUINT32
Default: NULL

pulPlayoutFreeMemSize 0 – total space in external memory for playout

Optional parameter that returns the amount of external memory left, in bytes, that
can be used for buffer playout after loading the specified buffer. Note that this
value does not necessarily refer to a contiguous memory block.
Direction: OUT Type: PUINT32
Default: NULL

ulBufferSize 64 – max space left in external memory

Size of the buffer loaded into external memory. This size is specified in bytes.
This value must be modulo 16. Note that the actual external memory size used
is the specified size rounded up to be modulo 64.
Direction: IN Type: UINT32
Default: 64

Revision 3.1 Page 119 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulBufferPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW

PCM law of the buffer being loaded into external memory.
Direction: IN Type: UINT32
Default: cOCT6100_PCM_U_LAW

5.6.3 Oct6100BufferPlayoutLoadBlock

This function allows the user to load a buffer block into external memory. The user must
call the Oct6100BufferPlayoutLoadBlockInit function first, to reserve the external
memory needed for loading the buffer.

This function must be called repeatedly, loading a portion of the buffer each time. The
user can specify the size of each block.

The API does not check that the entire buffer has been loaded. It is the user’s
responsibility to ensure that all blocks have been loaded.

Usage

#include “oct6100_api.h”

UINT32 Oct6100BufferPlayoutLoadBlockDef (
tPOCT6100_BUFFER_LOAD_BLOCK f_pBufferLoadBlock);

UINT32 Oct6100BufferPlayoutLoadBlock (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_BUFFER_LOAD_BLOCK f_pBufferLoadBlock);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pBufferLoadBlock Pointer to a tOCT6100_BUFFER_LOAD_BLOCK structure. The
structure’s elements are defined below. The user allocates this
structure.

5.6.3.1 tOCT6100_BUFFER_LOAD_BLOCK Structure

ulBufferIndex 0-1343

Index of the buffer where data should be copied into the chip external memory.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulBlockOffset 0 – maximum buffer size

Offset, in bytes, of the first byte in the block to be loaded. This offset is with
respect to the beginning of the buffer. This value must be modulo 2.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 120 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulBlockLength 0 – maximum buffer size

Size of the block to be loaded into external memory. This value must be modulo
2.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

pbyBufferPattern pointer

A byte pointer pointing to a valid buffer to be loaded into the chip’s external
memory. This is a pointer to the entire buffer. The API uses the ulBlockOffset
and ulBlockLength to index within this buffer and obtain the block to be loaded.
Direction: IN Type: PUINT8
Default: NULL

Revision 3.1 Page 121 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.6.4 Oct6100BufferPlayoutUnload

This function allows the user to unload a buffer from the chip’s external memory. Note
that although unloading a buffer that is currently playing is permitted, the samples played
out may be invalid.

Usage

#include “oct6100_api.h”

UINT32 Oct6100BufferPlayoutUnloadDef (
tPOCT6100_BUFFER_UNLOAD f_pBufferUnload);

UINT32 Oct6100BufferPlayoutUnload (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_BUFFER_UNLOAD f_pBufferUnload);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pBufferUnload Pointer to a tOCT6100_BUFFER_UNLOAD structure. The
structure’s elements are defined below. The user allocates this
structure.

5.6.4.1 tOCT6100_BUFFER_UNLOAD Structure

ulBufferIndex 0-1343

Index of the buffer to be removed from the chip external memory.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 122 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.6.5 Oct6100BufferPlayoutAdd

This function allows the user to add a buffer to the current list of buffers for one of the
channel’s output ports.

Usage

#include “oct6100_api.h”

UINT32 Oct6100BufferPlayoutAddDef (
tPOCT6100_BUFFER_PLAYOUT_ADD f_pBufferPlayoutAdd);

UINT32 Oct6100BufferPlayoutStart (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_BUFFER_PLAYOUT_ADD f_pBufferPlayoutAdd);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pBufferPlayoutAdd Pointer to a tOCT6100_BUFFER_PLAYOUT_ADD structure.
The structure’s elements are defined below. The user allocates
this structure.

5.6.5.1 tOCT6100_BUFFER_PLAYOUT_ADD Structure

ulChannelHndl handle

The handle that identifies the channel on which the specified buffer is to be
played. The handle is returned by the call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulBufferIndex 0-1343

Index of the buffer to be played on the selected port.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulPlayoutPort cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_ROUT

This is the channel port on which the buffer will be played.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_ROUT

ulMixingMode cOCT6100_MIXING_0_DB
cOCT6100_MIXING_MINUS_6_DB
cOCT6100_MIXING_MINUS_12_DB
cOCT6100_MIXING_MUTE

This parameter selects the level of the original signal mixed with the buffer.
Direction: IN Type: UINT32
Default: cOCT6100_MIXING_MINUS_6_DB

Revision 3.1 Page 123 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

lGainDb -24 – 24

This parameter is the gain applied to the selected port’s signal during playout.
Direction: IN Type: INT32
Default: 0

fRepeat TRUE / FALSE

This parameter represents whether or not the ulRepeatCount parameter should
be used for setting the repeat count of the selected buffer. If set to FALSE, the
buffer will play only once.
Direction: IN Type: BOOL
Default: FALSE

ulRepeatCount 1 – 32767
cOCT6100_REPEAT_INFINITELY

This parameter represents the number of times that the selected buffer should be
played out. If the user sets this parameter to cOCT6100_REPEAT_INFINITELY,
once started, this buffer will play until the procedure Oct6100BufferPlayoutStop
is called. This parameter is ignored if fRepeat is set to FALSE.
Direction: IN Type: UINT32
Default: cOCT6100_REPEAT_INFINITELY

ulDuration 32–bit value

This parameter represents the time (duration), in milliseconds, that this buffer
should be played. If set, this parameter overrides the fRepeat flag.
When this parameter is used, the API converts the ulDuration into a
ulRepeatCount and uses that to configure the device. If ulRepeatCount is
calculated to be above 32767, then multiple buffer playout events are created to
accommodate this.
If the required buffer playout sequence is complicated and requires many
different playout events, then using multiple playout events for a single buffer
may be undesirable. To get around this problem, a longer buffer can be used,
containing many repetitions of the desired signal. This will cause the calculated
ulRepeatCount to be smaller, thus using less playout events.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulBufferLength 64 – size of buffer currently loaded into memory

This parameter allows the user to play only the N first bytes of a buffer. The
specified length is with respect to the beginning of the buffer. Setting this value
to cOCT6100_AUTO_SELECT will play the buffer completely. This value must
be modulo 16.
Direction: IN Type: UINT32
Default: cOCT6100_AUTO_SELECT

Revision 3.1 Page 124 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.6.6 Oct6100BufferPlayoutStart

This function allows the user to activate buffer playout on a channel. Note that issuing a
playout start command on a port that has no buffers “added” will play nothing, i.e. the
signal on the port will be left unchanged.

The playout start command will not return an error if some of the buffers in the list to be
played have been unloaded. In this situation, the samples played out may be invalid.

Buffer playout can only be started if the following conditions are met:

- The fEnableNlp flag of the channel configuration is set to TRUE.

- The ulEchoOperationMode parameter of the channel configuration is not set to
cOCT6100_ECHO_OP_MODE_POWER_DOWN or
cOCT6100_ECHO_OP_MODE_HT_FREEZE.

Trying to start buffer playout without the above conditions will result in an error from the
API.

After a start command is issued, the “added” buffers will begin to play. Once played out,
these buffers are removed from the internal buffer list. Therefore, to play the same
buffers again on a same channel, they must be “re-added” before another start command
is issued.

Usage

#include “oct6100_api.h”

UINT32 Oct6100BufferPlayoutStartDef (
tPOCT6100_BUFFER_PLAYOUT_START f_pBufferPlayoutStart);

UINT32 Oct6100BufferPlayoutStart (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_BUFFER_PLAYOUT_START f_pBufferPlayoutStart);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pBufferPlayoutStart Pointer to a tOCT6100_BUFFER_PLAYOUT_START structure.
The structure’s elements are defined below. The user allocates
this structure.

5.6.6.1 tOCT6100_BUFFER_PLAYOUT_START Structure

ulChannelHndl handle

The handle that identifies the channel on which buffer playout will be started. The
handle is returned by the call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulPlayoutPort cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_ROUT

This is the channel port on which the buffer is to be played.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_ROUT

Revision 3.1 Page 125 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fNotifyOnPlayoutStop TRUE / FALSE

This flag indicates whether or not a buffer playout event of type
cOCT6100_BUFFER_PLAYOUT_EVENT_STOP should be generated when the
current list stops playing. The events can be retrieved via a call to
Oct6100BufferPlayoutGetEvent. This feature is only available if the user
allocated a software buffer to store the buffer playout events, when the chip was
opened, using the ulSoftBufferPlayoutEventsBufSize parameter. Note that
issuing a call to Oct6100BufferPlayoutStop will not generate an event when the
playout stops.
Direction: IN Type: BOOL
Default: FALSE

ulUserEventId 32-bit value

User specified field stored in the API buffer playout structure. This parameter is
returned with the channel handle and port when a buffer playout event is
detected for the current channel and port. Only used when the
fNotifyOnPlayoutStop flag is set.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

fAllowStartWhileActive TRUE / FALSE

This flag indicates whether or not the API should return an error to this call if a
buffer is currently playing on the specified channel and port. If a buffer is
currently playing, and this flag is set to TRUE, the new buffers will be added to
the end of the currently playing list.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 126 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.6.7 Oct6100BufferPlayoutStop

This function stops the buffer playout on the channel’s selected port.

Usage

#include “oct6100_api.h”

UINT32 Oct6100BufferPlayoutStopDef (
 tPOCT6100_BUFFER_PLAYOUT_STOP f_pBufferPlayoutStop);

UINT32 Oct6100BufferPlayoutStop (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_BUFFER_PLAYOUT_STOP f_pBufferPlayoutStop);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pBufferPlayoutStop Pointer to a tOCT6100_BUFFER_PLAYOUT_STOP structure.
The structure’s elements are defined below. The user allocates
this structure.

5.6.7.1 tOCT6100_BUF_PLAYOUT_STOP Structure

ulChannelHndl handle

Handle that identifies the echo channel on which the buffer is currently playing.
The handle is returned by the call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulPlayoutPort cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_ROUT

This is the echo channel port on which the buffer is currently playing.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_ROUT

Revision 3.1 Page 127 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fStopCleanly TRUE / FALSE

This flag indicates if the buffer playing during this function call will stop
immediately (FALSE) or if it will stop only once all its samples have been played
out (TRUE).
Direction: IN Type: BOOL
Default: TRUE

pfNotifyOnPlayoutStop TRUE / FALSE

Optional output parameter. This variable returns the user configuration for this
parameter that was specified when the Oct6100BufferPlayoutStart function was
called.
Direction: OUT Type: PBOOL
Default: NULL

pfAlreadyStopped TRUE / FALSE

Optional output parameter. This flag will be set to FALSE if a playout list was
playing on the selected port before stopping. Note that this parameter will also
be set to FALSE if one or more events were added but playout was not started
using the Oct6100BufferPlayoutStart function.
Direction: OUT Type: PBOOL
Default: NULL

Revision 3.1 Page 128 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.7 Caller ID Functions
These functions are used to manage the transmission (using FSK modulation) of Caller
ID information. Both ETSI (ETS300 659.1 and 659.2) and Bellcore (GR-30-Core)
standards are supported.

The caller ID module must be initialized by invoking the Oct6100CallerIdInit function
before being used. The standard (ETSI or Bellcore) to be used when generating the
messages must be specified using the ulCallerIdGeneratorType member of the
initialization function.

Two main functions are used to manage the caller ID feature: the transmit and abort
functions. The Oct6100CallerIdTransmit function is used to start the transmission of a
user-specified message. The Oct6100CallerIdAbort function is used to stop the
transmission of a caller ID. For example, Oct6100CallerIdAbort could be invoked if an
off-hook signal of the called party was detected.

Another optional function is available to the user: transmission of the Dual-Tone Alerting
Signal. The Oct6100CallerIdTransmitAs function is used to transmit the terminal
alerting signal if doing terminal equipment alerting. This signal is used to signify to the
called party that a caller ID message will follow soon. Note that it is the responsibility of
the user to detect the terminal equipment acknowledge signal.

The fEnableCallerId flag of the tOCT6100_OPEN_CHIP structure must be set to TRUE
for caller ID to work.

Note that the caller ID functions are a superset of the buffer playout functions and
therefore using caller ID and buffer playout simultaneously on a given channel will not
work.

5.7.1 Oct6100CallerIdInit

This function allows the user to initialize the caller ID buffers used to generate the caller
ID messages. Note that this function call can take a few milliseconds to complete since
all generated buffers must be loaded into the chip’s external memory. It is recommended
that this function be called before opening any channels to assure the shortest execution
time.

