/* * Wilcard TDM400P TDM FXS/FXO Interface Driver for Zapata Telephony interface * * Written by Mark Spencer * Matthew Fredrickson * * Copyright (C) 2001, Linux Support Services, Inc. * * All rights reserved. * */ /* * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2 as published by the * Free Software Foundation. See the LICENSE file included with * this program for more details. */ #include #include #include #include #include #include #include #include #include #include "proslic.h" #include "wctdm.h" /* * Define for audio vs. register based ring detection * */ /* #define AUDIO_RINGCHECK */ /* Experimental max loop current limit for the proslic Loop current limit is from 20 mA to 41 mA in steps of 3 (according to datasheet) So set the value below to: 0x00 : 20mA (default) 0x01 : 23mA 0x02 : 26mA 0x03 : 29mA 0x04 : 32mA 0x05 : 35mA 0x06 : 37mA 0x07 : 41mA */ static int loopcurrent = 20; static int reversepolarity = 0; static alpha indirect_regs[] = { {0,255,"DTMF_ROW_0_PEAK",0x55C2}, {1,255,"DTMF_ROW_1_PEAK",0x51E6}, {2,255,"DTMF_ROW2_PEAK",0x4B85}, {3,255,"DTMF_ROW3_PEAK",0x4937}, {4,255,"DTMF_COL1_PEAK",0x3333}, {5,255,"DTMF_FWD_TWIST",0x0202}, {6,255,"DTMF_RVS_TWIST",0x0202}, {7,255,"DTMF_ROW_RATIO_TRES",0x0198}, {8,255,"DTMF_COL_RATIO_TRES",0x0198}, {9,255,"DTMF_ROW_2ND_ARM",0x0611}, {10,255,"DTMF_COL_2ND_ARM",0x0202}, {11,255,"DTMF_PWR_MIN_TRES",0x00E5}, {12,255,"DTMF_OT_LIM_TRES",0x0A1C}, {13,0,"OSC1_COEF",0x7B30}, {14,1,"OSC1X",0x0063}, {15,2,"OSC1Y",0x0000}, {16,3,"OSC2_COEF",0x7870}, {17,4,"OSC2X",0x007D}, {18,5,"OSC2Y",0x0000}, {19,6,"RING_V_OFF",0x0000}, {20,7,"RING_OSC",0x7EF0}, {21,8,"RING_X",0x0160}, {22,9,"RING_Y",0x0000}, {23,255,"PULSE_ENVEL",0x2000}, {24,255,"PULSE_X",0x2000}, {25,255,"PULSE_Y",0x0000}, //{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower {26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower {27,14,"XMIT_DIGITAL_GAIN",0x4000}, //{27,14,"XMIT_DIGITAL_GAIN",0x2000}, {28,15,"LOOP_CLOSE_TRES",0x1000}, {29,16,"RING_TRIP_TRES",0x3600}, {30,17,"COMMON_MIN_TRES",0x1000}, {31,18,"COMMON_MAX_TRES",0x0200}, {32,19,"PWR_ALARM_Q1Q2",0x07C0}, {33,20,"PWR_ALARM_Q3Q4",0x2600}, {34,21,"PWR_ALARM_Q5Q6",0x1B80}, {35,22,"LOOP_CLOSURE_FILTER",0x8000}, {36,23,"RING_TRIP_FILTER",0x0320}, {37,24,"TERM_LP_POLE_Q1Q2",0x008C}, {38,25,"TERM_LP_POLE_Q3Q4",0x0100}, {39,26,"TERM_LP_POLE_Q5Q6",0x0010}, {40,27,"CM_BIAS_RINGING",0x0C00}, {41,64,"DCDC_MIN_V",0x0C00}, {42,255,"DCDC_XTRA",0x1000}, {43,66,"LOOP_CLOSE_TRES_LOW",0x1000}, }; #include "zaptel.h" #include "fxo_modes.h" #ifdef LINUX26 #include #endif #define NUM_FXO_REGS 60 #define WC_MAX_IFACES 128 #define WC_CNTL 0x00 #define WC_OPER 0x01 #define WC_AUXC 0x02 #define WC_AUXD 0x03 #define WC_MASK0 0x04 #define WC_MASK1 0x05 #define WC_INTSTAT 0x06 #define WC_AUXR 0x07 #define WC_DMAWS 0x08 #define WC_DMAWI 0x0c #define WC_DMAWE 0x10 #define WC_DMARS 0x18 #define WC_DMARI 0x1c #define WC_DMARE 0x20 #define WC_AUXFUNC 0x2b #define WC_SERCTL 0x2d #define WC_FSCDELAY 0x2f #define WC_REGBASE 0xc0 #define WC_SYNC 0x0 #define WC_TEST 0x1 #define WC_CS 0x2 #define WC_VER 0x3 #define BIT_CS (1 << 2) #define BIT_SCLK (1 << 3) #define BIT_SDI (1 << 4) #define BIT_SDO (1 << 5) #define FLAG_EMPTY 0 #define FLAG_WRITE 1 #define FLAG_READ 2 #define DEFAULT_RING_DEBOUNCE 64 /* Ringer Debounce (64 ms) */ #define POLARITY_DEBOUNCE 64 /* Polarity debounce (64 ms) */ #define OHT_TIMER 6000 /* How long after RING to retain OHT */ #define FLAG_3215 (1 << 0) #define NUM_CARDS 4 #define MAX_ALARMS 10 #define MOD_TYPE_FXS 0 #define MOD_TYPE_FXO 1 #define MINPEGTIME 10 * 8 /* 30 ms peak to peak gets us no more than 100 Hz */ #define PEGTIME 50 * 8 /* 50ms peak to peak gets us rings of 10 Hz or more */ #define PEGCOUNT 5 /* 5 cycles of pegging means RING */ #define NUM_CAL_REGS 12 struct calregs { unsigned char vals[NUM_CAL_REGS]; }; enum proslic_power_warn { PROSLIC_POWER_UNKNOWN = 0, PROSLIC_POWER_ON, PROSLIC_POWER_WARNED, }; enum battery_state { BATTERY_UNKNOWN = 0, BATTERY_PRESENT, BATTERY_LOST, }; struct wctdm { struct pci_dev *dev; char *variety; struct zt_span span; unsigned char ios; int usecount; unsigned int intcount; int dead; int pos; int flags[NUM_CARDS]; int freeregion; int alt; int curcard; int cardflag; /* Bit-map of present cards */ enum proslic_power_warn proslic_power; spinlock_t lock; union { struct fxo { #ifdef AUDIO_RINGCHECK unsigned int pegtimer; int pegcount; int peg; int ring; #else int wasringing; int lastrdtx; #endif int ringdebounce; int offhook; unsigned int battdebounce; unsigned int battalarm; enum battery_state battery; int lastpol; int polarity; int polaritydebounce; } fxo; struct fxs { int oldrxhook; int debouncehook; int lastrxhook; int debounce; int ohttimer; int idletxhookstate; /* IDLE changing hook state */ int lasttxhook; int palarms; struct calregs calregs; } fxs; } mod[NUM_CARDS]; /* Receive hook state and debouncing */ int modtype[NUM_CARDS]; unsigned char reg0shadow[NUM_CARDS]; unsigned char reg1shadow[NUM_CARDS]; unsigned long ioaddr; dma_addr_t readdma; dma_addr_t writedma; volatile unsigned int *writechunk; /* Double-word aligned write memory */ volatile unsigned int *readchunk; /* Double-word aligned read memory */ struct zt_chan chans[NUM_CARDS]; }; struct wctdm_desc { char *name; int flags; }; static struct wctdm_desc wctdm = { "Wildcard S400P Prototype", 0 }; static struct wctdm_desc wctdme = { "Wildcard TDM400P REV E/F", 0 }; static struct wctdm_desc wctdmh = { "Wildcard TDM400P REV H", 0 }; static struct wctdm_desc wctdmi = { "Wildcard TDM400P REV I", 0 }; static int acim2tiss[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 }; static struct wctdm *ifaces[WC_MAX_IFACES]; static void wctdm_release(struct wctdm *wc); static unsigned int battdebounce; static unsigned int battalarm; static unsigned int battthresh; static int ringdebounce = DEFAULT_RING_DEBOUNCE; static int fwringdetect = 0; static int debug = 0; static int robust = 0; static int timingonly = 0; static int lowpower = 0; static int boostringer = 0; static int fastringer = 0; static int _opermode = 0; static char *opermode = "FCC"; static int fxshonormode = 0; static int alawoverride = 0; static int fastpickup = 0; static int fxotxgain = 0; static int fxorxgain = 0; static int fxstxgain = 0; static int fxsrxgain = 0; static int wctdm_init_proslic(struct wctdm *wc, int card, int fast , int manual, int sane); static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char ints) { volatile unsigned int *writechunk; int x; if (ints & 0x01) /* Write is at interrupt address. Start writing from normal offset */ writechunk = wc->writechunk; else writechunk = wc->writechunk + ZT_CHUNKSIZE; /* Calculate Transmission */ zt_transmit(&wc->span); for (x=0;xcardflag & (1 << 3)) writechunk[x] |= (wc->chans[3].writechunk[x]); if (wc->cardflag & (1 << 2)) writechunk[x] |= (wc->chans[2].writechunk[x] << 8); if (wc->cardflag & (1 << 1)) writechunk[x] |= (wc->chans[1].writechunk[x] << 16); if (wc->cardflag & (1 << 0)) writechunk[x] |= (wc->chans[0].writechunk[x] << 24); #else if (wc->cardflag & (1 << 3)) writechunk[x] |= (wc->chans[3].writechunk[x] << 24); if (wc->cardflag & (1 << 2)) writechunk[x] |= (wc->chans[2].writechunk[x] << 16); if (wc->cardflag & (1 << 1)) writechunk[x] |= (wc->chans[1].writechunk[x] << 8); if (wc->cardflag & (1 << 0)) writechunk[x] |= (wc->chans[0].writechunk[x]); #endif } } #ifdef AUDIO_RINGCHECK static inline void ring_check(struct wctdm *wc, int card) { int x; short sample; if (wc->modtype[card] != MOD_TYPE_FXO) return; wc->mod[card].fxo.pegtimer += ZT_CHUNKSIZE; for (x=0;xchans[card].readchunk[x], (&(wc->chans[card]))); if ((sample > 10000) && (wc->mod[card].fxo.peg != 1)) { if (debug > 1) printk("High peg!\n"); if ((wc->mod[card].fxo.pegtimer < PEGTIME) && (wc->mod[card].fxo.pegtimer > MINPEGTIME)) wc->mod[card].fxo.pegcount++; wc->mod[card].fxo.pegtimer = 0; wc->mod[card].fxo.peg = 1; } else if ((sample < -10000) && (wc->mod[card].fxo.peg != -1)) { if (debug > 1) printk("Low peg!