Usage

#include “oct6100_api.h”

UINT32 Oct6100CallerIdInitDef (
tPOCT6100_CALLER_ID_INIT f_pIdInit);

UINT32 Oct6100CallerIdInit (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CALLER_ID_INIT f_pIdInit);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pIdInit Pointer to a tOCT6100_CALLER_ID_INIT structure. The
structure’s elements are defined below. The user allocates this
structure.

5.7.1.1 tOCT6100_CALLER_ID_INIT Structure

Revision 3.1 Page 129 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulCallerIdGeneratorType cOCT6100_CALLER_ID_TYPE_ETSI
cOCT6100_CALLER_ID_TYPE_BELLCORE

Type of generator used in the caller ID module. For the ETSI (ETS300 659.1
and 659.2) standard use cOCT6100_CALLER_ID_TYPE_ETSI. For the Bellcore
(GR-30-Core) standard use cOCT6100_CALLER_ID_TYPE_BELLCORE.
Direction: IN Type: UINT32
Default: cOCT6100_CALLER_ID_TYPE_ETSI

Revision 3.1 Page 130 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.7.2 Oct6100CallerIdTerminate

This function allows the user to unload the caller ID buffers used to generate the caller ID
messages. Note that this function will free all external memory used up by the caller ID
module, but will not free the internal associated API instance structures. Upon return of
this function, all external memory that was used by the caller ID module will be available
for buffer playout.

Usage

#include “oct6100_api.h”

UINT32 Oct6100CallerIdTerminateDef (
tPOCT6100_CALLER_ID_TERMINATE f_pIdTerminate);

UINT32 Oct6100CallerIdTerminate (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CALLER_ID_TERMINATE f_pIdTerminate);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pIdTerminate Pointer to a tOCT6100_CALLER_ID_TERMINATE structure. The
structure’s elements are defined below. The user allocates this
structure.

5.7.2.1 tOCT6100_CALLER_ID_TERMINATE Structure

ulDummy 32-bit value

The API does not use this structure member. It exists only to preserve the
OCT6100 API functions format.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 131 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.7.3 Oct6100CallerIdTransmit

This function allows the user to start transmission of a caller identification message.

Usage

#include “oct6100_api.h”

UINT32 Oct6100CallerIdTransmitDef (
tPOCT6100_CALLER_ID_TRANSMIT f_pIdTransmit);

UINT32 Oct6100CallerIdTransmit (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CALLER_ID_TRANSMIT f_pIdTransmit);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pIdTransmit Pointer to a tOCT6100_CALLER_ID_TRANSMIT structure. The
structure’s elements are defined below. The user allocates this
structure.

5.7.3.1 tOCT6100_CALLER_ID_TRANSMIT Structure

byMessageType 8-bit value

Message type to be transmitted. Ignored if fPreFormattedMessage is set to
TRUE.
Direction: IN Type: UINT8
Default: 0

byMessageLength 0 - 126

Length of the message to be transmitted.
Direction: IN Type: UINT8
Default: 0

pbyMessage pointer

A byte pointer pointing to a valid message to be transmitted.
Direction: IN Type: PUINT8
Default: NULL

ulChannelHndl handle

The handle that identifies the channel on which the caller ID message will be
transmitted. The handle is returned by the call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 132 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulPlayoutPort cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_ROUT

This is the channel port on which the caller ID message should be transmitted.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_ROUT

ulNumMarkBits cOCT6100_CALLER_ID_NUM_MARK_BITS_180
cOCT6100_CALLER_ID_NUM_MARK_BITS_80

Number of mark bits that will be inserted after the seizure signal is transmitted.
For on-hook caller ID, this should be set to
cOCT6100_CALLER_ID_NUM_MARK_BITS_180. For off-hook caller id, this
parameter should be set to cOCT6100_CALLER_ID_NUM_MARK_BITS_80.
Direction: IN Type: UINT32
Default: cOCT6100_CALLER_ID_NUM_MARK_BITS_180

fTransmitSeizureSignal TRUE / FALSE

Whether or not the channel seizure signal will be transmitted. For regular on-
hook caller ID, this should be TRUE. For off-hook caller ID, this value should be
set to FALSE.
Direction: IN Type: BOOL
Default: TRUE

fPreFormattedMessage TRUE / FALSE

If set to TRUE, the message pointed by pbyMessage will be considered pre-
formatted and no processing will be done on it. The message will be transmitted
exactly as it is in the buffer. This mode can be used for single or multiple data
messages. The API will assume that the message type, message length and
checksum fields are already filled by the user.
Direction: IN Type: BOOL
Default: TRUE

ulPreTransmitDelayMs 0 - 60000

This parameter specifies the amount of pure silence in milliseconds that is
inserted before the caller ID information is transmitted. For example, if the
ringing time is 2 seconds and the user wishes to wait 500 milliseconds after the
ring has stopped before transmitting the caller ID information, this parameter
would be set to 2500 ms.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 133 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fNotifyOnTransmitEnd TRUE / FALSE

This flag indicates whether or not a buffer playout event of type
cOCT6100_BUFFER_PLAYOUT_EVENT_CALLER_ID_STOP should be
generated when playout of the caller ID message terminates. The events can be
retrieved via a call to Oct6100BufferPlayoutGetEvent. This feature is only
available if the user has allocated a software buffer to store the buffer playout
events, when the chip was opened, using the
ulSoftBufferPlayoutEventsBufSize parameter. Note that issuing a call to
Oct6100CallerIdAbort will prevent an event from being generated when the
transmission aborts.
Direction: IN Type: BOOL
Default: FALSE

ulUserEventId 32-bit value

User-specified field stored in the API buffer playout instance structure. This
parameter is returned with the channel handle and port when a buffer playout
event is generated for the current channel and port. Only used when the
fNotifyOnTransmitEnd flag is set.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

pulDurationMs 32-bits value

Optional parameter. The API returns the calculated duration, in milliseconds, of
the transmission of the caller identification message. This value does not include
the pre-transmission delay inserted using the ulPreTransmitDelayMs
parameter.
Direction: OUT Type: PUINT32
Default: NULL

Revision 3.1 Page 134 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.7.4 Oct6100CallerIdTransmitAs

This function allows the user to start transmission of a caller identification Alerting Signal.
DT-AS is supported for ETSI and CAS is supported for Bellcore.

Usage

#include “oct6100_api.h”

UINT32 Oct6100CallerIdTransmitAsDef (
tPOCT6100_CALLER_ID_TRANSMIT_AS f_pIdTransmitAs);

UINT32 Oct6100CallerIdTransmitAs (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CALLER_ID_TRANSMIT_AS f_pIdTransmitAs);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pIdTransmit Pointer to a tOCT6100_CALLER_ID_TRANSMIT_AS structure.
The structure’s elements are defined below. The user allocates
this structure.

5.7.4.1 tOCT6100_CALLER_ID_TRANSMIT_AS Structure

ulChannelHndl handle

The handle that identifies the channel on which the caller ID alerting signal will be
transmitted. The handle is returned by the call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulPlayoutPort cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_ROUT

This is the channel port on which the caller ID alerting signal will be transmitted.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_ROUT

ulDurationMs cOCT6100_CALLER_ID_AS_DURATION_80_MS
cOCT6100_CALLER_ID_AS_DURATION_100_MS

This parameter specifies the duration, in milliseconds, of the alerting signal.
Currently, 2 durations are supported: 80 and 100 milliseconds. For Bellcore type
generator, this should be set to 80 milliseconds. For the ETSI on-hook alerting
signal, this should be set to 100 milliseconds. For the ETSI off-hook alerting
signal, this should be set to 80 milliseconds.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 135 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulPreTransmitDelayMs 0 - 60000

This parameter specifies the amount of pure silence, in milliseconds, that is
inserted before the caller ID alerting signal is transmitted. For example, if the
ringing time is 2 seconds and the user wishes to wait 200 milliseconds after the
ring has stopped before transmitting the caller ID alerting signal, this parameter
would be set to 2200 ms.
Direction: IN Type: UINT32
Default: 0

fNotifyOnTransmitEnd TRUE / FALSE

This flag indicates whether or not a buffer playout event of type
cOCT6100_BUFFER_PLAYOUT_EVENT_CALLER_ID_AS_STOP should be
generated when playout of the alerting signal terminates. The events can be
retrieved via a call to Oct6100BufferPlayoutGetEvent. This feature is only
available if the user allocated a software buffer to store the buffer playout events,
when the chip was opened, using the ulSoftBufferPlayoutEventsBufSize
parameter. Note that issuing a call to Oct6100CallerIdAbort will prevent and
event from being generated when the transmission of the alerting signal aborts.
Direction: IN Type: BOOL
Default: FALSE

ulUserEventId 32-bit value

User specified field stored in the API buffer playout instance structure. This
parameter is returned with the channel handle and port when a buffer playout
event is detected for the current channel and port. Only used when the
fNotifyOnTransmitEnd flag is set.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 136 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.7.5 Oct6100CallerIdAbort

This function allows the user to abort transmission of a caller identification message. This
function can be used to stop transmission when the called party goes off-hook.

Note that since caller ID uses buffer playout, any buffer that was playing using the buffer
playout functions will also be stopped.

Usage

#include “oct6100_api.h”

UINT32 Oct6100CallerIdAbortDef (
tPOCT6100_CALLER_ID_ABORT f_pIdAbort);

UINT32 Oct6100CallerIdAbort (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_CALLER_ID_ABORT f_pIdAbort);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pIdTransmit Pointer to a tOCT6100_CALLER_ID_ABORT structure. The
structure’s elements are defined below. The user allocates this
structure.

5.7.5.1 tOCT6100_CALLER_ID_ABORT Structure

ulChannelHndl handle

The handle that identifies the channel on which transmission should be aborted.
The handle is returned by the call to Oct6100ChannelOpen.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulPlayoutPort cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_ROUT

This is the channel port on which the transmission should be aborted.
Direction: IN Type: UINT32
Default: cOCT6100_CHANNEL_PORT_ROUT

pfAlreadyAborted TRUE / FALSE

Optional output parameter. This flag will be set to FALSE if a caller ID message
was playing on the selected port before aborting.
Direction: OUT Type: PBOOL
Default: NULL

pfNotifyOnTransmitEnd TRUE / FALSE

Optional output parameter. This parameter returns the user configuration set
when the transmission was started.
Direction: OUT Type: PBOOL
Default: NULL

Revision 3.1 Page 137 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.8 Event functions
Oct6100EventGet functions are used to retrieve the tone detection events generated in
the chip, as well as the buffer playout events.

5.8.1 Oct6100EventGetTone

This function allows the user to retrieve tone detection events. When the appropriate tone
detector is enabled, an event is generated when a tone is detected or when the tone
stops being detected.

When this function is called, it is possible to receive both the “start” and “stop” event for
the same tone. The device generates tone events every 32 ms. If the tone starts and
stops in less that 64 ms, then both events will appear in the API queue at the same time.

Usage

#include “oct6100_api.h”

UINT32 Oct6100EventGetToneDef (
 tPOCT6100_EVENT_GET_TONE f_pEventGetTone);

UINT32 Oct6100EventGetTone (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_EVENT_GET_TONE f_pEventGetTone);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pEventGetTone Pointer to a tOCT6100_GET_TONE_EVENT structure. The
structure’s elements are defined below. The user allocates this
structure.

5.8.1.1 tOCT6100_EVENT_GET_TONE Structure

pToneEvent pointer

Pointer to an array of tOCT6100_TONE_EVENT structures. The user must
allocate this memory; its size must be consistent with ulMaxToneEvent.
Direction: IN/OUT Type: tPOCT6100_TONE_EVENT
Default: NULL

ulMaxToneEvent 1 – ulSoftToneEventsBufferSize

Maximum number of tone events that can be returned to the user. The upper
range of this parameter is defined by the ulSoftToneEventsBufSize parameter
of the tOCT6100_CHIP_OPEN structure.
Direction: IN Type: UINT32
Default: 1

ulNumValidToneEvent 0 - ulMaxToneEvent

The number of tone events returned.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 138 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fResetBufs TRUE / FALSE

Reset flag for the tone events buffer. Setting this parameter to TRUE will empty
the tone events buffer without returning them.
Direction: IN Type: BOOL
Default: FALSE

fMoreEvents TRUE / FALSE

Indicates if more tone events are present in the software buffer.
Direction: OUT Type: BOOL
Default: FALSE

5.8.1.2 tOCT6100_TONE_EVENT Structure

ulChannelHndl handle

Handle of the channel that generated the message.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulUserChanId 32-bit value

User-defined field associated to the channel that generated this event.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulToneDetected see Tone Detection Functions Section

Tone value associated to the message.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulTimestamp 32-bit value

Value of the local timestamp when the message was created. This timestamp is
in H.1x0 frame count.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulEventType cOCT6100_TONE_STOP
cOCT6100_TONE_PRESENT

This is the reported event type.
When the tone is detected, the event type reported is
cOCT6100_TONE_PRESENT.
If the tone was present but detection stopped, the event type is
cOCT6100_TONE_STOP.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 139 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulExtToneDetectionPort cOCT6100_CHANNEL_PORT_RIN
cOCT6100_CHANNEL_PORT_SIN
cOCT6100_INVALID_VALUE

Channel port on which the tone was detected. If the channel is not in extended
tone detection mode, the API will return a value of cOCT6100_INVALID_VALUE,
which can be ignored. This mode is enabled by setting the
fEnableExtToneDetection parameter to TRUE in the Oct6100ChipOpen
function call and the Oct6100ChannelOpen function.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 140 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.8.2 Oct6100BufferPlayoutGetEvent

This function allows the user to retrieve buffer playout events. An event can be generated
when a buffer list stops playing.

Usage

#include “oct6100_api.h”

UINT32 Oct6100BufferPlayoutGetEventDef (
 tPOCT6100_BUFFER_PLAYOUT_GET_EVENT f_pBufPlayoutGetEvent);

UINT32 Oct6100BufferPlayoutGetEvent (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_BUFFER_PLAYOUT_GET_EVENT f_pBufPlayoutGetEvent);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pBufPlayoutGetEvent

Pointer to a tOCT6100_BUFFER_PLAYOUT_GET_EVENT
structure. The structure’s elements are defined below. The user
allocates this structure.

5.8.2.1 tOCT6100_BUFFER_PLAYOUT_GET_EVENT Structure

pBufferPlayoutEvent pointer

Pointer to an array of tOCT6100_BUFFER_PLAYOUT_EVENT structures. The
user must allocate this memory; its size must be consistent with ulMaxEvent.
This structure is explained below.
Direction: IN/OUT Type: tPOCT6100_BUFFER_PLAYOUT_EVENT
Default: NULL

ulMaxEvent 1 - ulSoftBufPlayouEventsBufSize

Maximum number of buffer playout events that can be returned to the user. The
upper range of this parameter is defined by the ulSoftBufPlayouEventsBufSize
parameter of the tOCT6100_CHIP_OPEN structure.
Direction: IN Type: UINT32
Default: 1

ulNumValidEvent 0 - ulMaxEvent

The number of valid buffer playout events returned.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

fResetBufs TRUE / FALSE

Reset flag for the buffer playout events buffer.
Direction: IN Type: BOOL
Default: FALSE

Revision 3.1 Page 141 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fMoreEvents TRUE / FALSE

Indicates if more buffer playout events are present in the software buffer.
Direction: OUT Type: BOOL
Default: FALSE

5.8.2.2 tOCT6100_BUFFER_PLAYOUT_EVENT Structure

ulChannelHndl handle

Handle of the channel where the event was detected.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_HANDLE

ulUserChanId 32-bit value

User-defined field associated to the channel where this event was detected.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulChannelPort cOCT6100_CHANNEL_PORT_SOUT
cOCT6100_CHANNEL_PORT_ROUT

This is the channel port where the event was detected.
Direction: OUT Type: UINT32
Default: cOCT6100_CHANNEL_PORT_ROUT

ulUserEventId 32-bit value

User-defined field supplied when the Oct6100BufferPlayoutStart,
Oct6100CallerIdTransmit or Oct6100CallerIdTransmitAs command was
issued for the channel and port where the buffer playout event was detected.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulTimestamp 32-bit value

Value of the timestamp, in milliseconds, when the event was created. The
precision of this value is dependent on the frequency at which the interrupt
service routine is called.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 142 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulEventType cOCT6100_BUFFER_PLAYOUT_EVENT_STOP
cOCT6100_BUFFER_PLAYOUT_EVENT_CALLER_ID_STOP
cOCT6100_BUFFER_PLAYOUT_EVENT_CALLER_ID_AS_STOP

This is the reported buffer playout event type. If a playout buffer currently playing
stops, the event type is returned according to the command which started playing
it:

- Oct6100BufferPlayoutStart will generate an event of type
cOCT6100_BUFFER_PLAYOUT_EVENT_STOP.

- Oct6100CallerIdTransmit will generate an event of type
cOCT6100_BUFFER_PLAYOUT_EVENT_CALLER_ID_STOP.

- Oct6100CallerIdTransmitAs will generate an event of type
cOCT6100_BUFFER_PLAYOUT_EVENT_CALLER_ID_AS_STOP.

Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

Revision 3.1 Page 143 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.9 TSI Connection Functions
These functions are used to open and close a TSI connection. A TSI connection reads
one TDM sample from a TSST each 125 usec, and outputs it on another one. This
functionality is useful for debugging or board tests. TSI connections are not used for
normal device operation.

5.9.1 Oct6100TsiCnctOpen

This function opens a connection between two TSSTs.

Usage

#include “oct6100_api.h”

UINT32 Oct6100TsiCnctOpenDef (
 tPOCT6100_ TSI_CNCT_OPEN f_pTsiCnctOpen);

UINT32 Oct6100TsiCnctOpen (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_TSI_CNCT_OPEN f_pTsiCnctOpen);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pTsiCnctOpen Pointer to a tOCT6100_TSI_CNCT_OPEN structure. The
structure’s elements are defined below. The user allocates this
structure.

5.9.1.1 tOCT6100_TSI_CNCT_OPEN Structure

pulTsiCnctHndl handle

The parameter returns the handle for the created TSI connection. This handle is
a unique value that identifies the channel in all future function calls affecting this
connection. The user allocates the memory for this pointer.
Direction: IN/OUT Type: PUINT32
Default: NULL

ulInputTimeslot 0 – 255 for 16 MHz stream frequency
0 – 127 for 8 MHz stream frequency
0 – 63 for 4 MHz stream frequency
0 – 31 for 2 MHz stream frequency

The timeslot of the TSI connection input TSST. Note that allowed values are
affected by the frequency of the clock that controls the ulInputStream.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TIMESLOT

Revision 3.1 Page 144 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulInputStream 0 – 31 for ulMaxTdmStreams of 32
0 – 15 for ulMaxTdmStreams of 16
0 – 7 for ulMaxTdmStreams of 8
0 – 3 for ulMaxTdmStreams of 4

The stream of the TSI connection input TSST. Note that allowed values are also
affected by the ulMaxTdmStreams value specified at the Oct6100ChipOpen
call.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_STREAM

ulOutputTimeslot see ulInputTimeslot parameter

The timeslot of the TSI connection output TSST. Note that allowed values are
affected by the frequency of the clock that controls the ulOutputStream.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TIMESLOT

ulOutputStream see ulInputStream parameter

The stream of the TSI connection output TSST. Note that allowed values are also
affected by the ulMaxTdmStreams value specified at the Oct6100ChipOpen
call.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_STREAM

Revision 3.1 Page 145 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.9.2 Oct6100TsiCnctClose

This function closes a TSI connection.

Usage

#include “oct6100_api.h”

UINT32 Oct6100TsiCnctCloseDef (
 tPOCT6100_TSI_CNCT_CLOSE f_pTsiCnctClose);

UINT32 Oct6100TsiCnctClose (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_TSI_CNCT_CLOSE f_pTsiCnctClose);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pTsiCnctClose Pointer to a tOCT6100_TSI_CNCT_CLOSE structure. The
structure’s elements are defined below. The user allocates this
structure.

5.9.2.1 tOCT6100_TSI_CNCT_CLOSE Structure

ulTsiCnctHndl handle

Handle of the TSI connection to be closed. This handle is returned by a call to
Oct6100TsiCnctOpen. The function sets the handle to an invalid value.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 146 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.10 ADPCM Channel Functions
These functions are used to open and close an ADPCM compression or decompression
channel. An ADPCM channel reads one TDM sample from a TSST each 125 usec, and
outputs the compressed or decompressed result on another one.

5.10.1 Oct6100AdpcmChanOpen

This function opens an ADPCM channel.

Note that such a channel also requires an echo processor.

Usage

#include “oct6100_api.h”

UINT32 Oct6100AdpcmChanOpenDef (
 tPOCT6100_ ADPCM_CHAN_OPEN f_pAdpcmChanOpen);

UINT32 Oct6100AdpcmChanOpen (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_ADPCM_CHAN_OPEN f_pAdpcmChanOpen);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pAdpcmChanOpen Pointer to a tOCT6100_ADPCM_CHAN_OPEN structure. The
structure’s elements are defined below. The user allocates this
structure.

5.10.1.1 tOCT6100_ADPCM_CHAN_OPEN Structure

pulChanHndl handle

This parameter returns the handle for the created ADPCM channel. This handle
is a unique value that identifies the channel in all future function calls affecting
this channel. The user allocates the memory for this pointer.
Direction: IN/OUT Type: PUINT32
Default: NULL

ulChanMode cOCT6100_ADPCM_ENCODING
cOCT6100_ADPCM_DECODING

Codec configuration of the channel. If set to cOCT6100_ADPCM_ENCODING,
the channel will compress PCM samples according to ulEncodingRate. If set to
cOCT6100_ADPCM_DECODING, the channel will decompressed the input
samples according to ulDecodingRate.
Direction: IN Type: UINT32
Default: cOCT6100_ADPCM_ENCODING

Revision 3.1 Page 147 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulEncodingRate cOCT6100_G711_64KBPS
cOCT6100_G726_40KBPS
cOCT6100_G726_32KBPS
cOCT6100_G726_24KBPS
cOCT6100_G726_16KBPS
cOCT6100_G727_40KBPS_4_1
cOCT6100_G727_40KBPS_3_2
cOCT6100_G727_40KBPS_2_3
cOCT6100_G727_32KBPS_4_0
cOCT6100_G727_32KBPS_3_1
cOCT6100_G727_32KBPS_2_2
cOCT6100_G727_24KBPS_3_0
cOCT6100_G727_24KBPS_2_1
cOCT6100_G727_16KBPS_2_0

This parameter represents the rate of the encoder. G.727 defines contain a
suffix: The first number is the number of core bits, and the second is the number
of enhanced bits
The API will ignore this parameter if ulChanMode is set to
cOCT6100_ADPCM_DECODING.
Direction: IN Type: UINT32
Default: cOCT6100_G726_32KBPS

ulDecodingRate cOCT6100_G711_64KBPS
cOCT6100_G726_40KBPS
cOCT6100_G726_32KBPS
cOCT6100_G726_24KBPS
cOCT6100_G726_16KBPS
cOCT6100_G727_2C_ENCODED
cOCT6100_G727_3C_ENCODED
cOCT6100_G727_4C_ENCODED
cOCT6100_G726_ENCODED
cOCT6100_G711_G726_ENCODED
cOCT6100_G711_G727_2C_ENCODED
cOCT6100_G711_G727_3C_ENCODED
cOCT6100_G711_G727_4C_ENCODED

The API will ignore this parameter if ulChanMode is set to
cOCT6100_ADPCM_ENCODING.
This parameter represents the rate of the decoder. G.727 defines contain a
suffix: The first number is the number of core bits, and the second is the number
of enhanced bits
If the decoding rate is a combination of G.711 with either G.726 or G.727, the
number of TSSTs assigned to the Decoder input port must be set to 2.
Direction: IN Type: UINT32
Default: cOCT6100_G726_32KBPS

Revision 3.1 Page 148 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulInputTimeslot 0 – 255 for 16 MHz stream frequency
0 – 127 for 8 MHz stream frequency
0 – 63 for 4 MHz stream frequency
0 – 31 for 2 MHz stream frequency

The timeslot of the channel input TSST. Note that allowed values are affected by
the frequency of the clock that controls the ulInputStream.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TIMESLOT

ulInputStream 0 – 31 for ulMaxTdmStreams of 32
0 – 15 for ulMaxTdmStreams of 16
0 – 7 for ulMaxTdmStreams of 8
0 – 3 for ulMaxTdmStreams of 4

The stream of the channel input TSST. Note that allowed values are also
affected by the ulMaxTdmStreams value specified at the Oct6100ChipOpen
call.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_STREAM

ulInputNumTssts 1, 2

This parameter indicates the number of TSSTs used to read the input samples.
See the TSST Formats section for more information.
Direction: IN Type: UINT32
Default: 1

ulInputPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW

PCM law of the samples read from the H.100 bus.
Direction: IN Type: UINT32
Default: cOCT6100_PCM_U_LAW

ulOutputTimeslot see ulInputTimeslot parameter

The timeslot of the channel output TSST. Note that allowed values are affected
by the frequency of the clock that controls the ulOutputStream.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_TIMESLOT

ulOutputStream see ulInputStream parameter

The stream of the channel output TSST. Note that allowed values are also
affected by the ulMaxTdmStreams value specified at the Oct6100ChipOpen
call.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_STREAM

ulOutputNumTssts 1, 2

This parameter indicates the number of TSSTs used to drive the output samples.
See the TSST Formats section for more information.
Direction: IN Type: UINT32
Default: 1

Revision 3.1 Page 149 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulOutputPcmLaw cOCT6100_PCM_U_LAW
cOCT6100_PCM_A_LAW

PCM law of the samples written to the H.100 bus.
Direction: IN Type: UINT32
Default: cOCT6100_PCM_U_LAW

ulAdpcmNibblePosition cOCT6100_ADPCM_IN_LOW_BITS
cOCT6100_ADPCM_IN_HIGH_BITS

This is the position of the ADPCM bits within the H.100 TDM timeslot.
Direction: IN Type: UINT32
Default: cOCT6100_ADPCM_IN_LOW_BITS

Revision 3.1 Page 150 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.10.2 Oct6100AdpcmChanClose

This function closes an ADPCM channel.