\n"); if ((wc->mod[card].fxo.pegtimer < (PEGTIME >> 2)) && (wc->mod[card].fxo.pegtimer > (MINPEGTIME >> 2))) wc->mod[card].fxo.pegcount++; wc->mod[card].fxo.pegtimer = 0; wc->mod[card].fxo.peg = -1; } } if (wc->mod[card].fxo.pegtimer > PEGTIME) { /* Reset pegcount if our timer expires */ wc->mod[card].fxo.pegcount = 0; } /* Decrement debouncer if appropriate */ if (wc->mod[card].fxo.ringdebounce) wc->mod[card].fxo.ringdebounce--; if (!wc->mod[card].fxo.offhook && !wc->mod[card].fxo.ringdebounce) { if (!wc->mod[card].fxo.ring && (wc->mod[card].fxo.pegcount > PEGCOUNT)) { /* It's ringing */ if (debug) printk("RING on %d/%d!\n", wc->span.spanno, card + 1); if (!wc->mod[card].fxo.offhook) zt_hooksig(&wc->chans[card], ZT_RXSIG_RING); wc->mod[card].fxo.ring = 1; } if (wc->mod[card].fxo.ring && !wc->mod[card].fxo.pegcount) { /* No more ring */ if (debug) printk("NO RING on %d/%d!\n", wc->span.spanno, card + 1); zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); wc->mod[card].fxo.ring = 0; } } } #endif static inline void wctdm_receiveprep(struct wctdm *wc, unsigned char ints) { volatile unsigned int *readchunk; int x; if (ints & 0x08) readchunk = wc->readchunk + ZT_CHUNKSIZE; else /* Read is at interrupt address. Valid data is available at normal offset */ readchunk = wc->readchunk; for (x=0;xcardflag & (1 << 3)) wc->chans[3].readchunk[x] = (readchunk[x]) & 0xff; if (wc->cardflag & (1 << 2)) wc->chans[2].readchunk[x] = (readchunk[x] >> 8) & 0xff; if (wc->cardflag & (1 << 1)) wc->chans[1].readchunk[x] = (readchunk[x] >> 16) & 0xff; if (wc->cardflag & (1 << 0)) wc->chans[0].readchunk[x] = (readchunk[x] >> 24) & 0xff; #else if (wc->cardflag & (1 << 3)) wc->chans[3].readchunk[x] = (readchunk[x] >> 24) & 0xff; if (wc->cardflag & (1 << 2)) wc->chans[2].readchunk[x] = (readchunk[x] >> 16) & 0xff; if (wc->cardflag & (1 << 1)) wc->chans[1].readchunk[x] = (readchunk[x] >> 8) & 0xff; if (wc->cardflag & (1 << 0)) wc->chans[0].readchunk[x] = (readchunk[x]) & 0xff; #endif } #ifdef AUDIO_RINGCHECK for (x=0;xcards;x++) ring_check(wc, x); #endif /* XXX We're wasting 8 taps. We should get closer :( */ for (x = 0; x < NUM_CARDS; x++) { if (wc->cardflag & (1 << x)) zt_ec_chunk(&wc->chans[x], wc->chans[x].readchunk, wc->chans[x].writechunk); } zt_receive(&wc->span); } static void wctdm_stop_dma(struct wctdm *wc); static void wctdm_reset_tdm(struct wctdm *wc); static void wctdm_restart_dma(struct wctdm *wc); static inline void __write_8bits(struct wctdm *wc, unsigned char bits) { /* Drop chip select */ int x; wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); wc->ios &= ~BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); for (x=0;x<8;x++) { /* Send out each bit, MSB first, drop SCLK as we do so */ if (bits & 0x80) wc->ios |= BIT_SDI; else wc->ios &= ~BIT_SDI; wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Now raise SCLK high again and repeat */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); bits <<= 1; } /* Finally raise CS back high again */ wc->ios |= BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); } static inline void __reset_spi(struct wctdm *wc) { /* Drop chip select and clock once and raise and clock once */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); wc->ios &= ~BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); wc->ios |= BIT_SDI; wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Now raise SCLK high again and repeat */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Finally raise CS back high again */ wc->ios |= BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Clock again */ wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Now raise SCLK high again and repeat */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); } static inline unsigned char __read_8bits(struct wctdm *wc) { unsigned char res=0, c; int x; wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Drop chip select */ wc->ios &= ~BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); for (x=0;x<8;x++) { res <<= 1; /* Get SCLK */ wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Read back the value */ c = inb(wc->ioaddr + WC_AUXR); if (c & BIT_SDO) res |= 1; /* Now raise SCLK high again */ wc->ios |= BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); } /* Finally raise CS back high again */ wc->ios |= BIT_CS; outb(wc->ios, wc->ioaddr + WC_AUXD); wc->ios &= ~BIT_SCLK; outb(wc->ios, wc->ioaddr + WC_AUXD); /* And return our result */ return res; } static void __wctdm_setcreg(struct wctdm *wc, unsigned char reg, unsigned char val) { outb(val, wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2)); } static unsigned char __wctdm_getcreg(struct wctdm *wc, unsigned char reg) { return inb(wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2)); } static inline void __wctdm_setcard(struct wctdm *wc, int card) { if (wc->curcard != card) { __wctdm_setcreg(wc, WC_CS, (1 << card)); wc->curcard = card; } } static void __wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value) { __wctdm_setcard(wc, card); if (wc->modtype[card] == MOD_TYPE_FXO) { __write_8bits(wc, 0x20); __write_8bits(wc, reg & 0x7f); } else { __write_8bits(wc, reg & 0x7f); } __write_8bits(wc, value); } static void wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value) { unsigned long flags; spin_lock_irqsave(&wc->lock, flags); __wctdm_setreg(wc, card, reg, value); spin_unlock_irqrestore(&wc->lock, flags); } static unsigned char __wctdm_getreg(struct wctdm *wc, int card, unsigned char reg) { __wctdm_setcard(wc, card); if (wc->modtype[card] == MOD_TYPE_FXO) { __write_8bits(wc, 0x60); __write_8bits(wc, reg & 0x7f); } else { __write_8bits(wc, reg | 0x80); } return __read_8bits(wc); } static inline void reset_spi(struct wctdm *wc, int card) { unsigned long flags; spin_lock_irqsave(&wc->lock, flags); __wctdm_setcard(wc, card); __reset_spi(wc); __reset_spi(wc); spin_unlock_irqrestore(&wc->lock, flags); } static unsigned char wctdm_getreg(struct wctdm *wc, int card, unsigned char reg) { unsigned long flags; unsigned char res; spin_lock_irqsave(&wc->lock, flags); res = __wctdm_getreg(wc, card, reg); spin_unlock_irqrestore(&wc->lock, flags); return res; } static int __wait_access(struct wctdm *wc, int card) { unsigned char data = 0; long origjiffies; int count = 0; #define MAX 6000 /* attempts */ origjiffies = jiffies; /* Wait for indirect access */ while (count++ < MAX) { data = __wctdm_getreg(wc, card, I_STATUS); if (!data) return 0; } if(count > (MAX-1)) printk(" ##### Loop error (%02x) #####\n", data); return 0; } static unsigned char translate_3215(unsigned char address) { int x; for (x=0;xflags[card] & FLAG_3215) { address = translate_3215(address); if (address == 255) return 0; } spin_lock_irqsave(&wc->lock, flags); if(!__wait_access(wc, card)) { __wctdm_setreg(wc, card, IDA_LO,(unsigned char)(data & 0xFF)); __wctdm_setreg(wc, card, IDA_HI,(unsigned char)((data & 0xFF00)>>8)); __wctdm_setreg(wc, card, IAA,address); res = 0; }; spin_unlock_irqrestore(&wc->lock, flags); return res; } static int wctdm_proslic_getreg_indirect(struct wctdm *wc, int card, unsigned char address) { unsigned long flags; int res = -1; char *p=NULL; /* Translate 3215 addresses */ if (wc->flags[card] & FLAG_3215) { address = translate_3215(address); if (address == 255) return 0; } spin_lock_irqsave(&wc->lock, flags); if (!__wait_access(wc, card)) { __wctdm_setreg(wc, card, IAA, address); if (!__wait_access(wc, card)) { unsigned char data1, data2; data1 = __wctdm_getreg(wc, card, IDA_LO); data2 = __wctdm_getreg(wc, card, IDA_HI); res = data1 | (data2 << 8); } else p = "Failed to wait inside"; } else p = "failed to wait"; spin_unlock_irqrestore(&wc->lock, flags); if (p) printk("%s\n",p); return res; } static int wctdm_proslic_init_indirect_regs(struct wctdm *wc, int card) { unsigned char i; for (i=0; iflags[card] & FLAG_3215) || (indirect_regs[i].altaddr != 255))) { printk("!!!!!!! %s iREG %X = %X should be %X\n", indirect_regs[i].name,indirect_regs[i].address,j,initial ); passed = 0; } } if (passed) { if (debug) printk("Init Indirect Registers completed successfully.\n"); } else { printk(" !!!!! Init Indirect Registers UNSUCCESSFULLY.