Usage

#include “oct6100_api.h”

UINT32 Oct6100AdpcmChanCloseDef (
 tPOCT6100_ADPCM_CHAN_CLOSE f_pAdpcmChanClose);

UINT32 Oct6100AdpcmChanClose (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_ADPCM_CHAN_CLOSE f_pAdpcmChanClose);

Parameters

f_pApiInstance Pointer to an instance structure of the chip.

f_pAdpcmChanClose Pointer to a tOCT6100_ADPCM_CHAN_CLOSE structure. The
structure’s elements are defined below. The user allocates this
structure.

5.10.2.1 tOCT6100_ADPCM_CHAN_CLOSE Structure

ulChanHndl handle

Handle of the ADPCM channel to be closed. This handle is returned by a call to
Oct6100AdpcmChanOpen. The function sets the handle to an invalid value.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 151 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.11 Interrupt Functions
Refer to the Target System Architecture description for the interrupt treatment flow.

The interrupts are divided into the following categories:

Fatal – Indicates that the chip has encountered a fatal error, and must be reset
to operate properly.

Error – Indicates that the chip has detected an error that must be handled by
the user application. There is no recovery required by the chip, the
severity and/or recovery, if any, can only be determined by the
application.

API Sync – This interrupt is used by the API to maintain synchronization with the
chip. The API schedules interrupts at regular intervals to cause the ISR
to be called. This is done to prevent corruption in the device statistics
and counters caused by counters wrapping.

The category to which an interrupt belongs to is indicated by the name’s prefix of
interrupt.

Revision 3.1 Page 152 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.11.1 Oct6100InterruptServiceRoutine

This function is called by the OS Interrupt Service Routine (ISR) to service the interrupts.
It takes the appropriate action to treat any active interrupts when called by the OS ISR.

The user can enable interrupts using the Oct6100ChipOpen or
Oct6100InterruptConfigure function. Disabled interrupts are still serviced by this routine
but they do not generate a hardware interrupt on the interrupt pin of the device.

To create a polled system, all interrupts can be set to “disabled”. The user then becomes
responsible for calling this routine often enough for proper operation of the device.

This function will reset all conditions causing the interrupt. This ensures that the interrupt
pin will be inactive when it returns from the function call.

Usage

#include “oct6100_api.h”

void Oct6100InterruptServiceRoutineDef (
tPOCT6100_INTERRUPT_FLAGS f_pInterruptFlags);

void Oct6100InterruptServiceRoutine (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_INTERRUPT_FLAGS f_pInterruptFlags);

Parameters

f_pApiInstance Pointer to the tOCT6100_INSTANCE_API structure of the chip to be
serviced.

f_pInterruptFlags Pointer to a tOCT6100_INTERRUPT_FLAGS structure. This structure
indicates which errors or alarms were detected or treated by the
Oct6100InterruptServiceRoutine function.

5.11.1.1 tOCT6100_INTERRUPT_FLAGS Structure

The following parameters indicate the events detected during the ISR operation.

fFatalGeneral TRUE / FALSE

If TRUE, an internal fatal chip error has been detected.
Direction: OUT Type: BOOL
Default: FALSE

ulFatalGeneralFlags 32-bit value

If fFatalGeneral is set to TRUE, this mask contains the type of fatal general
error(s) detected. Please report this information to Octasic. The mask can be
composed of the following error types:

- cOCT6100_FATAL_GENERAL_ERROR_TYPE_1
- cOCT6100_FATAL_GENERAL_ERROR_TYPE_2
- cOCT6100_FATAL_GENERAL_ERROR_TYPE_3
- cOCT6100_FATAL_GENERAL_ERROR_TYPE_4
- cOCT6100_FATAL_GENERAL_ERROR_TYPE_5

Direction: OUT Type: UINT32
Default: 0

Revision 3.1 Page 153 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fFatalReadTimeout TRUE / FALSE

If TRUE, a read to the external memory has failed.
Direction: OUT Type: BOOL
Default: FALSE

fErrorRefreshTooLate TRUE / FALSE

If TRUE, refreshes to the external memory may have exceeded the configured
period. Information in the external memory bank may be corrupt
Direction: OUT Type: BOOL
Default: FALSE

fErrorPllJitter TRUE / FALSE

If TRUE, the chip read invalid data from the external memory. Information in the
external memory bank may have been corrupted. Contact Octasic if this error
persists.
Direction: OUT Type: BOOL
Default: FALSE

fErrorOverflowToneEvents TRUE / FALSE

If TRUE, the tone event buffer located in external memory has overflowed.
Direction: OUT Type: BOOL
Default: FALSE

fErrorH100OutOfSync TRUE / FALSE

If TRUE, the H.100 slave has lost its framing on the bus, causing the chip’s
H.100 data pins to be tri-stated.
Direction: OUT Type: BOOL
Default: FALSE

fErrorH100ClkA TRUE / FALSE

If TRUE, the CT_C8_A clock behavior does not conform to the H.100
specification.
Direction: OUT Type: BOOL
Default: FALSE

fErrorH100FrameA TRUE / FALSE

If TRUE, the CT_FRAME_A clock behavior does not conform to the H.100
specification.
Direction: OUT Type: BOOL
Default: FALSE

fErrorH100ClkB TRUE / FALSE

If TRUE, the CT_C8_B clock is not running at 16.384 MHz. This parameter is
valid only if the tOCT6100_CHIP_OPEN parameter fEnableFastH100Mode is
set to TRUE
Direction: OUT Type: BOOL
Default: FALSE

Revision 3.1 Page 154 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

fToneEventsPending TRUE / FALSE

If TRUE, tone events are present within the tone event software buffer. Use
function Oct6100EventGetTone to retrieve these events. Note that tone events
do not generate a hardware interrupt in an interrupt-driven system. The user
should poll the ISR regularly and rapidly enough to reach the desired tone
detection responsiveness.
Direction: OUT Type: BOOL
Default: FALSE

fBufferPlayoutEventsPending TRUE / FALSE

If TRUE, buffer playout events are present within the buffer playout event
software buffer. Use function Oct6100BufferPlayoutGetEvent to retrieve these
events. Note that buffer playout events do not generate a hardware interrupt in
an interrupt-driven system. The user should poll the ISR regularly and rapidly
enough to reach the desired buffer playout event detection responsiveness.
Direction: OUT Type: BOOL
Default: FALSE

fApiSynch TRUE / FALSE

If TRUE, the chip interrupted the API for purposes of maintaining synchronization
with the API. This is used for information purposes only.
Direction: OUT Type: BOOL
Default: FALSE

Revision 3.1 Page 155 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.11.2 Oct6100InterruptMask

The operating system’s interrupt service routine uses this function to disable the chip’s
interrupt pin. When the chip generates an interrupt, the OS starts its interrupt service
routine (see the System Architecture description in the Overview section).

The API’s ISR must be called to treat the interrupt. Either the OS calls the API’s ISR
directly from its ISR, or it defers the treatment of the ISR to a later time, and at a lower
CPU priority level. In this case, the interrupt pin of the chip must be disabled until the
current interrupt has been treated. This function serves this purpose.

The function first reads the chip’s interrupt register to determine the source of the
interrupt (many devices can share the same interrupt line). If the chip is the source of the
interrupt, the function performs a single write to the chip’s interrupt register, which
disables the interrupt pins from generating another interrupt for up to 60 ms.

After the disable timer has expired, the interrupt pin will be reactivated. If the conditions
causing the original interrupt persist or a new event has occurred, the interrupt pin will be
asserted right after the disable timer expires. The API’s ISR will re-enable the interrupt
pin when it completes allowing new interrupts to occur in potentially less than 60 ms.

Usage

#include “oct6100_apimi.h”

UINT32 Oct6100InterruptMaskDef (
tPOCT6100_INTERRUPT _MASK f_pInterruptMask);

UINT32 Oct6100InterruptMask (
tPOCT6100_INTERRUPT _MASK f_pInterruptMask);

Parameters

f_pInterruptMask Pointer to a tOCT6100_INTERRUPT_MASK structure. The
structure’s elements are defined below.

5.11.2.1 tOCT6100_INTERRUPT_MASK Structure

ulUserChipIndex identifier

This parameter identifies the chip instance that is targeted. It corresponds to the
ulUserChipId parameter of the Oct6100ChipOpen function. See the System
Architecture description in the Overview section for more details.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_CHIP_NUMBER

Revision 3.1 Page 156 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.11.3 Oct6100InterruptConfigure

This function is used to change the current configuration of the interrupt servicing.

Usage

#include “oct6100_api.h”

void Oct6100InterruptConfigureDef (
 tPOCT6100_INTERRUPT_CONFIGURE f_pInterruptConfigure);

void Oct6100InterruptConfigure (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_INTERRUPT_CONFIGURE f_pInterruptConfigure);

Parameters

f_pApiInstance Pointer to the tOCT6100_INSTANCE_API structure of the chip
for which the interrupts are to be reconfigured.

f_pInterruptConfigure Pointer to an interrupt configuration structure. The structure’s
elements are defined below.

5.11.3.1 tOCT6100_INTERRUPT_CONFIGURE Structure
The following parameters determine which events will trigger an interrupt, and how that
event will be treated by the API’s ISR. The description of the interrupts is provided in the
description of the tOCT6100_INTERRUPT_FLAGS structure.

Interrupts can be permanently disabled, preventing them from asserting the hardware
interrupt pin (cOCT6100_INTERRUPT_DISABLE).

If the interrupt is enabled, it can operate in one of two modes:

. It can be reset and kept enabled (cOCT6100_INTERRUPT_NO_TIMEOUT)
allowing another interrupt of the same type to be detected immediately.

. It can be cleared and disabled for a certain period
(cOCT6100_INTERRUPT_TIMEOUT), masking the interrupt for a configurable
amount of time. This can be used to prevent being flooded by less important
interrupts.

ulFatalGeneralConfig cOCT6100_INTERRUPT_DISABLE
cOCT6100_INTERRUPT_NO_TIMEOUT

The configuration of the general fatal interrupt. The interrupt can be prevented
from asserting the hardware interrupt pin (cOCT6100_INTERRUPT_DISABLE).
If the interrupt is enabled, it can be reset and kept enabled
(cOCT6100_INTERRUPT_NO_TIMEOUT). The configuration of this interrupt can
be changed dynamically, see Oct6100InterruptConfigure.
Default: cOCT6100_INTERRUPT_NO_TIMEOUT

Revision 3.1 Page 157 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulFatalMemoryConfig cOCT6100_INTERRUPT_DISABLE
cOCT6100_INTERRUPT_NO_TIMEOUT
cOCT6100_INTERRUPT_TIMEOUT

The configuration of all fatal interrupts associated to the operation of the external
memories. The interrupt can be disabled from asserting the hardware interrupt
pin (cOCT6100_INTERRUPT_DISABLE). If the interrupt is enabled, it can
behave in one of two ways once the interrupt has been treated. It can be reset
and kept enabled (cOCT6100_INTERRUPT_NO_TIMEOUT) or it can be cleared
and disabled for a timeout period time (cOCT6100_INTERRUPT_TIMEOUT). In
the latter case, the timeout period is specified by the ulFatalMemoryTimeout
parameter. The configuration of this interrupt can be changed dynamically, see
Oct6100InterruptConfigure. This parameter indicates the operation of the
following members of the tOCT6100_INTERRUPT_FLAGS structure:

fFatalReadTimeout
Default: cOCT6100_INTERRUPT_NO_TIMEOUT

ulErrorMemoryConfig see ulFatalMemoryConfig

The configuration of all data integrity interrupts associated to the operation of the
external memories. This parameter indicates the operation of the following
members of the tOCT6100_INTERRUPT_FLAGS structure:

fErrorRefreshTooLate
fErrorPllJitter

Default: cOCT6100_INTERRUPT_NO_TIMEOUT

ulErrorOverflowToneEventsConfig see ulFatalMemoryConfig

The configuration of all error interrupts associated to the overflow of the tone
events buffer contained in external memory. This parameter indicates the
operation of the following members of the tOCT6100_INTERRUPT_FLAGS
structure:

fErrorOverflowToneEvents
Default: cOCT6100_INTERRUPT_NO_TIMEOUT

ulErrorH100Config see ulFatalMemoryConfig

The configuration of all error interrupts associated to H.100 bus. This parameter
indicates the operation of the following members of the
tOCT6100_INTERRUPT_FLAGS structure:

fErrorH100OutOfSync
fErrorH100ClkA
fErrorH100ClkB
fErrorH100FrameA

Default: cOCT6100_INTERRUPT_NO_TIMEOUT

ulFatalMemoryTimeout 10 – 10000 ms

This parameter specifies the timeout period of all the fatal memory interrupts
when the ulFatalMemoryConfig parameter specifies
cOCT6100_INTERRUPT_TIMEOUT. This parameter is rounded up to the next
nearest multiple of 10 ms before being applied.
Direction: IN Type: UINT32
Default: 100

Revision 3.1 Page 158 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulErrorMemoryTimeout see ulFatalMemoryTimeout

ulErrorOverflowToneEventsTimeout see ulFatalMemoryTimeout

ulErrorH100Timeout see ulFatalMemoryTimeout

Revision 3.1 Page 159 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.12 Remote Debugging
The API supports remote debugging. This allows the customer or an Octasic support engineer to
run a debugger executable remotely. This executable is provided by Octasic and is called the
Oct6100 Remote Client. This approach allows the user to monitor the device and to perform
real-time captures of the voice streams and captures of the device’s internal state.
Communication between the debugger executable and the API is done via a non-guaranteed
packet based messaging protocol using IP and UDP.