\n"); return -1; } return 0; } static inline void wctdm_proslic_recheck_sanity(struct wctdm *wc, int card) { int res; /* Check loopback */ res = wc->reg1shadow[card]; if (!res && (res != wc->mod[card].fxs.lasttxhook)) { res = wctdm_getreg(wc, card, 8); if (res) { printk("Ouch, part reset, quickly restoring reality (%d)\n", card); wctdm_init_proslic(wc, card, 1, 0, 1); } else { if (wc->mod[card].fxs.palarms++ < MAX_ALARMS) { printk("Power alarm on module %d, resetting!\n", card + 1); if (wc->mod[card].fxs.lasttxhook == 4) wc->mod[card].fxs.lasttxhook = 1; wctdm_setreg(wc, card, 64, wc->mod[card].fxs.lasttxhook); } else { if (wc->mod[card].fxs.palarms == MAX_ALARMS) printk("Too many power alarms on card %d, NOT resetting!\n", card + 1); } } } } static inline void wctdm_voicedaa_check_hook(struct wctdm *wc, int card) { #define MS_PER_CHECK_HOOK 16 #ifndef AUDIO_RINGCHECK unsigned char res; #endif signed char b; int poopy = 0; struct fxo *fxo = &wc->mod[card].fxo; /* Try to track issues that plague slot one FXO's */ b = wc->reg0shadow[card]; if ((b & 0x2) || !(b & 0x8)) { /* Not good -- don't look at anything else */ if (debug) printk("Poopy (%02x) on card %d!\n", b, card + 1); poopy++; } b &= 0x9b; if (fxo->offhook) { if (b != 0x9) wctdm_setreg(wc, card, 5, 0x9); } else { if (b != 0x8) wctdm_setreg(wc, card, 5, 0x8); } if (poopy) return; if (!fxo->offhook) { if (fwringdetect) { res = wc->reg0shadow[card] & 0x60; if (fxo->ringdebounce) { --fxo->ringdebounce; if (res && (res != fxo->lastrdtx) && (fxo->battery == BATTERY_PRESENT)) { if (!fxo->wasringing) { fxo->wasringing = 1; if (debug) printk("RING on %d/%d!\n", wc->span.spanno, card + 1); zt_hooksig(&wc->chans[card], ZT_RXSIG_RING); } fxo->lastrdtx = res; fxo->ringdebounce = 10; } else if (!res) { if ((fxo->ringdebounce == 0) && fxo->wasringing) { fxo->wasringing = 0; if (debug) printk("NO RING on %d/%d!\n", wc->span.spanno, card + 1); zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); } } } else if (res && (fxo->battery == BATTERY_PRESENT)) { fxo->lastrdtx = res; fxo->ringdebounce = 10; } } else { res = wc->reg0shadow[card]; if ((res & 0x60) && (fxo->battery == BATTERY_PRESENT)) { fxo->ringdebounce += (ZT_CHUNKSIZE * 16); if (fxo->ringdebounce >= ZT_CHUNKSIZE * ringdebounce) { if (!fxo->wasringing) { fxo->wasringing = 1; zt_hooksig(&wc->chans[card], ZT_RXSIG_RING); if (debug) printk("RING on %d/%d!\n", wc->span.spanno, card + 1); } fxo->ringdebounce = ZT_CHUNKSIZE * ringdebounce; } } else { fxo->ringdebounce -= ZT_CHUNKSIZE * 4; if (fxo->ringdebounce <= 0) { if (fxo->wasringing) { fxo->wasringing = 0; zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); if (debug) printk("NO RING on %d/%d!\n", wc->span.spanno, card + 1); } fxo->ringdebounce = 0; } } } } b = wc->reg1shadow[card]; if (abs(b) < battthresh) { /* possible existing states: battery lost, no debounce timer battery lost, debounce timer (going to battery present) battery present or unknown, no debounce timer battery present or unknown, debounce timer (going to battery lost) */ if (fxo->battery == BATTERY_LOST) { if (fxo->battdebounce) { /* we were going to BATTERY_PRESENT, but battery was lost again, so clear the debounce timer */ fxo->battdebounce = 0; } } else { if (fxo->battdebounce) { /* going to BATTERY_LOST, see if we are there yet */ if (--fxo->battdebounce == 0) { fxo->battery = BATTERY_LOST; if (debug) printk("NO BATTERY on %d/%d!\n", wc->span.spanno, card + 1); #ifdef JAPAN if (!wc->ohdebounce && wc->offhook) { zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); if (debug) printk("Signalled On Hook\n"); #ifdef ZERO_BATT_RING wc->onhook++; #endif } #else zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); /* set the alarm timer, taking into account that part of its time period has already passed while debouncing occurred */ fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK; #endif } } else { /* start the debounce timer to verify that battery has been lost */ fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK; } } } else { /* possible existing states: battery lost or unknown, no debounce timer battery lost or unknown, debounce timer (going to battery present) battery present, no debounce timer battery present, debounce timer (going to battery lost) */ if (fxo->battery == BATTERY_PRESENT) { if (fxo->battdebounce) { /* we were going to BATTERY_LOST, but battery appeared again, so clear the debounce timer */ fxo->battdebounce = 0; } } else { if (fxo->battdebounce) { /* going to BATTERY_PRESENT, see if we are there yet */ if (--fxo->battdebounce == 0) { fxo->battery = BATTERY_PRESENT; if (debug) printk("BATTERY on %d/%d (%s)!\n", wc->span.spanno, card + 1, (b < 0) ? "-" : "+"); #ifdef ZERO_BATT_RING if (wc->onhook) { wc->onhook = 0; zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); if (debug) printk("Signalled Off Hook\n"); } #else zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); #endif /* set the alarm timer, taking into account that part of its time period has already passed while debouncing occurred */ fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK; } } else { /* start the debounce timer to verify that battery has appeared */ fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK; } } } if (fxo->lastpol >= 0) { if (b < 0) { fxo->lastpol = -1; fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK; } } if (fxo->lastpol <= 0) { if (b > 0) { fxo->lastpol = 1; fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK; } } if (fxo->battalarm) { if (--fxo->battalarm == 0) { /* the alarm timer has expired, so update the battery alarm state for this channel */ zt_alarm_channel(&wc->chans[card], fxo->battery == BATTERY_LOST ? ZT_ALARM_RED : ZT_ALARM_NONE); } } if (fxo->polaritydebounce) { if (--fxo->polaritydebounce == 0) { if (fxo->lastpol != fxo->polarity) { if (debug) printk("%lu Polarity reversed (%d -> %d)\n", jiffies, fxo->polarity, fxo->lastpol); if (fxo->polarity) zt_qevent_lock(&wc->chans[card], ZT_EVENT_POLARITY); fxo->polarity = fxo->lastpol; } } } #undef MS_PER_CHECK_HOOK } static inline void wctdm_proslic_check_hook(struct wctdm *wc, int card) { char res; int hook; /* For some reason we have to debounce the hook detector. */ res = wc->reg0shadow[card]; hook = (res & 1); if (hook != wc->mod[card].fxs.lastrxhook) { /* Reset the debounce (must be multiple of 4ms) */ wc->mod[card].fxs.debounce = 8 * (4 * 8); #if 0 printk("Resetting debounce card %d hook %d, %d\n", card, hook, wc->mod[card].fxs.debounce); #endif } else { if (wc->mod[card].fxs.debounce > 0) { wc->mod[card].fxs.debounce-= 16 * ZT_CHUNKSIZE; #if 0 printk("Sustaining hook %d, %d\n", hook, wc->mod[card].fxs.debounce); #endif if (!wc->mod[card].fxs.debounce) { #if 0 printk("Counted down debounce, newhook: %d...\n", hook); #endif wc->mod[card].fxs.debouncehook = hook; } if (!wc->mod[card].fxs.oldrxhook && wc->mod[card].fxs.debouncehook) { /* Off hook */ #if 1 if (debug) #endif printk("wctdm: Card %d Going off hook\n", card); zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); if (robust) wctdm_init_proslic(wc, card, 1, 0, 1); wc->mod[card].fxs.oldrxhook = 1; } else if (wc->mod[card].fxs.oldrxhook && !wc->mod[card].fxs.debouncehook) { /* On hook */ #if 1 if (debug) #endif printk("wctdm: Card %d Going on hook\n", card); zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); wc->mod[card].fxs.oldrxhook = 0; } } } wc->mod[card].fxs.lastrxhook = hook; } ZAP_IRQ_HANDLER(wctdm_interrupt) { struct wctdm *wc = dev_id; unsigned char ints; int x; int mode; ints = inb(wc->ioaddr + WC_INTSTAT); if (!ints) #ifdef LINUX26 return IRQ_NONE; #else return; #endif outb(ints, wc->ioaddr + WC_INTSTAT); if (ints & 0x10) { /* Stop DMA, wait for watchdog */ printk("TDM PCI Master abort\n"); wctdm_stop_dma(wc); #ifdef LINUX26 return IRQ_RETVAL(1); #else return; #endif } if (ints & 0x20) { printk("PCI Target abort\n"); #ifdef LINUX26 return IRQ_RETVAL(1); #else return; #endif } for (x=0;x<4;x++) { if (wc->cardflag & (1 << x) && (wc->modtype[x] == MOD_TYPE_FXS)) { if (wc->mod[x].fxs.lasttxhook == 0x4) { /* RINGing, prepare for OHT */ wc->mod[x].fxs.ohttimer = OHT_TIMER << 3; if (reversepolarity) wc->mod[x].fxs.idletxhookstate = 0x6; /* OHT mode when idle */ else wc->mod[x].fxs.idletxhookstate = 0x2; } else { if (wc->mod[x].fxs.ohttimer) { wc->mod[x].fxs.ohttimer-= ZT_CHUNKSIZE; if (!wc->mod[x].fxs.ohttimer) { if (reversepolarity) wc->mod[x].fxs.idletxhookstate = 0x5; /* Switch to active */ else wc->mod[x].fxs.idletxhookstate = 0x1; if ((wc->mod[x].fxs.lasttxhook == 0x2) || (wc->mod[x].fxs.lasttxhook == 0x6)) { /* Apply the change if appropriate */ if (reversepolarity) wc->mod[x].fxs.lasttxhook = 0x5; else wc->mod[x].fxs.lasttxhook = 0x1; wctdm_setreg(wc, x, 64, wc->mod[x].fxs.lasttxhook); } } } } } } if (ints & 0x0f) { wc->intcount++; x = wc->intcount & 0x3; mode = wc->intcount & 0xc; if (wc->cardflag & (1 << x)) { switch(mode) { case 0: /* Rest */ break; case 4: /* Read first shadow reg */ if (wc->modtype[x] == MOD_TYPE_FXS) wc->reg0shadow[x] = wctdm_getreg(wc, x, 68); else if (wc->modtype[x] == MOD_TYPE_FXO) wc->reg0shadow[x] = wctdm_getreg(wc, x, 5); break; case 8: /* Read second shadow reg */ if (wc->modtype[x] == MOD_TYPE_FXS) wc->reg1shadow[x] = wctdm_getreg(wc, x, 64); else if (wc->modtype[x] == MOD_TYPE_FXO) wc->reg1shadow[x] = wctdm_getreg(wc, x, 29); break; case 12: /* Perform processing */ if (wc->modtype[x] == MOD_TYPE_FXS) { wctdm_proslic_check_hook(wc, x); if (!(wc->intcount & 0xf0)) wctdm_proslic_recheck_sanity(wc, x); } else if (wc->modtype[x] == MOD_TYPE_FXO) { wctdm_voicedaa_check_hook(wc, x); } break; } } if (!(wc->intcount % 10000)) { /* Accept an alarm once per 10 seconds */ for (x=0;x<4;x++) if (wc->modtype[x] == MOD_TYPE_FXS) { if (wc->mod[x].fxs.palarms) wc->mod[x].fxs.palarms--; } } wctdm_receiveprep(wc, ints); wctdm_transmitprep(wc, ints); } #ifdef LINUX26 return IRQ_RETVAL(1); #endif } static int wctdm_voicedaa_insane(struct wctdm *wc, int card) { int blah; blah = wctdm_getreg(wc, card, 2); if (blah != 0x3) return -2; blah = wctdm_getreg(wc, card, 11); if (debug) printk("VoiceDAA System: %02x\n", blah & 0xf); return 0; } static int wctdm_proslic_insane(struct wctdm *wc, int card) { int blah,insane_report; insane_report=0; blah = wctdm_getreg(wc, card, 0); if (debug) printk("ProSLIC on module %d, product %d, version %d\n", card, (blah & 0x30) >> 4, (blah & 0xf)); #if 0 if ((blah & 0x30) >> 4) { printk("ProSLIC on module %d is not a 3210.\n", card); return -1; } #endif if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) { /* SLIC not loaded */ return -1; } if ((blah & 0xf) < 2) { printk("ProSLIC 3210 version %d is too old\n", blah & 0xf); return -1; } if (wctdm_getreg(wc, card, 1) & 0x80) /* ProSLIC 3215, not a 3210 */ wc->flags[card] |= FLAG_3215; blah = wctdm_getreg(wc, card, 8); if (blah != 0x2) { printk("ProSLIC on module %d insane (1) %d should be 2\n", card, blah); return -1; } else if ( insane_report) printk("ProSLIC on module %d Reg 8 Reads %d Expected is 0x2\n",card,blah); blah = wctdm_getreg(wc, card, 64); if (blah != 0x0) { printk("ProSLIC on module %d insane (2)\n", card); return -1; } else if ( insane_report) printk("ProSLIC on module %d Reg 64 Reads %d Expected is 0x0\n",card,blah); blah = wctdm_getreg(wc, card, 11); if (blah != 0x33) { printk("ProSLIC on module %d insane (3)\n", card); return -1; } else if ( insane_report) printk("ProSLIC on module %d Reg 11 Reads %d Expected is 0x33\n",card,blah); /* Just be sure it's setup right. */ wctdm_setreg(wc, card, 30, 0); if (debug) printk("ProSLIC on module %d seems sane.\n", card); return 0; } static int wctdm_proslic_powerleak_test(struct wctdm *wc, int card) { unsigned long origjiffies; unsigned char vbat; /* Turn off linefeed */ wctdm_setreg(wc, card, 64, 0); /* Power down */ wctdm_setreg(wc, card, 14, 0x10); /* Wait for one second */ origjiffies = jiffies; while((vbat = wctdm_getreg(wc, card, 82)) > 0x6) { if ((jiffies - origjiffies) >= (HZ/2)) break;; } if (vbat < 0x06) { printk("Excessive leakage detected on module %d: %d volts (%02x) after %d ms\n", card, 376 * vbat / 1000, vbat, (int)((jiffies - origjiffies) * 1000 / HZ)); return -1; } else if (debug) { printk("Post-leakage voltage: %d volts\n", 376 * vbat / 1000); } return 0; } static int wctdm_powerup_proslic(struct wctdm *wc, int card, int fast) { unsigned char vbat; unsigned long origjiffies; int lim; /* Set period of DC-DC converter to 1/64 khz */ wctdm_setreg(wc, card, 92, 0xff /* was 0xff */); /* Wait for VBat to powerup */ origjiffies = jiffies; /* Disable powerdown */ wctdm_setreg(wc, card, 14, 0); /* If fast, don't bother checking anymore */ if (fast) return 0; while((vbat = wctdm_getreg(wc, card, 82)) < 0xc0) { /* Wait no more than 500ms */ if ((jiffies - origjiffies) > HZ/2) { break; } } if (vbat < 0xc0) { if (wc->proslic_power == PROSLIC_POWER_UNKNOWN) printk("ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM400P??\n", card, (int)(((jiffies - origjiffies) * 1000 / HZ)), vbat * 375); wc->proslic_power = PROSLIC_POWER_WARNED; return -1; } else if (debug) { printk("ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); } wc->proslic_power = PROSLIC_POWER_ON; /* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */ /* If out of range, just set it to the default value */ lim = (loopcurrent - 20) / 3; if ( loopcurrent > 41 ) { lim = 0; if (debug) printk("Loop current out of range! Setting to default 20mA!\n"); } else if (debug) printk("Loop current set to %dmA!\n",(lim*3)+20); wctdm_setreg(wc,card,LOOP_I_LIMIT,lim); /* Engage DC-DC converter */ wctdm_setreg(wc, card, 93, 0x19 /* was 0x19 */); #if 0 origjiffies = jiffies; while(0x80 & wctdm_getreg(wc, card, 93)) { if ((jiffies - origjiffies) > 2 * HZ) { printk("Timeout waiting for DC-DC calibration on module %d\n", card); return -1; } } #if 0 /* Wait a full two seconds */ while((jiffies - origjiffies) < 2 * HZ); /* Just check to be sure */ vbat = wctdm_getreg(wc, card, 82); printk("ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); #endif #endif return 0; } static int wctdm_proslic_manual_calibrate(struct wctdm *wc, int card){ unsigned long origjiffies; unsigned char i; wctdm_setreg(wc, card, 21, 0);//(0) Disable all interupts in DR21 wctdm_setreg(wc, card, 22, 0);//(0)Disable all interupts in DR21 wctdm_setreg(wc, card, 23, 0);//(0)Disable all interupts in DR21 wctdm_setreg(wc, card, 64, 0);//(0) wctdm_setreg(wc, card, 97, 0x18); //(0x18)Calibrations without the ADC and DAC offset and without common mode calibration. wctdm_setreg(wc, card, 96, 0x47); //(0x47) Calibrate common mode and differential DAC mode DAC + ILIM origjiffies=jiffies; while( wctdm_getreg(wc,card,96)!=0 ){ if((jiffies-origjiffies)>80) return -1; } //Initialized DR 98 and 99 to get consistant results. // 98 and 99 are the results registers and the search should have same intial conditions. /*******************************The following is the manual gain mismatch calibration****************************/ /*******************************This is also available as a function *******************************************/ // Delay 10ms origjiffies=jiffies; while((jiffies-origjiffies)<1); wctdm_proslic_setreg_indirect(wc, card, 88,0); wctdm_proslic_setreg_indirect(wc,card,89,0); wctdm_proslic_setreg_indirect(wc,card,90,0); wctdm_proslic_setreg_indirect(wc,card,91,0); wctdm_proslic_setreg_indirect(wc,card,92,0); wctdm_proslic_setreg_indirect(wc,card,93,0); wctdm_setreg(wc, card, 98,0x10); // This is necessary if the calibration occurs other than at reset time wctdm_setreg(wc, card, 99,0x10); for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, card, 98,i); origjiffies=jiffies; while((jiffies-origjiffies)<4); if((wctdm_getreg(wc,card,88)) == 0) break; } // for for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, card, 99,i); origjiffies=jiffies; while((jiffies-origjiffies)<4); if((wctdm_getreg(wc,card,89)) == 0) break; }//for /*******************************The preceding is the manual gain mismatch calibration****************************/ /**********************************The following is the longitudinal Balance Cal***********************************/ wctdm_setreg(wc,card,64,1); while((jiffies-origjiffies)<10); // Sleep 