LAN/WAN

User application
Packet receive / API call

Octasic
OCT6100 IC

OCT6100
Remote Client

Executable

MS Windows
Network Stack

Ethernet
NIC

Embedded OS
Network Stack

Ethernet
NIC

Octasic
OCT6100

API

MS Windows-based
PC

Customer System
"Target" for debugging

When the OCT6100 Remote Client is launched, a destination IP address and UDP port are
selected. A socket is opened in the customer’s system to accept these packets. When packets
are received with the agreed source and destination addresses and ports, the packet must be
passed to the API. The API only needs the packet’s payload. Thus, the user must provide code
to open a Socket, receive the Remote Client’s packets, strip off the IP and UDP headers, and
pass the payload to the API. The packet payload is passed to the API via the
Oct6100RemoteDebug function. Once the API call completes, it will return a “response” packet.
It is the user’s responsibility to send this packet back to the Oct6100 Remote Client.

In the case where the target platform does not support IP/UDP, software can be written by the
user to convert the remote debugger’s packets to another messaging protocol supported by the
target platform. For example, in a CompactPCI environment, the main CPU board can convert
packets received on its Ethernet port to messages passed onto another CompactPCI board on
which the target platform resides. This can be over PCI for example. An application must be
written by the user to open a target socket on the CPU board and to send/receive debug
messages to the target platform. The messaging protocol between the CPU board and the target
platform is design-specific. Octasic can provide assistance with the definition of such an interface.

Revision 3.1 Page 160 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.12.1 Oct6100RemoteDebug

This function interprets the remote debugging packets received by the user’s software.
Commands contained in the packet are executed by the API. In addition, a response
packet is constructed and returned by the function. It is the responsibility of the user’s
software to transmit the response packet back to the source of the debugging packet.

Usage

#include “oct6100_api.h”

void Oct6100RemoteDebugDef (
 tPOCT6100_REMOTE_DEBUG f_pRemoteDebug);

void Oct6100RemoteDebug (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_REMOTE_DEBUG f_pRemoteDebug);

Parameters

f_pApiInstance pointer to the tOCT6100_INSTANCE_API structure of the chip for
which the interrupts are to be reconfigured.

f_pRemoteDebug pointer to a tOCT6100_REMOTE_DEBUG structure. The definitions
of the structure’s elements are listed below.

5.12.1.1 Structure tOCT6100_REMOTE_DEBUG

ulReceivedPktLength 32 – 32768

The length of the received packet, in bytes. The length must be a multiple of 4.
Direction: IN Type: UINT32
Default: 0

pulReceivedPktPayload pointer to array

The payload of the received packet. The payload is contained in an array of
UINT32s. The data is placed in the array as follows:
 31 24 23 16 15 8 7 0
pulReceivedPktPayload[0] = Byte 0 Byte 1 Byte 2 Byte 3
pulReceivedPktPayload[1] = Byte 4 Byte 5 Byte 6 Byte 7
 ……………………………………………………………….
Where Byte X is the Xth received byte of the packet’s payload.
Direction: IN/IN Type: PUINT32
Default: NULL

ulMaxResponsePktLength 32 – 32768

The size of the buffer provided to contain the response packet payload
constructed by the API, pulResponsePktPayload, in bytes. Must always be
equal or greater than ulReceivedPktLength.
Direction: IN Type: UINT32
Default: 0

Revision 3.1 Page 161 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulResponsePktLength 0 – 32768

The actual size of the response packet payload constructed by the API,
contained in the user provided buffer pulResponsePktPayload, in bytes.
Direction: OUT Type: UINT32
Default: 0

pulResponsePktPayload pointer to array

The payload of the API constructed response packet. The payload is contained
in an array of UINT32s. The data is placed in the array as follows:
 31 24 23 16 15 8 7 0
pulResponsePktPayload[0] = Byte 0 Byte 1 Byte 2 Byte 3
pulResponsePktPayload[1] = Byte 4 Byte 5 Byte 6 Byte 7
 ……………………………………………………………….
Where Byte X is the Xth transmitted byte of the packet’s payload.
Direction: IN/OUT Type: PUINT32
Default: NULL

Revision 3.1 Page 162 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.13 Monitoring Functions
To make board-level integration and debugging easier, the OCT6100 API offers monitoring
functions allowing the user to retrieve live debug information specific to a channel from the chip.
This live information can then be stored into a binary file and sent to Octasic Support.

The fEnableChannelRecording parameter of the Oct6100ChipOpen function must be set to
TRUE. In the case of 672 channel devices, 1 channel will be used for this function.

The first thing to be done when debugging a channel is to select the debug channel using the
Oct6100DebugSelectChannel function. This will tell the chip to start monitoring the channel.

Once the channel is selected, the user can dump the recorded information using the
Oct6100DebugGetData function. This dump contains, among other things, up to 2 minutes of
recorded PCM signal from all ports of the channel.

In case of a problem with the performance of the echo canceller, the host application should write
the retrieved data to a binary file and send it to Octasic Support to have the issue resolved.

All these monitoring functions can be used dynamically on any channel.

NOTE: The selected channel’s ulEchoOperationMode parameter must be different from
cOCT6100_ECHO_OP_MODE_POWER_DOWN for monitored information to be valid.

Revision 3.1 Page 163 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.13.1 Oct6100DebugSelectChannel

This function selects the debug channel to be monitored by the chip.

Usage

#include “oct6100_api.h”

void Oct6100DebugSelectChannelDef (
 tPOCT6100_DEBUG_SELECT_CHANNEL f_pDebugSelectChan);

void Oct6100DebugSelectChannel (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_DEBUG_SELECT_CHANNEL f_pDebugSelectChan);

Parameters

f_pApiInstance pointer to the tOCT6100_INSTANCE_API structure of the chip
for which the interrupts are to be reconfigured.

f_pDebugSelectChan pointer to a tOCT6100_DEBUG_SELECT_CHANNEL structure.
The definitions of the structure’s elements are listed below.

5.13.1.1 Structure tOCT6100_ DEBUG_SELECT_CHANNEL

ulChannelHndl handle

This is the handle of the channel to be monitored. This value was returned by a
call to Oct6100ChannelOpen. To stop the monitoring process, set this parameter
to cOCT6100_INVALID_HANDLE.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_HANDLE

Revision 3.1 Page 164 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

5.13.2 Oct6100DebugGetData

This function retrieves the recorded data of the debug channel. This function is called
repeatedly until all bytes have been retrieved by the API and written to a file by the user.
Refer to the sample code after the parameter description for an example on how to use
the debug functions.

Usage

#include “oct6100_api.h”

void Oct6100DebugGetDataDef (
 tPOCT6100_DEBUG_GET_DATA_ f_pGetData);

void Oct6100DebugGetData (
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_DEBUG_GET_DATA f_pGetData);

Parameters

f_pApiInstance pointer to the tOCT6100_INSTANCE_API structure of the chip
for which the interrupts are to be reconfigured.

f_pGetData pointer to a tOCT6100_DEBUG_GET_DATA structure. The
definitions of the structure’s elements are listed below.

5.13.2.1 Structure tOCT6100_ DEBUG_GET_DATA

ulGetDataMode cOCT6100_DEBUG_GET_DATA_MODE_120S
cOCT6100_DEBUG_GET_DATA_MODE_120S_LITE
cOCT6100_DEBUG_GET_DATA_MODE_16S
cOCT6100_DEBUG_GET_DATA_MODE_16S_LITE

This parameter determines how much recorded data should be retrieved. The
x120S modes will retrieve the last 2 minutes of data and the x16S modes will
retrieve the last 16 seconds of data. The “LITE” modes should always be used
unless otherwise specified by a support agent.
The error cOCT6100_ERR_NOT_SUPPORTED_DEBUG_DATA_MODE_120S
will be returned if the firmware does not support x120S modes and 2 minutes of
recorded data are requested.
The following table summarizes the resulting size of the dumps according to the
selected data mode:

Parameter value Approximate dump size
cOCT6100_DEBUG_GET_DATA_MODE_120S 4274 KB
cOCT6100_DEBUG_GET_DATA_MODE_120S_LITE 3239 KB
cOCT6100_DEBUG_GET_DATA_MODE_16S 1376 KB
cOCT6100_DEBUG_GET_DATA_MODE_16S_LITE 407 KB

Direction: IN Type: UINT32
Default: cOCT6100_DEBUG_GET_DATA_MODE_120S_LITE

Revision 3.1 Page 165 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulRemainingNumBytes 32-bit value

How many bytes are left to be retrieved before the dump is complete. The
Oct6100DebugGetData function should be called in a loop until this parameter is
equal to 0.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulTotalNumBytes 32-bit value

This is the total number of bytes that need to be retrieved to recreate the
information recorded by the chip for the debug channel, which can then be stored
in a binary file.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulMaxBytes 32-bit value

Maximum number of bytes that the user is ready to accept from the API. This
represents the size of the buffer pointed by pbyData. This value must be modulo
1024.
Direction: IN Type: UINT32
Default: cOCT6100_INVALID_VALUE

ulValidNumBytes 1 - ulMaxBytes

This is the number of bytes that are valid in the pbyData array. This value
ranges between 1 and ulMaxBytes.
Direction: OUT Type: UINT32
Default: cOCT6100_INVALID_VALUE

pbyData pointer to array

Byte pointer to a memory block where the recorded data will be copied to. The
user must allocate this memory.
Direction: IN/OUT Type: PUINT8
Default: NULL

Sample Code
The sample code below illustrates how the debug functions should be used:

void Oct6100GetDumpDataExample()
{
 tOCT6100_DEBUG_GET_DATA GetData;
 tOCT6100_DEBUG_SELECT_CHANNEL SelectChannel;
 UINT32 ulResult;
 int iNumWritten;
 FILE * pDumpFile;

 Oct6100DebugSelectChannelDef(&SelectChannel);

 /* Channel handle (returned from a call to Oct6100ChannelOpen) */
 /* of the channel to be monitored (hot channel). */
 SelectChannel.ulChannelHndl = g_ulChannelHndl;

 /* Select the debug channel. The chip firmware will start recording */

Revision 3.1 Page 166 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

 /* information on this channel. PCM data will be accumulated in the */
 /* chip's external memory for up to 2 minutes. */
 ulResult = Oct6100DebugSelectChannel(pApiInstance, &SelectChannel);
 if (ulResult != cOCT6100_ERR_OK)
 {
 /* Error handling. */
 return;
 }

 /* Wait 16 seconds for data to be recorded on the current debug channel. */
 /* During this time, information is recorded on the debug channel. */
 /* The user could, for example, play a test case buffer on the debug channel's */
 /* inputs to record how the chip reacts. When this is done, */
 /* the information can be dumped in a file and sent to Octasic for analysis. */
 Sleep(16 * 1000);

 /* Open binary file that will receive dump information to be sent to Octasic. */
 pDumpFile = fopen("oct61xx_support.bin", "wb");
 if (pDumpFile == NULL)
 {
 /* Error handling. */
 return;
 }
 Oct6100DebugGetDataDef(&GetData);

 /* Select how much data should be recorded. */
 GetData.ulGetDataMode = cOCT6100_DEBUG_GET_DATA_MODE_16S_LITE;

 /* Other available choices are: */
 /* cOCT6100_DEBUG_GET_DATA_MODE_120S */
 /* cOCT6100_DEBUG_GET_DATA_MODE_16S */
 /* cOCT6100_DEBUG_GET_DATA_MODE_120S_LITE */

 /* Set number of bytes available in transfer buffer. */
 GetData.ulMaxBytes = 2048 * 50;

 /* Allocate memory for the transfer buffer. */
 GetData.pbyData = (PUINT8)malloc(GetData.ulMaxBytes);
 if (GetData.pbyData == NULL)
 {
 /* Error handling. */
 fclose(pDumpFile);
 return;
 }

 /* Read all the dump information in a loop. */
 /* Transfer at most GetData.ulMaxBytes at a time. */
 do
 {
 /* Call the API function for retrieving the dump information. */
 ulResult = Oct6100DebugGetData(pApiInstance, &GetData);
 if (ulResult != cOCT6100_ERR_OK)
 {
 /* Error handling. */
 break;
 }

 /* Write the data at the end of the dump file. */
 iNumWritten = fwrite(GetData.pbyData, 1, GetData.ulValidNumBytes, pDumpFile);
 if (iNumWritten != (int)GetData.ulValidNumBytes)
 {
 /* Error handling. */
 break;
 }

 /* Repeat this until all the bytes have been read. */

 } while (GetData.ulRemainingNumBytes != 0x0);

 /* Free the transfer buffer. */

Revision 3.1 Page 167 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

 free(GetData.pbyData);

 /* Close the dump file. */
 fclose(pDumpFile);
}

Once the data has been recorded to the file, the Oct6100 Remote Client application can
be used to extract the PCM data files from the binary dump file. Calling the executable
with the binary dump file as an argument does this. Refer to the Remote Client User
guide (Octasic literature number oct6100ug5000) for more information.