100? wctdm_setreg(wc, card, 64, 0); wctdm_setreg(wc, card, 23, 0x4); // enable interrupt for the balance Cal wctdm_setreg(wc, card, 97, 0x1); // this is a singular calibration bit for longitudinal calibration wctdm_setreg(wc, card, 96,0x40); wctdm_getreg(wc,card,96); /* Read Reg 96 just cause */ wctdm_setreg(wc, card, 21, 0xFF); wctdm_setreg(wc, card, 22, 0xFF); wctdm_setreg(wc, card, 23, 0xFF); /**The preceding is the longitudinal Balance Cal***/ return(0); } #if 1 static int wctdm_proslic_calibrate(struct wctdm *wc, int card) { unsigned long origjiffies; int x; /* Perform all calibrations */ wctdm_setreg(wc, card, 97, 0x1f); /* Begin, no speedup */ wctdm_setreg(wc, card, 96, 0x5f); /* Wait for it to finish */ origjiffies = jiffies; while(wctdm_getreg(wc, card, 96)) { if ((jiffies - origjiffies) > 2 * HZ) { printk("Timeout waiting for calibration of module %d\n", card); return -1; } } if (debug) { /* Print calibration parameters */ printk("Calibration Vector Regs 98 - 107: \n"); for (x=98;x<108;x++) { printk("%d: %02x\n", x, wctdm_getreg(wc, card, x)); } } return 0; } #endif static void wait_just_a_bit(int foo) { long newjiffies; newjiffies = jiffies + foo; while(jiffies < newjiffies); } /********************************************************************* * Set the hwgain on the analog modules * * card = the card position for this module (0-23) * gain = gain in dB x10 (e.g. -3.5dB would be gain=-35) * tx = (0 for rx; 1 for tx) * *******************************************************************/ static int wctdm_set_hwgain(struct wctdm *wc, int card, __s32 gain, __u32 tx) { if (!(wc->modtype[card] == MOD_TYPE_FXO)) { printk("Cannot adjust gain. Unsupported module type!\n"); return -1; } if (tx) { if (debug) printk("setting FXO tx gain for card=%d to %d\n", card, gain); if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, card, 38, 16 + (gain/-10)); wctdm_setreg(wc, card, 40, 16 + (-gain%10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, card, 38, gain/10); wctdm_setreg(wc, card, 40, (gain%10)); } else { printk("FXO tx gain is out of range (%d)\n", gain); return -1; } } else { /* rx */ if (debug) printk("setting FXO rx gain for card=%d to %d\n", card, gain); if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, card, 39, 16+ (gain/-10)); wctdm_setreg(wc, card, 41, 16 + (-gain%10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, card, 39, gain/10); wctdm_setreg(wc, card, 41, (gain%10)); } else { printk("FXO rx gain is out of range (%d)\n", gain); return -1; } } return 0; } static int wctdm_init_voicedaa(struct wctdm *wc, int card, int fast, int manual, int sane) { unsigned char reg16=0, reg26=0, reg30=0, reg31=0; long newjiffies; wc->modtype[card] = MOD_TYPE_FXO; /* Sanity check the ProSLIC */ reset_spi(wc, card); if (!sane && wctdm_voicedaa_insane(wc, card)) return -2; /* Software reset */ wctdm_setreg(wc, card, 1, 0x80); /* Wait just a bit */ wait_just_a_bit(HZ/10); /* Enable PCM, ulaw */ if (alawoverride) wctdm_setreg(wc, card, 33, 0x20); else wctdm_setreg(wc, card, 33, 0x28); /* Set On-hook speed, Ringer impedence, and ringer threshold */ reg16 |= (fxo_modes[_opermode].ohs << 6); reg16 |= (fxo_modes[_opermode].rz << 1); reg16 |= (fxo_modes[_opermode].rt); wctdm_setreg(wc, card, 16, reg16); if(fwringdetect) { /* Enable ring detector full-wave rectifier mode */ wctdm_setreg(wc, card, 18, 2); wctdm_setreg(wc, card, 24, 0); } else { /* Set to the device defaults */ wctdm_setreg(wc, card, 18, 0); wctdm_setreg(wc, card, 24, 0x19); } /* Set DC Termination: Tip/Ring voltage adjust, minimum operational current, current limitation */ reg26 |= (fxo_modes[_opermode].dcv << 6); reg26 |= (fxo_modes[_opermode].mini << 4); reg26 |= (fxo_modes[_opermode].ilim << 1); wctdm_setreg(wc, card, 26, reg26); /* Set AC Impedence */ reg30 = (fxo_modes[_opermode].acim); wctdm_setreg(wc, card, 30, reg30); /* Misc. DAA parameters */ if (fastpickup) reg31 = 0xb3; else reg31 = 0xa3; reg31 |= (fxo_modes[_opermode].ohs2 << 3); wctdm_setreg(wc, card, 31, reg31); /* Set Transmit/Receive timeslot */ wctdm_setreg(wc, card, 34, (3-card) * 8); wctdm_setreg(wc, card, 35, 0x00); wctdm_setreg(wc, card, 36, (3-card) * 8); wctdm_setreg(wc, card, 37, 0x00); /* Enable ISO-Cap */ wctdm_setreg(wc, card, 6, 0x00); if (fastpickup) wctdm_setreg(wc, card, 17, wctdm_getreg(wc, card, 17) | 0x20); /* Wait 1000ms for ISO-cap to come up */ newjiffies = jiffies; newjiffies += 2 * HZ; while((jiffies < newjiffies) && !(wctdm_getreg(wc, card, 11) & 0xf0)) wait_just_a_bit(HZ/10); if (!(wctdm_getreg(wc, card, 11) & 0xf0)) { printk("VoiceDAA did not bring up ISO link properly!\n"); return -1; } if (debug) printk("ISO-Cap is now up, line side: %02x rev %02x\n", wctdm_getreg(wc, card, 11) >> 4, (wctdm_getreg(wc, card, 13) >> 2) & 0xf); /* Enable on-hook line monitor */ wctdm_setreg(wc, card, 5, 0x08); /* Take values for fxotxgain and fxorxgain and apply them to module */ wctdm_set_hwgain(wc, card, fxotxgain, 1); wctdm_set_hwgain(wc, card, fxorxgain, 0); /* NZ -- crank the tx gain up by 7 dB */ if (!strcmp(fxo_modes[_opermode].name, "NEWZEALAND")) { printk("Adjusting gain\n"); wctdm_set_hwgain(wc, card, 7, 1); } if(debug) printk("DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wctdm_getreg(wc, card, 38)/16)?-(wctdm_getreg(wc, card, 38) - 16) : wctdm_getreg(wc, card, 38), (wctdm_getreg(wc, card, 40)/16)? -(wctdm_getreg(wc, card, 40) - 16):wctdm_getreg(wc, card, 40), (wctdm_getreg(wc, card, 39)/16)? -(wctdm_getreg(wc, card, 39) - 16) : wctdm_getreg(wc, card, 39),(wctdm_getreg(wc, card, 41)/16)?-(wctdm_getreg(wc, card, 41) - 16):wctdm_getreg(wc, card, 41)); return 0; } static int wctdm_init_proslic(struct wctdm *wc, int card, int fast, int manual, int sane) { unsigned short tmp[5]; unsigned char r19,r9; int x; int fxsmode=0; /* Sanity check the ProSLIC */ if (!sane && wctdm_proslic_insane(wc, card)) return -2; /* By default, don't send on hook */ if (reversepolarity) wc->mod[card].fxs.idletxhookstate = 5; else wc->mod[card].fxs.idletxhookstate = 1; if (sane) { /* Make sure we turn off the DC->DC converter to prevent anything from blowing up */ wctdm_setreg(wc, card, 14, 0x10); } if (wctdm_proslic_init_indirect_regs(wc, card)) { printk(KERN_INFO "Indirect Registers failed to initialize on module %d.\n", card); return -1; } /* Clear scratch pad area */ wctdm_proslic_setreg_indirect(wc, card, 97,0); /* Clear digital loopback */ wctdm_setreg(wc, card, 8, 0); /* Revision C optimization */ wctdm_setreg(wc, card, 108, 0xeb); /* Disable automatic VBat switching for safety to prevent Q7 from accidently turning on and burning out. */ wctdm_setreg(wc, card, 67, 0x07); /* Note, if pulse dialing has problems at high REN loads change this to 0x17 */ /* Turn off Q7 */ wctdm_setreg(wc, card, 66, 1); /* Flush ProSLIC digital filters by setting to clear, while saving old values */ for (x=0;x<5;x++) { tmp[x] = wctdm_proslic_getreg_indirect(wc, card, x + 35); wctdm_proslic_setreg_indirect(wc, card, x + 35, 0x8000); } /* Power up the DC-DC converter */ if (wctdm_powerup_proslic(wc, card, fast)) { printk("Unable to do INITIAL ProSLIC powerup on module %d\n", card); return -1; } if (!fast) { /* Check for power leaks */ if (wctdm_proslic_powerleak_test(wc, card)) { printk("ProSLIC module %d failed leakage test. Check for short circuit\n", card); } /* Power up again */ if (wctdm_powerup_proslic(wc, card, fast)) { printk("Unable to do FINAL ProSLIC powerup on module %d\n", card); return -1; } #ifndef NO_CALIBRATION /* Perform calibration */ if(manual) { if (wctdm_proslic_manual_calibrate(wc, card)) { //printk("Proslic failed on Manual Calibration\n"); if (wctdm_proslic_manual_calibrate(wc, card)) { printk("Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n"); return -1; } printk("Proslic Passed Manual Calibration on Second Attempt\n"); } } else { if(wctdm_proslic_calibrate(wc, card)) { //printk("ProSlic died on Auto Calibration.\n"); if (wctdm_proslic_calibrate(wc, card)) { printk("Proslic Failed on Second Attempt to Auto Calibrate\n"); return -1; } printk("Proslic Passed Auto Calibration on Second Attempt\n"); } } /* Perform DC-DC calibration */ wctdm_setreg(wc, card, 93, 0x99); r19 = wctdm_getreg(wc, card, 107); if ((r19 < 0x2) || (r19 > 0xd)) { printk("DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19); wctdm_setreg(wc, card, 107, 0x8); } /* Save calibration vectors */ for (x=0;xmod[card].fxs.calregs.vals[x] = wctdm_getreg(wc, card, 96 + x); #endif } else { /* Restore calibration registers */ for (x=0;xmod[card].fxs.calregs.vals[x]); } /* Calibration complete, restore original values */ for (x=0;x<5;x++) { wctdm_proslic_setreg_indirect(wc, card, x + 35, tmp[x]); } if (wctdm_proslic_verify_indirect_regs(wc, card)) { printk(KERN_INFO "Indirect Registers failed verification.\n"); return -1; } #if 0 /* Disable Auto Power Alarm Detect and other "features" */ wctdm_setreg(wc, card, 67, 0x0e); blah = wctdm_getreg(wc, card, 67); #endif #if 0 if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix printk(KERN_INFO "ProSlic IndirectReg Died.\n"); return -1; } #endif if (alawoverride) wctdm_setreg(wc, card, 1, 0x20); else wctdm_setreg(wc, card, 1, 0x28); // U-Law 8-bit interface wctdm_setreg(wc, card, 2, (3-card) * 8); // Tx Start count low byte 0 wctdm_setreg(wc, card, 3, 0); // Tx Start count high byte 0 wctdm_setreg(wc, card, 4, (3-card) * 8); // Rx Start count low byte 0 wctdm_setreg(wc, card, 5, 0); // Rx Start count high byte 0 wctdm_setreg(wc, card, 18, 0xff); // clear all interrupt wctdm_setreg(wc, card, 19, 0xff); wctdm_setreg(wc, card, 20, 0xff); wctdm_setreg(wc, card, 73, 0x04); if (fxshonormode) { fxsmode = acim2tiss[fxo_modes[_opermode].acim]; wctdm_setreg(wc, card, 10, 0x08 | fxsmode); if (fxo_modes[_opermode].ring_osc) wctdm_proslic_setreg_indirect(wc, card, 20, fxo_modes[_opermode].ring_osc); if (fxo_modes[_opermode].ring_x) wctdm_proslic_setreg_indirect(wc, card, 21, fxo_modes[_opermode].ring_x); } if (lowpower) wctdm_setreg(wc, card, 72, 0x10); #if 0 wctdm_setreg(wc, card, 21, 0x00); // enable interrupt wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt #endif #if 0 /* Enable loopback */ wctdm_setreg(wc, card, 8, 0x2); wctdm_setreg(wc, card, 14, 0x0); wctdm_setreg(wc, card, 64, 0x0); wctdm_setreg(wc, card, 1, 0x08); #endif if (fastringer) { /* Speed up Ringer */ wctdm_proslic_setreg_indirect(wc, card, 20, 0x7e6d); wctdm_proslic_setreg_indirect(wc, card, 21, 0x01b9); /* Beef up Ringing voltage to 89V */ if (boostringer) { wctdm_setreg(wc, card, 74, 0x3f); if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x247)) return -1; printk("Boosting fast ringer on slot %d (89V peak)\n", card + 1); } else if (lowpower) { if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x14b)) return -1; printk("Reducing fast ring power on slot %d (50V peak)\n", card + 1); } else printk("Speeding up ringer on slot %d (25Hz)\n", card + 1); } else { /* Beef up Ringing voltage to 89V */ if (boostringer) { wctdm_setreg(wc, card, 74, 0x3f); if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x1d1)) return -1; printk("Boosting ringer on slot %d (89V peak)\n", card + 1); } else if (lowpower) { if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x108)) return -1; printk("Reducing ring power on slot %d (50V peak)\n", card + 1); } } if(fxstxgain || fxsrxgain) { r9 = wctdm_getreg(wc, card, 9); switch (fxstxgain) { case 35: r9+=8; break; case -35: r9+=4; break; case 0: break; } switch (fxsrxgain) { case 35: r9+=2; break; case -35: r9+=1; break; case 0: break; } wctdm_setreg(wc,card,9,r9); } if(debug) printk("DEBUG: fxstxgain:%s fxsrxgain:%s\n",((wctdm_getreg(wc, card, 9)/8) == 1)?"3.5":(((wctdm_getreg(wc,card,9)/4) == 1)?"-3.5":"0.0"),((wctdm_getreg(wc, card, 9)/2) == 1)?"3.5":((wctdm_getreg(wc,card,9)%2)?"-3.5":"0.0")); wctdm_setreg(wc, card, 64, 0x01); return 0; } static int wctdm_ioctl(struct zt_chan *chan, unsigned int cmd, unsigned long data) { struct wctdm_stats stats; struct wctdm_regs regs; struct wctdm_regop regop; struct wctdm_echo_coefs echoregs; struct zt_hwgain hwgain; struct wctdm *wc = chan->pvt; int x; switch (cmd) { case ZT_ONHOOKTRANSFER: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (get_user(x, (int *)data)) return -EFAULT; wc->mod[chan->chanpos - 1].fxs.ohttimer = x << 3; if (reversepolarity) wc->mod[chan->chanpos - 1].fxs.idletxhookstate = 0x6; /* OHT mode when idle */ else wc->mod[chan->chanpos - 1].fxs.idletxhookstate = 0x2; if (wc->mod[chan->chanpos - 1].fxs.lasttxhook == 0x1 || wc->mod[chan->chanpos - 1].fxs.lasttxhook == 0x5) { /* Apply the change if appropriate */ if (reversepolarity) wc->mod[chan->chanpos - 1].fxs.lasttxhook = 0x6; else wc->mod[chan->chanpos - 1].fxs.lasttxhook = 0x2; wctdm_setreg(wc, chan->chanpos - 1, 64, wc->mod[chan->chanpos - 1].fxs.lasttxhook); } break; case ZT_SETPOLARITY: if (get_user(x, (int *)data)) return -EFAULT; if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; /* Can't change polarity while ringing or when open */ if ((wc->mod[chan->chanpos -1 ].fxs.lasttxhook == 0x04) || (wc->mod[chan->chanpos -1 ].fxs.lasttxhook == 0x00)) return -EINVAL; if ((x && !reversepolarity) || (!x && reversepolarity)) wc->mod[chan->chanpos - 1].fxs.lasttxhook |= 0x04; else wc->mod[chan->chanpos - 1].fxs.lasttxhook &= ~0x04; wctdm_setreg(wc, chan->chanpos - 1, 64, wc->mod[chan->chanpos - 1].fxs.lasttxhook); break; case WCTDM_GET_STATS: if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { stats.tipvolt = wctdm_getreg(wc, chan->chanpos - 1, 80) * -376; stats.ringvolt = wctdm_getreg(wc, chan->chanpos - 1, 81) * -376; stats.batvolt = wctdm_getreg(wc, chan->chanpos - 1, 82) * -376; } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { stats.tipvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; stats.ringvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; stats.batvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; } else return -EINVAL; if (copy_to_user((struct wctdm_stats *)data, &stats, sizeof(stats))) return -EFAULT; break; case WCTDM_GET_REGS: if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { for (x=0;xchanpos -1, x); for (x=0;xchanpos - 1, x); } else { memset(®s, 0, sizeof(regs)); for (x=0;xchanpos - 1, x); } if (copy_to_user((struct wctdm_regs *)data, ®s, sizeof(regs))) return -EFAULT; break; case WCTDM_SET_REG: if (copy_from_user(®op, (struct wctdm_regop *)data, sizeof(regop))) return -EFAULT; if (regop.indirect) { if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; printk("Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_proslic_setreg_indirect(wc, chan->chanpos - 1, regop.reg, regop.val); } else { regop.val &= 0xff; printk("Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_setreg(wc, chan->chanpos - 1, regop.reg, regop.val); } break; case WCTDM_SET_ECHOTUNE: printk("-- Setting echo registers: \n"); if (copy_from_user(&echoregs, (struct wctdm_echo_coefs*)data, sizeof(echoregs))) return -EFAULT; if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { /* Set the ACIM register */ wctdm_setreg(wc, chan->chanpos - 1, 30, echoregs.acim); /* Set the digital echo canceller registers */ wctdm_setreg(wc, chan->chanpos - 1, 45, echoregs.coef1); wctdm_setreg(wc, chan->chanpos - 1, 46, echoregs.coef2); wctdm_setreg(wc, chan->chanpos - 1, 47, echoregs.coef3); wctdm_setreg(wc, chan->chanpos - 1, 48, echoregs.coef4); wctdm_setreg(wc, chan->chanpos - 1, 49, echoregs.coef5); wctdm_setreg(wc, chan->chanpos - 1, 50, echoregs.coef6); wctdm_setreg(wc, chan->chanpos - 1, 51, echoregs.coef7); wctdm_setreg(wc, chan->chanpos - 1, 52, echoregs.coef8); printk("-- Set echo registers successfully\n"); break; } else { return -EINVAL; } break; case ZT_SET_HWGAIN: if (copy_from_user(&hwgain, (struct zt_hwgain*) data, sizeof(hwgain))) return -EFAULT; wctdm_set_hwgain(wc, chan->chanpos-1, hwgain.newgain, hwgain.tx); if (debug) printk("Setting hwgain on channel %d to %d for %s direction\n", chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx"); break; default: return -ENOTTY; } return 0; } static int wctdm_open(struct zt_chan *chan) { struct wctdm *wc = chan->pvt; if (!