Revision 3.1 Page 168 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6 User Supplied Functions Description
Several user-supplied functions are required for the API to be independent from the target system
and OS. This includes functions for process serialization, access to the current time, and device
access routines.

6.1 Serialization Functions
The API code needs the ability to serialize access to several internal structures. This
serialization can be performed using a semaphore, mutex, or any other serialization
method. A single serialization object is required by the API, the user supplies functions to
create and destroy this object, as well as functions to seize and release it.

Please note that the API’s code is written with the assumption that the underlying OS
uses priority inheritance for threads using the API. That is, if Thread 1 is scheduled as a
low priority thread and is currently using an exclusive resource that Thread 2, a thread
with a higher priority, needs to go on with the execution, then Thread 1’s priority will be
increased to that of Thread 2 to avoid deadlock.

6.1.1 Oct6100UserCreateSerializeObject

This function creates a user-supplied serialization object. The serialization object can be
a semaphore, mutex, or any other form of serialization. A handle that identifies the
created object is returned. The returned handle is used in any subsequent call that
affects the created serialization object.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserCreateSerializeObject(
tPOCT6100_CREATE_SERIALIZE_OBJECT f_pCreate);

Parameters

f_pCreate Pointer to a tOCT6100_CREATE_SERIALIZE_OBJECT structure.
The structure’s elements are defined below.

6.1.1.1 tOCT6100_CREATE_SERIALIZE_OBJECT Structure

ulSerialObjHndl 32-bit value

Handle returned by this routine to identify the created serialization object in future
calls that affects it.
Direction: OUT Type: UINT32
Default: N/A

Revision 3.1 Page 169 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.1.2 Oct6100UserDestroySerializeObject

Destroys the user serialization object created using
Oct6100UserCreateSerializationObject and identified by the provided handle.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserDestroySerializeObject (
tPOCT6100_DESTROY_SERIALIZE_OBJECT f_pDestroy);

Parameters

f_pDestroy Pointer to a tOCT6100_DESTROY_SERIALIZE_OBJECT
structure. The structure’s elements are defined below.

6.1.2.1 tOCT6100_DESTROY_SERIALIZE_OBJECT Structure

ulSerialObjHndl 32-bit value

Pointer to the handle returned from the call to the
Oct6100UserCreateSerializationObject function that created the object.
Direction: IN Type: UINT32
Default: N/A

Revision 3.1 Page 170 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.1.3 Oct6100UserSeizeSerializeObject

Seizes the serialization object indicated by the provided handle. The routine attempts to
seize the semaphore for the specified amount of time before returning without success.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserSeizeSerializeObject(
tPOCT6100_SEIZE_SERIALIZE_OBJECT f_pSeize);

Parameters

f_pSeize Pointer to a tOCT6100_SEIZE_SERIALIZE_OBJECT structure.
The structure’s elements are defined below.

6.1.3.1 tOCT6100_SEIZE_SERIALIZE_OBJECT Structure

ulSerialObjHndl 32-bit value

Pointer to the handle returned from the call to the
Oct6100UserCreateSerializationObject function that created the object.
Direction: IN Type: UINT32
Default: N/A

ulTryTimeMs 32-bit value,
cOCT6100_WAIT_INFINITELY

The period, in ms, during which the routine attempts to seize the serialization
object before it returns without success. If equal to 0, the function attempts to
seize the semaphore only once.
If set to cOCT6100_WAIT_INFINITELY, the function does not return until the
serialization object is seized.
Direction: IN Type: UINT32
Default: N/A

Revision 3.1 Page 171 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.1.4 Oct6100UserReleaseSerializeObject

Releases the serialization object indicated by the provided handle and seized using the
Oct6100UserSeizeSerializationObject function.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserReleaseSerializeObject(
tPOCT6100_RELEASE_SERIALIZE_OBJECT f_pRelease);

Parameters

f_pRelease Pointer to a tOCT6100_RELEASE_SERIALIZE_OBJECT
structure. The structure’s elements are defined below.

6.1.4.1 tOCT6100_RELEASE_SERIALIZE_OBJECT Structure

ulSerialObjHndl 32-bit value

Pointer to the handle returned from the call to the
Oct6100UserCreateSerializationObject function that created the object.
Direction: IN Type: UINT32
Default: N/A

Revision 3.1 Page 172 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.2 Write Functions

6.2.1 Oct6100UserWriteApi, Oct6100UserWriteOs

Performs a single word write to the chip. Any error returned by the function is considered
a fatal error. Two versions of the function are needed because the function may be
accessed from two different software layers. Refer to the System Architecture
description provided in the Overview section. Thus, each function must have a different
name, but the functionality remains identical.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserWriteApi(
 tPOCT6100_WRITE_PARMS f_pWriteParms);

UINT32 Oct6100UserWriteOs(
 tPOCT6100_WRITE_PARMS f_pWriteParms);

Parameters

f_pWriteParms Pointer to a tOCT6100_WRITE_PARMS structure. The structure’s
elements are defined below.

6.2.1.1 tOCT6100_WRITE_PARMS Structure

pProcessContext pointer

This parameter is used only if fMultiProcessSystem is set to TRUE in the
tOCT6100_OPEN_CHIP structure. Pointer to structure provided by user during
creation of local API instance.
Direction: IN Type: PVOID
Default: N/A

ulUserChipId identifier

The chip identifier parameter provided to the Oct6100ChipOpen function. (see
System Architecture).
Direction: IN Type: UINT32
Default: N/A

ulWriteAddress 0 – 0x0FFFFFFE

Start address of the word access. This address is in bytes but be on a word
boundary.
Direction: IN Type: UINT32
Default: N/A

usWriteData 16 bit field

This is the word to be written by this function call.
Direction: IN Type: UINT16
Default: N/A

Revision 3.1 Page 173 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.2.2 Oct6100UserWriteSmearApi, Oct6100UserWriteSmearOs

Performs a write of the same data word to multiple addresses of the chip. Any error
returned by this function is considered a fatal error. One or two versions of the function
are needed because the function may be accessed from one or two different software
layers, depending on the user system architecture. See the System Architecture
description in the Overview. Thus, each function must have a different name, but the
functionality remains identical.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserWriteSmearApi(
 tPOCT6100_WRITE_SMEAR_PARMS f_pWriteSmearParms);

UINT32 Oct6100UserWriteSmearOs(
 tPOCT6100_WRITE_SMEAR_PARMS f_pWriteSmearParms);

Parameters

f_pWriteSmearParms Pointer to a tOCT6100_WRITE_SMEAR_PARMS structure. The
structure’s elements are defined below.

6.2.2.1 tOCT6100_WRITE_SMEAR_PARMS Structure

pProcessContext pointer

This parameter is used only if fMultiProcessSystem is set to TRUE in the
tOCT6100_OPEN_CHIP structure. Pointer to structure provided by user during
creation of local API instance.
Direction: IN Type: PVOID
Default: N/A

ulUserChipId identifier

The chip identifier parameter provided to the Oct6100ChipOpen function. (see
System Architecture).
Direction: IN Type: UINT32
Default: N/A

ulWriteAddress 0 – 0x0FFFFFFE

Start address of the writes. This is a byte address that points to words and must
be even. This is the address of the first location. For each subsequent word, the
address is incremented by two.
Direction: IN Type: UINT32
Default: N/A

usWriteData 16 bit field

The word to be written.
Direction: IN Type: UINT16
Default: N/A

Revision 3.1 Page 174 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulWriteLength 32-bit value

The number of accesses that must be performed.
Direction: IN Type: UINT32
Default: N/A

Revision 3.1 Page 175 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.2.3 Oct6100UserWriteBurstApi, Oct6100UserWriteBurstOs

Writes an array of data words to consecutive addresses of the chip. Any error returned by
the function is considered a fatal error. Two versions of the function are needed because
the function may be accessed from two different software layers. See the System
Architecture description in the Overview. Thus, each function must have a different
name, but the functionality remains identical.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserWriteBurstApi(
 tPOCT6100_WRITE_BURST_PARMS f_pWriteBurstParms);

UINT32 Oct6100UserWriteBurstOs(
 tPOCT6100_WRITE_BURST_PARMS f_pWriteBurstParms);

Parameters

f_pWriteBurstParms Pointer to a tOCT6100_WRITE_BURST_PARMS structure. The
structure’s elements are defined below.

6.2.3.1 tOCT6100_WRITE_BURST_PARMS Structure

pProcessContext pointer

This parameter is used only if fMultiProcessSystem is set to TRUE in the
tOCT6100_OPEN_CHIP structure. Pointer to structure provided by user during
creation of local API instance.
Direction: IN Type: PVOID
Default: N/A

ulUserChipId identifier

The chip identifier parameter provided to the Oct6100ChipOpen function. (see
System Architecture).
Direction: IN Type: UINT32
Default: N/A

ulWriteAddress 0 – 0x0FFFFFFE

Start address of the writes. This is a byte address that points to words and must
be even. This is the address of the first location to write to. For each subsequent
word the address is incremented by two.
Direction: IN Type: UINT32
Default: N/A

pusWriteData

Array of words to be written starting at ulWriteAddress.
Direction: IN Type: PUINT16
Default: N/A

Revision 3.1 Page 176 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulWriteLength 32-bit value

The number of accesses that must be performed.
Direction: IN Type: UINT32
Default: N/A

Revision 3.1 Page 177 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.3 Read Functions

6.3.1 Oct6100UserReadApi, Oct6100UserReadOs

Reads a single word from the chip. Any error returned by the function is considered a
fatal error. Two versions of the function are needed because the function may be
accessed from two different software layers. See the System Architecture description in
the Overview. Thus, each function must have a different name, but the functionality
remains identical.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserReadApi(
 tPOCT6100_READ_PARMS f_pReadParms);

UINT32 Oct6100UserReadOs(
 tPOCT6100_READ_PARMS f_pReadParms);

Parameters

f_pReadParms Pointer to a tOCT6100_READ_PARMS structure. The structure’s
elements are defined below.

6.3.1.1 tOCT6100_READ_PARMS Structure

pProcessContext pointer

This parameter is used only if fMultiProcessSystem is set to TRUE in the
tOCT6100_OPEN_CHIP structure. Pointer to structure provided by user during
creation of local API instance.
Direction: IN Type: PVOID
Default: N/A

ulUserChipId identifier

The chip identifier parameter provided to the Oct6100ChipOpen function. (see
System Architecture).
Direction: IN Type: UINT32
Default: N/A

ulReadAddress 0 – 0x0FFFFFFE

This is the address of the word to be read. This is a byte address that must be on
a word boundary.
Direction: IN Type: UINT32
Default: N/A

pusReadData

Pointer to a single UINT16 to receive the data.
Direction: IN/OUT Type: PUINT16
Default: N/A

Revision 3.1 Page 178 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.3.2 Oct6100UserReadBurstApi, Oct6100UserReadBurstOs

Performs a burst of reads to the chip. Any error returned by this function is considered a
fatal error. Two versions of the function are needed because the function may be
accessed from two different software layers. See the System Architecture description in
the Overview. Thus, each function must have a different name, but the functionality
remains identical.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserReadBurstApi(
 tPOCT6100_READ_BURST_PARMS f_pReadBurstParms);

UINT32 Oct6100UserReadBurstOs(
 tPOCT6100_READ_BURST_PARMS f_pReadBurstParms);

Parameters

f_pReadBurstParms Pointer to a tOCT6100_READ_BURST_PARMS structure. The
structure’s elements are defined below.

6.3.2.1 tOCT6100_READ_BURST_PARMS Structure

pProcessContext pointer

This parameter is used only if fMultiProcessSystem is set to TRUE in the
tOCT6100_OPEN_CHIP structure. Pointer to structure provided by user during
creation of local API instance.
Direction: IN Type: PVOID
Default: N/A

ulUserChipId identifier

The chip identifier parameter provided to the Oct6100ChipOpen function. (see
System Architecture).
Direction: IN Type: UINT32
Default: N/A

ulReadAddress 0 – 0x0FFFFFFE

Start address of the burst. This is a byte address that must be on a word
boundary. This is the address of the first word in the burst. For each subsequent
word, the address is incremented by two.
Direction: IN Type: UINT32
Default: N/A

pusReadData

Pointer to an array of UINT16s used to receive the data read. Each element is
one word.
Direction: IN/OUT Type: PUINT16
Default: N/A

Revision 3.1 Page 179 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

ulReadLength 32-bit value

Length of the pulReadData (burst length in words).
Direction: IN Type: UINT32
Default: N/A

Revision 3.1 Page 180 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.4 Time Functions
The API requires wall-clock time, in microseconds (µs) for resource and event management.
There are resources that require a minimum invalid time before reuse to guarantee proper
operation.