(wc->cardflag & (1 << (chan->chanpos - 1)))) return -ENODEV; if (wc->dead) return -ENODEV; wc->usecount++; #ifndef LINUX26 MOD_INC_USE_COUNT; #else try_module_get(THIS_MODULE); #endif return 0; } static int wctdm_watchdog(struct zt_span *span, int event) { printk("TDM: Restarting DMA\n"); wctdm_restart_dma(span->pvt); return 0; } static int wctdm_close(struct zt_chan *chan) { struct wctdm *wc = chan->pvt; wc->usecount--; #ifndef LINUX26 MOD_DEC_USE_COUNT; #else module_put(THIS_MODULE); #endif if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { if (reversepolarity) wc->mod[chan->chanpos - 1].fxs.idletxhookstate = 5; else wc->mod[chan->chanpos - 1].fxs.idletxhookstate = 1; } /* If we're dead, release us now */ if (!wc->usecount && wc->dead) wctdm_release(wc); return 0; } static int wctdm_hooksig(struct zt_chan *chan, zt_txsig_t txsig) { struct wctdm *wc = chan->pvt; int reg=0; if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { /* XXX Enable hooksig for FXO XXX */ switch(txsig) { case ZT_TXSIG_START: case ZT_TXSIG_OFFHOOK: wc->mod[chan->chanpos - 1].fxo.offhook = 1; wctdm_setreg(wc, chan->chanpos - 1, 5, 0x9); break; case ZT_TXSIG_ONHOOK: wc->mod[chan->chanpos - 1].fxo.offhook = 0; wctdm_setreg(wc, chan->chanpos - 1, 5, 0x8); break; default: printk("wcfxo: Can't set tx state to %d\n", txsig); } } else { switch(txsig) { case ZT_TXSIG_ONHOOK: switch(chan->sig) { case ZT_SIG_EM: case ZT_SIG_FXOKS: case ZT_SIG_FXOLS: wc->mod[chan->chanpos-1].fxs.lasttxhook = wc->mod[chan->chanpos-1].fxs.idletxhookstate; break; case ZT_SIG_FXOGS: wc->mod[chan->chanpos-1].fxs.lasttxhook = 3; break; } break; case ZT_TXSIG_OFFHOOK: switch(chan->sig) { case ZT_SIG_EM: wc->mod[chan->chanpos-1].fxs.lasttxhook = 5; break; default: wc->mod[chan->chanpos-1].fxs.lasttxhook = wc->mod[chan->chanpos-1].fxs.idletxhookstate; break; } break; case ZT_TXSIG_START: wc->mod[chan->chanpos-1].fxs.lasttxhook = 4; break; case ZT_TXSIG_KEWL: wc->mod[chan->chanpos-1].fxs.lasttxhook = 0; break; default: printk("wctdm: Can't set tx state to %d\n", txsig); } if (debug) printk("Setting FXS hook state to %d (%02x)\n", txsig, reg); #if 1 wctdm_setreg(wc, chan->chanpos - 1, 64, wc->mod[chan->chanpos-1].fxs.lasttxhook); #endif } return 0; } static int wctdm_initialize(struct wctdm *wc) { int x; /* Zapata stuff */ sprintf(wc->span.name, "WCTDM/%d", wc->pos); snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Board %d", wc->variety, wc->pos + 1); snprintf(wc->span.location, sizeof(wc->span.location) - 1, "PCI Bus %02d Slot %02d", wc->dev->bus->number, PCI_SLOT(wc->dev->devfn) + 1); wc->span.manufacturer = "Digium"; zap_copy_string(wc->span.devicetype, wc->variety, sizeof(wc->span.devicetype)); if (alawoverride) { printk("ALAW override parameter detected. Device will be operating in ALAW\n"); wc->span.deflaw = ZT_LAW_ALAW; } else wc->span.deflaw = ZT_LAW_MULAW; for (x = 0; x < NUM_CARDS; x++) { sprintf(wc->chans[x].name, "WCTDM/%d/%d", wc->pos, x); wc->chans[x].sigcap = ZT_SIG_FXOKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS | ZT_SIG_SF | ZT_SIG_EM | ZT_SIG_CLEAR; wc->chans[x].sigcap |= ZT_SIG_FXSKS | ZT_SIG_FXSLS | ZT_SIG_SF | ZT_SIG_CLEAR; wc->chans[x].chanpos = x+1; wc->chans[x].pvt = wc; } wc->span.chans = wc->chans; wc->span.channels = NUM_CARDS; wc->span.hooksig = wctdm_hooksig; wc->span.irq = wc->dev->irq; wc->span.open = wctdm_open; wc->span.close = wctdm_close; wc->span.flags = ZT_FLAG_RBS; wc->span.ioctl = wctdm_ioctl; wc->span.watchdog = wctdm_watchdog; init_waitqueue_head(&wc->span.maintq); wc->span.pvt = wc; if (zt_register(&wc->span, 0)) { printk("Unable to register span with zaptel\n"); return -1; } return 0; } static void wctdm_post_initialize(struct wctdm *wc) { int x; /* Finalize signalling */ for (x = 0; x < NUM_CARDS; x++) { if (wc->cardflag & (1 << x)) { if (wc->modtype[x] == MOD_TYPE_FXO) wc->chans[x].sigcap = ZT_SIG_FXSKS | ZT_SIG_FXSLS | ZT_SIG_SF | ZT_SIG_CLEAR; else wc->chans[x].sigcap = ZT_SIG_FXOKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS | ZT_SIG_SF | ZT_SIG_EM | ZT_SIG_CLEAR; } else if (!(wc->chans[x].sigcap & ZT_SIG_BROKEN)) { wc->chans[x].sigcap = 0; } } } static int wctdm_hardware_init(struct wctdm *wc) { /* Hardware stuff */ unsigned char ver; unsigned char x,y; int failed; /* Signal Reset */ outb(0x01, wc->ioaddr + WC_CNTL); /* Check Freshmaker chip */ x=inb(wc->ioaddr + WC_CNTL); ver = __wctdm_getcreg(wc, WC_VER); failed = 0; if (ver != 0x59) { printk("Freshmaker version: %02x\n", ver); for (x=0;x<255;x++) { /* Test registers */ if (ver >= 0x70) { __wctdm_setcreg(wc, WC_CS, x); y = __wctdm_getcreg(wc, WC_CS); } else { __wctdm_setcreg(wc, WC_TEST, x); y = __wctdm_getcreg(wc, WC_TEST); } if (x != y) { printk("%02x != %02x\n", x, y); failed++; } } if (!failed) { printk("Freshmaker passed register test\n"); } else { printk("Freshmaker failed register test\n"); return -1; } /* Go to half-duty FSYNC */ __wctdm_setcreg(wc, WC_SYNC, 0x01); y = __wctdm_getcreg(wc, WC_SYNC); } else { printk("No freshmaker chip\n"); } /* Reset PCI Interface chip and registers (and serial) */ outb(0x06, wc->ioaddr + WC_CNTL); /* Setup our proper outputs for when we switch for our "serial" port */ wc->ios = BIT_CS | BIT_SCLK | BIT_SDI; outb(wc->ios, wc->ioaddr + WC_AUXD); /* Set all to outputs except AUX 5, which is an input */ outb(0xdf, wc->ioaddr + WC_AUXC); /* Select alternate function for AUX0 */ outb(0x4, wc->ioaddr + WC_AUXFUNC); /* Wait 1/4 of a sec */ wait_just_a_bit(HZ/4); /* Back to normal, with automatic DMA wrap around */ outb(0x30 | 0x01, wc->ioaddr + WC_CNTL); /* Make sure serial port and DMA are out of reset */ outb(inb(wc->ioaddr + WC_CNTL) & 0xf9, wc->ioaddr + WC_CNTL); /* Configure serial port for MSB->LSB operation */ outb(0xc1, wc->ioaddr + WC_SERCTL); /* Delay FSC by 0 so it's properly aligned */ outb(0x0, wc->ioaddr + WC_FSCDELAY); /* Setup DMA Addresses */ outl(wc->writedma, wc->ioaddr + WC_DMAWS); /* Write start */ outl(wc->writedma + ZT_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMAWI); /* Middle (interrupt) */ outl(wc->writedma + ZT_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMAWE); /* End */ outl(wc->readdma, wc->ioaddr + WC_DMARS); /* Read start */ outl(wc->readdma + ZT_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMARI); /* Middle (interrupt) */ outl(wc->readdma + ZT_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMARE); /* End */ /* Clear interrupts */ outb(0xff, wc->ioaddr + WC_INTSTAT); /* Wait 1/4 of a second more */ wait_just_a_bit(HZ/4); for (x = 0; x < NUM_CARDS; x++) { int sane=0,ret=0,readi=0; #if 1 /* Init with Auto Calibration */ if (!(ret=wctdm_init_proslic(wc, x, 0, 0, sane))) { wc->cardflag |= (1 << x); if (debug) { readi = wctdm_getreg(wc,x,LOOP_I_LIMIT); printk("Proslic module %d loop current is %dmA\n",x, ((readi*3)+20)); } printk("Module %d: Installed -- AUTO FXS/DPO\n",x); } else { if(ret!=-2) { sane=1; /* Init with Manual Calibration */ if (!wctdm_init_proslic(wc, x, 0, 1, sane)) { wc->cardflag |= (1 << x); if (debug) { readi = wctdm_getreg(wc,x,LOOP_I_LIMIT); printk("Proslic module %d loop current is %dmA\n",x, ((readi*3)+20)); } printk("Module %d: Installed -- MANUAL FXS\n",x); } else { printk("Module %d: FAILED FXS (%s)\n", x, fxshonormode ? fxo_modes[_opermode].name : "FCC"); wc->chans[x].sigcap = __ZT_SIG_FXO | ZT_SIG_BROKEN; } } else if (!(ret = wctdm_init_voicedaa(wc, x, 0, 0, sane))) { wc->cardflag |= (1 << x); printk("Module %d: Installed -- AUTO FXO (%s mode)\n",x, fxo_modes[_opermode].name); } else printk("Module %d: Not installed\n", x); } #endif } /* Return error if nothing initialized okay. */ if (!wc->cardflag && !timingonly) return -1; __wctdm_setcreg(wc, WC_SYNC, (wc->cardflag << 1) | 0x1); return 0; } static void wctdm_enable_interrupts(struct wctdm *wc) { /* Enable interrupts (we care about all of them) */ outb(0x3f, wc->ioaddr + WC_MASK0); /* No external interrupts */ outb(0x00, wc->ioaddr + WC_MASK1); } static void wctdm_restart_dma(struct wctdm *wc) { /* Reset Master and TDM */ outb(0x01, wc->ioaddr + WC_CNTL); outb(0x01, wc->ioaddr + WC_OPER); } static void wctdm_start_dma(struct wctdm *wc) { /* Reset Master and TDM */ outb(0x0f, wc->ioaddr + WC_CNTL); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1); outb(0x01, wc->ioaddr + WC_CNTL); outb(0x01, wc->ioaddr + WC_OPER); } static void wctdm_stop_dma(struct wctdm *wc) { outb(0x00, wc->ioaddr + WC_OPER); } static void wctdm_reset_tdm(struct wctdm *wc) { /* Reset TDM */ outb(0x0f, wc->ioaddr + WC_CNTL); } static void wctdm_disable_interrupts(struct wctdm *wc) { outb(0x00, wc->ioaddr + WC_MASK0); outb(0x00, wc->ioaddr + WC_MASK1); } static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int res; struct wctdm *wc; struct wctdm_desc *d = (struct wctdm_desc *)ent->driver_data; int x; int y; for (x=0;x= WC_MAX_IFACES) { printk("Too many interfaces\n"); return -EIO; } if (pci_enable_device(pdev)) { res = -EIO; } else { wc = kmalloc(sizeof(struct wctdm), GFP_KERNEL); if (wc) { int cardcount = 0; ifaces[x] = wc; memset(wc, 0, sizeof(struct wctdm)); spin_lock_init(&wc->lock); wc->curcard = -1; wc->ioaddr = pci_resource_start(pdev, 0); wc->dev = pdev; wc->pos = x; wc->variety = d->name; for (y=0;yflags[y] = d->flags; /* Keep track of whether we need to free the region */ if (request_region(wc->ioaddr, 0xff, "wctdm")) wc->freeregion = 1; /* Allocate enough memory for two zt chunks, receive and transmit. Each sample uses 32 bits. Allocate an extra set just for control too */ wc->writechunk = pci_alloc_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, &wc->writedma); if (!wc->writechunk) { printk("wctdm: Unable to allocate DMA-able memory\n"); if (wc->freeregion) release_region(wc->ioaddr, 0xff); return -ENOMEM; } wc->readchunk = wc->writechunk + ZT_MAX_CHUNKSIZE * 2; /* in doublewords */ wc->readdma = wc->writedma + ZT_MAX_CHUNKSIZE * 8; /* in bytes */ if (wctdm_initialize(wc)) { printk("wctdm: Unable to intialize FXS\n"); /* Set Reset Low */ x=inb(wc->ioaddr + WC_CNTL); outb((~0x1)&x, wc->ioaddr + WC_CNTL); /* Free Resources */ free_irq(pdev->irq, wc); if (wc->freeregion) release_region(wc->ioaddr, 0xff); pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); kfree(wc); return -EIO; } /* Enable bus mastering */ pci_set_master(pdev); /* Keep track of which device we are */ pci_set_drvdata(pdev, wc); if (request_irq(pdev->irq, wctdm_interrupt, ZAP_IRQ_SHARED, "wctdm", wc)) { printk("wctdm: Unable to request IRQ %d\n", pdev->irq); if (wc->freeregion) release_region(wc->ioaddr, 0xff); pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); pci_set_drvdata(pdev, NULL); kfree(wc); return -EIO; } if (wctdm_hardware_init(wc)) { unsigned char x; /* Set Reset Low */ x=inb(wc->ioaddr + WC_CNTL); outb((~0x1)&x, wc->ioaddr + WC_CNTL); /* Free Resources */ free_irq(pdev->irq, wc); if (wc->freeregion) release_region(wc->ioaddr, 0xff); pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); pci_set_drvdata(pdev, NULL); zt_unregister(&wc->span); kfree(wc); return -EIO; } wctdm_post_initialize(wc); /* Enable interrupts */ wctdm_enable_interrupts(wc); /* Initialize Write/Buffers to all blank data */ memset((void *)wc->writechunk,0,ZT_MAX_CHUNKSIZE * 2 * 2 * 4); /* Start DMA */ wctdm_start_dma(wc); for (x = 0; x < NUM_CARDS; x++) { if (wc->cardflag & (1 << x)) cardcount++; } printk("Found a Wildcard TDM: %s (%d modules)\n", wc->variety, cardcount); res = 0; } else res = -ENOMEM; } return res; } static void wctdm_release(struct wctdm *wc) { zt_unregister(&wc->span); if (wc->freeregion) release_region(wc->ioaddr, 0xff); kfree(wc); printk("Freed a Wildcard\n"); } static void __devexit wctdm_remove_one(struct pci_dev *pdev) { struct wctdm *wc = pci_get_drvdata(pdev); if (wc) { /* Stop any DMA */ wctdm_stop_dma(wc); wctdm_reset_tdm(wc); /* In case hardware is still there */ wctdm_disable_interrupts(wc); /* Immediately free resources */ pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); free_irq(pdev->irq, wc); /* Reset PCI chip and registers */ outb(0x0e, wc->ioaddr + WC_CNTL); /* Release span, possibly delayed */ if (!wc->usecount) wctdm_release(wc); else wc->dead = 1; } } static struct pci_device_id wctdm_pci_tbl[] = { { 0xe159, 0x0001, 0xa159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm }, { 0xe159, 0x0001, 0xe159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm }, { 0xe159, 0x0001, 0xb100, PCI_ANY_ID, 0, 0, (unsigned long) &wctdme }, { 0xe159, 0x0001, 0xb1d9, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi }, { 0xe159, 0x0001, 0xb118, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi }, { 0xe159, 0x0001, 0xb119, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi }, { 0xe159, 0x0001, 0xa9fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa8fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa800, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa801, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa908, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, { 0xe159, 0x0001, 0xa901, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, #ifdef TDM_REVH_MATCHALL { 0xe159, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh }, #endif { 0 } }; MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl); static struct pci_driver wctdm_driver = { name: "wctdm", probe: wctdm_init_one, #ifdef LINUX26 remove: __devexit_p(wctdm_remove_one), #else remove: wctdm_remove_one, #endif suspend: NULL, resume: NULL, id_table: wctdm_pci_tbl, }; static int __init wctdm_init(void) { int res; int x; for (x = 0; x < (sizeof(fxo_modes) / sizeof(fxo_modes[0])); x++) { if (!strcmp(fxo_modes[x].name, opermode)) break; } if (x < sizeof(fxo_modes) / sizeof(fxo_modes[0])) { _opermode = x; } else { printk("Invalid/unknown operating mode '%s' specified. Please choose one of:\n", opermode); for (x = 0; x < sizeof(fxo_modes) / sizeof(fxo_modes[0]); x++) printk(" %s\n", fxo_modes[x].name); printk("Note this option is CASE SENSITIVE!\n"); return -ENODEV; } if (!strcmp(opermode, "AUSTRALIA")) { boostringer = 1; fxshonormode = 1; } /* for the voicedaa_check_hook defaults, if the user has not overridden them by specifying them as module parameters, then get the values from the selected operating mode */ if (battdebounce == 0) { battdebounce = fxo_modes[_opermode].battdebounce; } if (battalarm == 0) { battalarm = fxo_modes[_opermode].battalarm; } if (battthresh == 0) { battthresh = fxo_modes[_opermode].battthresh; } res = zap_pci_module(&wctdm_driver); if (res) return -ENODEV; return 0; } static void __exit wctdm_cleanup(void) { pci_unregister_driver(&wctdm_driver); } #ifdef LINUX26 module_param(debug, int, 0600); module_param(loopcurrent, int, 0600); module_param(reversepolarity, int, 0600); module_param(robust, int, 0600); module_param(opermode, charp, 0600); module_param(timingonly, int, 0600); module_param(lowpower, int, 0600); module_param(boostringer, int, 0600); module_param(fastringer, int, 0600); module_param(fxshonormode, int, 0600); module_param(battdebounce, uint, 0600); module_param(battalarm, uint, 0600); module_param(battthresh, uint, 0600); module_param(ringdebounce, int, 0600); module_param(fwringdetect, int, 0600); module_param(alawoverride, int, 0600); module_param(fastpickup, int, 0600); module_param(fxotxgain, int, 0600); module_param(fxorxgain, int, 0600); module_param(fxstxgain, int, 0600); module_param(fxsrxgain, int, 0600); #else MODULE_PARM(debug, "i"); MODULE_PARM(loopcurrent, "i"); MODULE_PARM(reversepolarity, "i"); MODULE_PARM(robust, "i"); MODULE_PARM(opermode, "s"); MODULE_PARM(timingonly, "i"); MODULE_PARM(lowpower, "i"); MODULE_PARM(boostringer, "i"); MODULE_PARM(fastringer, "i"); MODULE_PARM(fxshonormode, "i"); MODULE_PARM(battdebounce, "i"); MODULE_PARM(battalarm, "i"); MODULE_PARM(battthresh, "i"); MODULE_PARM(ringdebounce, "i"); MODULE_PARM(fwringdetect, "i"); MODULE_PARM(alawoverride, "i"); MODULE_PARM(fastpickup, "i"); MODULE_PARM(fxotxgain, "i"); MODULE_PARM(fxorxgain, "i"); MODULE_PARM(fxstxgain, "i"); MODULE_PARM(fxsrxgain, "i"); #endif MODULE_DESCRIPTION("Wildcard TDM400P Zaptel Driver"); MODULE_AUTHOR("Mark Spencer "); #if defined(MODULE_ALIAS) MODULE_ALIAS("wcfxs"); #endif #ifdef MODULE_LICENSE MODULE_LICENSE("GPL"); #endif module_init(wctdm_init); module_exit(wctdm_cleanup);