6.4.1 Oct6100UserGetTime

Gets the current value of the user supplied wall-clock time. The time is specified in µs. It
is important that this timer never wrap. Of course, if the counter is initialized to 0 before
the API calls this function then the counter will only wrap in several thousand years, thus
insuring that no wrapping occurs. The API code is written with the assumption that the
counter will never wrap.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserGetTime(
tPOCT6100_GET_TIME f_pGetTime);

Return Values

COCT6100_GET_TIME_FAILED_X the values 0xFFFF0000 - 0xFFFF000F are
reserved for time routine return values. The x is
the last hex digit of the returned value. This
return value is passed by the API function to
the original calling user routine. Any error
returned in this range by this function is
considered a fatal error by the API.

Parameters

f_pGetTime pointer to a tOCT6100_GET_TIME structure. The definitions of
the structure’s elements are listed below.

6.4.1.1 Structure tOCT6100_GET_TIME

pProcessContext pointer

This parameter is used only if fMultiProcessSystem is set to TRUE in the
tOCT6100_OPEN_CHIP structure. Pointer to structure provided by user during
creation of local API instance.
Direction: IN Type: PVOID
Default: N/A

ulWallTimeUs[2] UINT32

The returned wall-time in µs. Element 1 of the array contains the MSB bits.
Direction: OUT Type: UINT32[2]
Default: N/A

Revision 3.1 Page 181 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.5 Memory Functions
The API requires some simple memory management functions from the user. The required
functions are Oct6100UserMemSet and Oct6100UserMemCopy.

6.5.1 Oct6100UserMemSet

This function is used to set a memory space to a specified value.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserMemSet(
PVOID f_pAddress,
UINT32 f_ulPattern,
UINT32 f_ulLength);

Parameters

f_pAddress Pointer to the memory segment where f_ulPattern will be written.

f_ulPattern Byte pattern written into memory.

f_ulLength Number of bytes after f_pAddress that must be written to
f_ulPattern.

Revision 3.1 Page 182 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

6.5.2 Oct6100UserMemCopy

This function is used to copy data from one memory location to another.

Usage

#include “oct6100_apiud.h”

UINT32 Oct6100UserMemCopy(
PVOID f_pDestination,
PVOID f_pSource,
UINT32 f_ulLength);

Parameters

f_pDestination Pointer to the memory segment where the information needs to
be copied.

f_pSource Pointer to the memory segment where the information to be
copied is located.

f_ulLength Number of bytes to be copied.

Revision 3.1 Page 183 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

7 Echo Operation Mode
The ulEchoOperationMode parameter of the channel configuration structure determines
the state of the echo canceller. The fEnableNlp parameter of the channel configuration
structure determines the state of the Non-Linear processor (NLP). Certain features are
not available in certain modes.

The table below indicates which features are available in each of the echo operation
modes and NLP states. An “X” in a box indicates that the feature IS available.

Note that the table below lists all features that the OCT61xx can support. Not all features
are available for all OCT61xx devices. Please refer to the OCT6100 Hardware
specification for the feature list for your specific part.

MODES ECHO OPERATION MODE

NLP ENABLE

FEATURES POWER
DOWN

HT
FREEZE

HT
RESET

NO ECHO
NLP ON

SPEECH
RECOG.
NLP OFF

NORMAL FALSE TRUE

ADPCM X X X X X X X X
Broadcast TSST X X X X X X X X
Conferencing X X X X X X X X
Law Conversion X X X X X X X X
Phasing X X X X X X X X
TSI Connection X X X X X X X X
Tone Detection X X X X X X X
DC Removal X X X X X X X
MLC X X X X X X X
Silence Supp. X X X X X X
ANR X X X X X X
CNR X X X X X X
Tone Removal X X X X X X
Dominant
speaker

 X X X X X X

Buffer Playout X X X X X
ALC X X X X
HLC X X X X
Sin Voice
Detection

 X X X X

Tone Disabler X X X X X X
Default ERL X X X X
NLP Behavior A X X X X
Echo
Cancellation

 X X X X

AEC X X X X
Comfort Noise X X
Tail
Displacement

 X X X X

NLP Behavior B X X
Idle code
detection

 X X

Octasic Music
Protection

 X X

Revision 3.1 Page 184 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

Revision 3.1 Page 185 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

8 API access count per function
This section provides information about the number of writes and reads perform by API
functions.

Function Name Characteristics Num Write Word Num Read Word

Oct6100ChipOpen
image of 238997
bytes 136249 16152

Oct6100ChipGetStats 0 0
Oct6100ChipGetImageInfo 0 0

Oct6100ChannelOpen with ADPCM 84 20
Oct6100ChannelOpen without ADPCM 76 20

Oct6100ChannelModify Modify Op mode only 66 0
Oct6100ChannelModify Modify VQE only 38 0
Oct6100ChannelModify Modify Codec only 46 0
Oct6100ChannelModify Modify TDM only 46 0
Oct6100ChannelModify Modify All 66 0

Oct6100ChannelGetStats 0 11
Oct6100ChannelClose 37 2

Oct6100InterruptServiceRoutine No Tone events 5 15

Oct6100ToneDetectionEnable 1 1
Oct6100EventGetTone No Tone Events 1 2
Oct6100EventGetTone 1 Tone Event 1 34
Oct6100ToneDetectionDisable 3 3

Oct6100ConfBridgeOpen 0 0
Oct6100ConfBridgeChanAdd 25 0
Oct6100ConfBridgeChanRemove 10 0
Oct6100ConfBridgeGetStats 0 0
Oct6100ConfBridgeClose 0 0

Oct6100BufferPlayoutLoad 16384-byte buffer 8192 0
Oct6100BufferPlayoutAdd 8 2
Oct6100BufferPlayoutStart 4 0
Oct6100BufferPlayoutStop 8 0
Oct6100BufferPlayoutUnload 0 0

Revision 3.1 Page 186 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

9 TSST to Timeslot Mapping

TSST[0]

TSST[27]

TSST[1]

TSST[28]

TSST[2]

TSST[29]

TSST[3]

TSST[30]

TSST[4]

TSST[31]

ct_d[0]

ct_frame

ct_c8(8MHz)

128 timeslots per frame

ct_d[27]

ct_d[1]

ct_d[28]

ct_d[2]

ct_d[29]

ct_d[3]

ct_d[30]

ct_d[4]

ct_d[31]

TSST[32]

TSST[59]

TSST[33]

TSST[60]

TSST[34]

TSST[61]

TSST[35]

TSST[62]

TSST[36]

TSST[63]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[4032]

TSST[4059]

TSST[4033]

TSST[4060]

TSST[4034]

TSST[4061]

TSST[4035]

TSST[4062]

TSST[4036]

TSST[4063]

TSST[4064]

TSST[4091]

TSST[4065]

TSST[4092]

TSST[4066]

TSST[4093]

TSST[4067]

TSST[4094]

TSST[4068]

TSST[4095]

TSST[0]

TSST[27]

TSST[1]

TSST[28]

TSST[2]

TSST[29]

TSST[3]

TSST[30]

TSST[4]

TSST[31]

TSST[0]

TSST[27]

TSST[1]

TSST[28]

TSST[2]

TSST[29]

TSST[3]

TSST[30]

TSST[4]

TSST[31]

ct_d[0]

ct_frame

ct_c8(2MHz)

32 timeslots per frame

ct_d[27]

ct_d[1]

ct_d[28]

ct_d[2]

ct_d[29]

ct_d[3]

ct_d[30]

ct_d[4]

ct_d[31]

TSST[32]

TSST[59]

TSST[33]

TSST[60]

TSST[34]

TSST[61]

TSST[35]

TSST[62]

TSST[36]

TSST[63]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[]

TSST[960]

TSST[987]

TSST[961]

TSST[988]

TSST[962]

TSST[989]

TSST[963]

TSST[990]

TSST[964]

TSST[991]

TSST[992]

TSST[1019]

TSST[993]

TSST[1020]

TSST[994]

TSST[1021]

TSST[995]

TSST[1022]

TSST[996]

TSST[1023]

TSST[0]

TSST[27]

TSST[1]

TSST[28]

TSST[2]

TSST[29]

TSST[3]

TSST[30]

TSST[4]

TSST[31]

Revision 3.1 Page 187 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

10 TSST Formats
The OCT6100 supports auto-detection of the compression format in the input direction and
notifies an external SAR device on the current compression rate and silence indications in output
direction.

When the formats allow changes between PCM, G.726/G.727 and silence, additional encodings
and potentially TSSTs are required to carry complete information for a single channel on the
H.100 bus.

10.1 Input TSST Formats

10.1.1 One TSST Format

1 TSST Format Decompression Formats

Format of Auto Rate Detected Samples

b0b1b2b3b4b5b6b7

PCM[5:0]1
PCM[7]

This format is intended for comfort noise
samples from the SAR device. Since comfort
noise should be rather low in energy, bit 6 is
always 1 in u-law and A-law. (u-law max value
of 471 / 8159. A-law max value of 252 / 4096).

b0b1b2b3b4b5b6b7

0 1 ADPCM 40kbpsR

b0b1b2b3b4b5b6b7

0 1 32kbps0R

b0b1b2b3b4b5b6b7

0 1 24kbps00

b0b1b2b3b4b5b6b7

0 1 16kbps000R

R

Format of Fixed Rate Samples

b0b1b2b3b4b5b6b7

x x ADPCM 40kbpsx

b0b1b2b3b4b5b6b7

x x 32kbpsxx

b0b1b2b3b4b5b6b7

x x 24kbpsxx

b0b1b2b3b4b5b6b7

x x 16kbpsxxxx

x

b0b1b2b3b4b5b6b7
PCM 64kbps

Reset ADPCM Codec, when set to ‘1’ the codec is
reset before processing the sample. When the
format changes from PCM to any ADPCM format,
a reset is performed on the first ADPCM sample
whether indicated or not.

R -

Note:

Revision 3.1 Page 188 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

10.1.2 Two TSST Format

b0b1b2b3b4b5b6b7

PCM Sample

Configured TSST
(odd)

b0b1b2b3b4b5b6b7

0 1 ADPCM 40kbpsR

b0b1b2b3b4b5b6b7

0 1 32kbps0R

b0b1b2b3b4b5b6b7

0 1 24kbps00

b0b1b2b3b4b5b6b7

0 1 16kbps000R

R

2 TSST Decompression FormatsFormat

00 Reserved

b0b1b2b3b4b5b6b7

00 Reserved

b0b1b2b3b4b5b6b7

00 Reserved

b0b1b2b3b4b5b6b7

00 Reserved

b0b1b2b3b4b5b6b7

R1 Reserved

b0b1b2b3b4b5b6b7

Reset ADPCM Codec, when set to ‘1’ the codec is
reset before processing the sample. When the
format changes from PCM to any ADPCM format,
a reset is performed on the first ADPCM sample
whether indicated or not.

R -

Associated TSST
(Configured TSST - 1)

Revision 3.1 Page 189 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

10.2 Output TSST Formats

10.2.1 One TSST Format

b7

b7

b7

b7

b6

b6

b6

b6

b5

b5

b5

b5

b4

b4

b4

b4

b3

b3

b3

b3

b2

b2

b2

b2

b1

b1

b1

b1

b0

b0

b0

b0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

1 16kbps

24kbps

32kbps

ADPCM 40kbps

b7

Format of SamplesSilence Suppression Indication

1 TSST Format Compression Formats

This indication will be presented in the frame of
the sample that would end a packet as
determined by the phasing TSST and the phase
of the channel. This indicates that the OCT6100
voice activity detector has determined that this
packet should be suppressed. In One TSST
mode, if the channel has been configured for
PCM, then silence suppression will not operate
properly.

Note:

b6 b5 b4 b3 b2 b1 b0
PCM 64kbps

b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 0 0

Revision 3.1 Page 190 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

10.2.2 Two TSST Format

b7

b7

b7

b7

b7

b7

b7

b7

b7

b7

b7

b6

b6

b6

b6

b6

b6

b6

b6

b6

b6

b6

b5

b5

b5

b5

b5

b5

b5

b5

b5

b5

b5

b4

b4

b4

b4

b4

b4

b4

b4

b4

b4

b4

b3

b3

b3

b3

b3

b3

b3

b3

b3

b3

b3

b2

b2

b2

b2

b2

b2

b2

b2

b2

b2

b2

b1

b1

b1

b1

b1

b1

b1

b1

b1

b1

b1

b0

b0

b0

b0

b0

b0

b0

b0

b0

b0

b0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

1

0

0 0

0

1

0

0 0

1

1 16kbps

24kbps

32kbps

ADPCM 40kbps

TX PCM Unsigned Mag

TX PCM Unsigned Mag

TX PCM Unsigned Mag

TX PCM Unsigned Mag

TX PCM Unsigned Mag

TX PCM Unsigned Mag

b7

Configured TSST
(odd)

Silence Suppression Indication

Associated TSST
(Configured TSST - 1)

2 TSST Format Compression Formats

This indication will be presented in the frame of
the sample that would end a packet as
determined by the phasing TSST and the phase
of the channel. This indicates that the OCT6100
voice activity detector has determined that this
packet should be suppressed.

Note:

b6 b5 b4 b3 b2 b1 b0
PCM Sample

Revision 3.1 Page 191 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

11 Revision History
Version Date Changes
 3.1 March 2006 • New OCT6170 product family.
 3.0 February 2006 • New RIN and SOUT ALC reset parameters

upon detection of continuous tones.
• Added ALC noise bleed out time parameter.
• New RIN port DTMF tone removal feature using

bi-directional channel linking.
 2.9 November 2005 • Added source code example for debug

recording functions.
 2.8 September 2005 • Added idle code detection parameter.
 2.7 July 2005 • Added double talk behavior parameter.

• Added SOUT noise bleaching parameter.
• Changed the default non-linearity behavior A to

1.
 2.6 April 2005 • Added tone profile number parameter

description to the chip image info.
 2.5 February 2005 • Default ERL new supported values: -9 and -12.
 2.4 January 2005 • New speech recognition echo operation mode.

• New per channel tail length parameter.
• New tone disabler VQE active delay.
• New RIN port DTMF tone removal feature.
• No more array upper limits on the event

functions.
• New per channel acoustic echo tail length

parameter.
• New production BIST function.
• New music protection flag in channel functions.
• New debug recording functions.

 2.3 November 2004 • New adaptive noise reduction parameters.
• New modify channel flag to apply the

configuration to all opened channels.
• New modify channel flags to stop buffer playout,

disable tone detection, remove a participant
from a bridge and close all broadcast TSSTs.

 2.2 September 2004 • New caller ID stop events.
 2.1 August 2004 • New listener enhancement parameters.

• New ROUT noise reduction feature.
 2.0 July 2004 • New modify of channel number of TSSTs.

• New channel mute and un-mute functions.
 1.9 June 2004 • New tap feature in simple conferencing.
 1.8 June 2004 • New image info flag for the dominant speaker

feature.
• New channel applied gain statistics.

 1.7 April 2004 • New buffer playout parameter that controls the
gain.

• New buffer playout 0 dB mixing mode.
• New conference bridge function for changing

the participant mask.
• New Automatic Level Control parameters.
• New High Level Compensation parameters.

Revision 3.1 Page 192 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

• New echo operation mode that activates the
voice quality features without echo cancellation.

• New parameters to the buffer playout stop
function.

1.6 March 2004 • Caller ID specification.
• Acoustic echo cancellation not using non-

linearity behavior B and tail displacement
parameters.

• New acoustic default ERL parameter.
• Image info structure modifications.
• New conferencing noise reduction feature.
• Changed the minimum playout buffer size to 64.

Revision 3.1 Page 193 of 193
FEB ’06 OCT6100 - Preliminary API Specifications

 Company Confidential Copyright © 2006 Octasic Inc.
 OCT61XXas5000-031

For more information on this or other products visit our web site: http://www.octasic.com

Or contact us at:

Tel: +1 (514) 282-1361

Fax: +1 (514) 282-7672

Email: support@octasic.com

Address:

OCTASIC Inc.
4101 Molson St, Suite 300
Montreal, Quebec
H1Y 3L1, Canada

http://www.octasic.com/
mailto:info@octasic.com

	Introduction
	OCT6100 Product family

	System Architecture
	Software Architecture
	API Architecture
	Instance Structure
	Function Structures and Default Functions
	Serialization
	Sample Code

	Interrupts
	Chip Configuration
	Interrupt Service Routine
	Interrupt-Driven System
	Interrupt-Driven System without DPCs
	Interrupt-Driven system with DPCs

	Interrupt Polling-Driven System

	Using the OCT6100 API
	Definitions
	Documentation and Coding Conventions
	Return Values
	Code Header Files

	API Functions Description
	Chip Initialization Functions
	Oct6100ChipOpen
	tOCT6100_CHIP_OPEN Structure

	Oct6100ChipClose
	tOCT6100_CHIP_CLOSE Structure

	Oct6100ChipGetStats
	tOCT6100_CHIP_STATS Structure

	Oct6100ChipGetImageInfo
	tOCT6100_CHIP_IMAGE_INFO Structure
	tOCT6100_CHIP_TONE_INFO Structure

	Oct6100GetInstanceSize
	tOCT6100_GET_INSTANCE_SIZE Structure

	Oct6100CreateLocalInstance
	Structure tOCT6100_CREATE_LOCAL_INSTANCE

	Oct6100DestroyLocalInstance
	Structure tOCT6100_DESTROY_LOCAL_INSTANCE

	Oct6100GetHwRevision
	Structure tOCT6100_GET_HW_REVISION

	Oct6100ApiGetVersion
	Structure tOCT6100_API_GET_VERSION

	Oct6100FreeResources
	Structure tOCT6100_FREE_RESOURCES

	Oct6100ProductionBist
	Structure tOCT6100_PRODUCTION_BIST

	Channel Functions
	Oct6100ChannelOpen
	tOCT6100_CHANNEL_OPEN Structure
	tOCT6100_CHANNEL_OPEN_TDM Structure
	tOCT6100_CHANNEL_OPEN_VQE Structure
	tOCT6100_CHANNEL_OPEN_CODEC Structure

	Oct6100ChannelClose
	tOCT6100_CHANNEL_CLOSE Structure

	Oct6100ChannelModify
	tOCT6100_CHANNEL_MODIFY Structure
	tOCT6100_CHANNEL_MODIFY_TDM Structure
	tOCT6100_CHANNEL_MODIFY_VQE Structure
	tOCT6100_CHANNEL_MODIFY_CODEC Structure

	Oct6100ChannelCreateBiDir
	tOCT6100_CHANNEL_CREATE_BIDIR Structure

	Oct6100ChannelDestroyBiDir
	tOCT6100_CHANNEL_DESTROY_BIDIR Structure

	Oct6100ChannelBroadcastTsstAdd
	tOCT6100_CHANNEL_BROADCAST_TSST_ADD Structure

	Oct6100ChannelBroadcastTsstRemove
	tOCT6100_CHANNEL_BROADCAST_TSST_REMOVE Structure

	Oct6100ChannelMute
	tOCT6100_CHANNEL_MUTE Structure

	Oct6100ChannelUnMute
	tOCT6100_CHANNEL_UNMUTE Structure

	Oct6100ChannelGetStats
	tOCT6100_CHANNEL_STATS Structure
	tOCT6100_CHANNEL_STATS_TDM Structure
	tOCT6100_CHANNEL_STATS_VQE Structure
	tOCT6100_CHANNEL_STATS_CODEC Structure

	Conference Bridge Functions
	Oct6100ConfBridgeOpen
	tOCT6100_CONF_BRIDGE_OPEN Structure

	Oct6100ConfBridgeClose
	tOCT6100_CONF_BRIDGE_CLOSE Structure

	Oct6100ConfBridgeChanAdd
	tOCT6100_CONF_BRIDGE_CHAN_ADD Structure

	Oct6100ConfBridgeChanRemove
	tOCT6100_CONF_BRIDGE_CHAN_REMOVE Structure

	Oct6100ConfBridgeChanMute
	tOCT6100_CONF_BRIDGE_CHAN_MUTE Structure

	Oct6100ConfBridgeChanUnMute
	tOCT6100_CONF_BRIDGE_CHAN_UNMUTE Structure

	Oct6100ConfBridgeDominantSpeakerSet
	tOCT6100_CONF_BRIDGE_DOMINANT_SPEAKER_SET Structure

	Oct6100ConfBridgeMaskChange
	tOCT6100_CONF_BRIDGE_MASK_CHANGE Structure

	Oct6100ConfBridgeGetStats
	tOCT6100_CONF_BRIDGE_STATS Structure

	Phasing TSST Functions
	Oct6100PhasingTsstOpen
	tOCT6100_PHASING_TSST_OPEN Structure

	Oct6100PhasingTsstClose
	tOCT6100_PHASING_TSST_CLOSE Structure

	Tone Detection Functions
	Oct6100ToneDetectionEnable
	tOCT6100_TONE_DETECTION_ENABLE Structure

	Oct6100ToneDetectionDisable
	tOCT6100_TONE_DETECTION_DISABLE Structure

	Buffer Playout Functions
	Oct6100BufferPlayoutLoad
	tOCT6100_BUFFER_LOAD Structure

	Oct6100BufferPlayoutLoadBlockInit
	tOCT6100_BUFFER_LOAD_BLOCK_INIT Structure

	Oct6100BufferPlayoutLoadBlock
	tOCT6100_BUFFER_LOAD_BLOCK Structure

	Oct6100BufferPlayoutUnload
	tOCT6100_BUFFER_UNLOAD Structure

	Oct6100BufferPlayoutAdd
	tOCT6100_BUFFER_PLAYOUT_ADD Structure

	Oct6100BufferPlayoutStart
	tOCT6100_BUFFER_PLAYOUT_START Structure

	Oct6100BufferPlayoutStop
	tOCT6100_BUF_PLAYOUT_STOP Structure

	Caller ID Functions
	Oct6100CallerIdInit
	tOCT6100_CALLER_ID_INIT Structure

	Oct6100CallerIdTerminate
	tOCT6100_CALLER_ID_TERMINATE Structure

	Oct6100CallerIdTransmit
	tOCT6100_CALLER_ID_TRANSMIT Structure

	Oct6100CallerIdTransmitAs
	tOCT6100_CALLER_ID_TRANSMIT_AS Structure

	Oct6100CallerIdAbort
	tOCT6100_CALLER_ID_ABORT Structure

	Event functions
	Oct6100EventGetTone
	tOCT6100_EVENT_GET_TONE Structure
	tOCT6100_TONE_EVENT Structure

	Oct6100BufferPlayoutGetEvent
	tOCT6100_BUFFER_PLAYOUT_GET_EVENT Structure
	tOCT6100_BUFFER_PLAYOUT_EVENT Structure

	TSI Connection Functions
	Oct6100TsiCnctOpen
	tOCT6100_TSI_CNCT_OPEN Structure

	Oct6100TsiCnctClose
	tOCT6100_TSI_CNCT_CLOSE Structure

	ADPCM Channel Functions
	Oct6100AdpcmChanOpen
	tOCT6100_ADPCM_CHAN_OPEN Structure

	Oct6100AdpcmChanClose
	tOCT6100_ADPCM_CHAN_CLOSE Structure

	Interrupt Functions
	Oct6100InterruptServiceRoutine
	tOCT6100_INTERRUPT_FLAGS Structure

	Oct6100InterruptMask
	tOCT6100_INTERRUPT_MASK Structure

	Oct6100InterruptConfigure
	tOCT6100_INTERRUPT_CONFIGURE Structure

	Remote Debugging
	Oct6100RemoteDebug
	Structure tOCT6100_REMOTE_DEBUG

	Monitoring Functions
	Oct6100DebugSelectChannel
	Structure tOCT6100_ DEBUG_SELECT_CHANNEL

	Oct6100DebugGetData
	Structure tOCT6100_ DEBUG_GET_DATA

	User Supplied Functions Description
	Serialization Functions
	Oct6100UserCreateSerializeObject
	tOCT6100_CREATE_SERIALIZE_OBJECT Structure

	Oct6100UserDestroySerializeObject
	tOCT6100_DESTROY_SERIALIZE_OBJECT Structure

	Oct6100UserSeizeSerializeObject
	tOCT6100_SEIZE_SERIALIZE_OBJECT Structure

	Oct6100UserReleaseSerializeObject
	tOCT6100_RELEASE_SERIALIZE_OBJECT Structure

	Write Functions
	Oct6100UserWriteApi, Oct6100UserWriteOs
	tOCT6100_WRITE_PARMS Structure

	Oct6100UserWriteSmearApi, Oct6100UserWriteSmearOs
	tOCT6100_WRITE_SMEAR_PARMS Structure

	Oct6100UserWriteBurstApi, Oct6100UserWriteBurstOs
	tOCT6100_WRITE_BURST_PARMS Structure

	Read Functions
	Oct6100UserReadApi, Oct6100UserReadOs
	tOCT6100_READ_PARMS Structure

	Oct6100UserReadBurstApi, Oct6100UserReadBurstOs
	tOCT6100_READ_BURST_PARMS Structure

	Time Functions
	Oct6100UserGetTime
	Structure tOCT6100_GET_TIME

	Memory Functions
	Oct6100UserMemSet
	Oct6100UserMemCopy

	Echo Operation Mode
	API access count per function
	TSST to Timeslot Mapping
	TSST Formats
	Input TSST Formats
	One TSST Format
	Two TSST Format

	Output TSST Formats
	One TSST Format
	Two TSST Format

	Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

