/* * Wildcard TDM2400P TDM FXS/FXO Interface Driver for Zapata Telephony interface * * Written by Mark Spencer * Support for TDM800P and VPM150M by Matthew Fredrickson * * Copyright (C) 2005 - 2008 Digium, Inc. * All rights reserved. * * Sections for QRV cards written by Jim Dixon * Copyright (C) 2006, Jim Dixon and QRV Communications * All rights reserved. * */ /* * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2 as published by the * Free Software Foundation. See the LICENSE file included with * this program for more details. */ /* For QRV DRI cards, gain is signed short, expressed in hundredths of db (in reference to 1v Peak @ 1000Hz) , as follows: Rx Gain: -11.99 to 15.52 db Tx Gain - No Pre-Emphasis: -35.99 to 12.00 db Tx Gain - W/Pre-Emphasis: -23.99 to 0.00 db */ #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26) #include #else #include #endif #ifdef LINUX26 #include #endif #include "zaptel.h" #include "proslic.h" #include "wctdm.h" #include "wctdm24xxp.h" #ifdef VPM150M_SUPPORT #include "adt_lec.h" #endif #include "GpakCust.h" #include "GpakApi.h" /* Experimental max loop current limit for the proslic Loop current limit is from 20 mA to 41 mA in steps of 3 (according to datasheet) So set the value below to: 0x00 : 20mA (default) 0x01 : 23mA 0x02 : 26mA 0x03 : 29mA 0x04 : 32mA 0x05 : 35mA 0x06 : 37mA 0x07 : 41mA */ static int loopcurrent = 20; static alpha indirect_regs[] = { {0,255,"DTMF_ROW_0_PEAK",0x55C2}, {1,255,"DTMF_ROW_1_PEAK",0x51E6}, {2,255,"DTMF_ROW2_PEAK",0x4B85}, {3,255,"DTMF_ROW3_PEAK",0x4937}, {4,255,"DTMF_COL1_PEAK",0x3333}, {5,255,"DTMF_FWD_TWIST",0x0202}, {6,255,"DTMF_RVS_TWIST",0x0202}, {7,255,"DTMF_ROW_RATIO_TRES",0x0198}, {8,255,"DTMF_COL_RATIO_TRES",0x0198}, {9,255,"DTMF_ROW_2ND_ARM",0x0611}, {10,255,"DTMF_COL_2ND_ARM",0x0202}, {11,255,"DTMF_PWR_MIN_TRES",0x00E5}, {12,255,"DTMF_OT_LIM_TRES",0x0A1C}, {13,0,"OSC1_COEF",0x7B30}, {14,1,"OSC1X",0x0063}, {15,2,"OSC1Y",0x0000}, {16,3,"OSC2_COEF",0x7870}, {17,4,"OSC2X",0x007D}, {18,5,"OSC2Y",0x0000}, {19,6,"RING_V_OFF",0x0000}, {20,7,"RING_OSC",0x7EF0}, {21,8,"RING_X",0x0160}, {22,9,"RING_Y",0x0000}, {23,255,"PULSE_ENVEL",0x2000}, {24,255,"PULSE_X",0x2000}, {25,255,"PULSE_Y",0x0000}, //{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower {26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower {27,14,"XMIT_DIGITAL_GAIN",0x4000}, //{27,14,"XMIT_DIGITAL_GAIN",0x2000}, {28,15,"LOOP_CLOSE_TRES",0x1000}, {29,16,"RING_TRIP_TRES",0x3600}, {30,17,"COMMON_MIN_TRES",0x1000}, {31,18,"COMMON_MAX_TRES",0x0200}, {32,19,"PWR_ALARM_Q1Q2",0x07C0}, {33,20,"PWR_ALARM_Q3Q4", 0x4C00 /* 0x2600 */}, {34,21,"PWR_ALARM_Q5Q6",0x1B80}, {35,22,"LOOP_CLOSURE_FILTER",0x8000}, {36,23,"RING_TRIP_FILTER",0x0320}, {37,24,"TERM_LP_POLE_Q1Q2",0x008C}, {38,25,"TERM_LP_POLE_Q3Q4",0x0100}, {39,26,"TERM_LP_POLE_Q5Q6",0x0010}, {40,27,"CM_BIAS_RINGING",0x0C00}, {41,64,"DCDC_MIN_V",0x0C00}, {42,255,"DCDC_XTRA",0x1000}, {43,66,"LOOP_CLOSE_TRES_LOW",0x1000}, }; #ifdef FANCY_ECHOCAN static char ectab[] = { 0, 0, 0, 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 20, 22, 24, 25, 27, 28, 29, 30, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 ,32 ,32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 ,32 ,32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 ,32 ,32, 32, 31, 31, 30, 29, 28, 27, 25, 23, 22, 20, 18, 16, 13, 11, 9, 8, 6, 4, 3, 2, 1, 0, 0, }; static int ectrans[4] = { 0, 1, 3, 2 }; #define EC_SIZE (sizeof(ectab)) #define EC_SIZE_Q (sizeof(ectab) / 4) #endif /* Undefine to enable Power alarm / Transistor debug -- note: do not enable for normal operation! */ /* #define PAQ_DEBUG */ #define DEBUG_CARD (1 << 0) #define DEBUG_ECHOCAN (1 << 1) #include "fxo_modes.h" struct wctdm_desc { char *name; int flags; int ports; }; static struct wctdm_desc wctdm2400 = { "Wildcard TDM2400P", 0, 24 }; static struct wctdm_desc wctdm800 = { "Wildcard TDM800P", 0, 8 }; static struct wctdm_desc wctdm410 = { "Wildcard TDM410P", 0, 4 }; static struct wctdm_desc wcaex2400 = { "Wildcard AEX2400", FLAG_EXPRESS, 24 }; static struct wctdm_desc wcaex800 = { "Wildcard AEX800", FLAG_EXPRESS, 8 }; static struct wctdm_desc wcaex410 = { "Wildcard AEX410", FLAG_EXPRESS, 4 }; static int acim2tiss[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 }; struct wctdm *ifaces[WC_MAX_IFACES]; spinlock_t ifacelock = SPIN_LOCK_UNLOCKED; static void wctdm_release(struct wctdm *wc); static int fxovoltage = 0; static unsigned int battdebounce; static unsigned int battalarm; static unsigned int battthresh; static int debug = 0; static int robust = 0; static int lowpower = 0; static int boostringer = 0; static int fastringer = 0; static int _opermode = 0; static char *opermode = "FCC"; static int fxshonormode = 0; static int alawoverride = 0; static int fxo_addrs[4] = { 0x00, 0x08, 0x04, 0x0c }; static int fxotxgain = 0; static int fxorxgain = 0; static int fxstxgain = 0; static int fxsrxgain = 0; static int nativebridge = 0; static int ringdebounce = DEFAULT_RING_DEBOUNCE; static int fwringdetect = 0; static int latency = VOICEBUS_DEFAULT_LATENCY; #define MS_PER_HOOKCHECK (1) #define NEONMWI_ON_DEBOUNCE (100/MS_PER_HOOKCHECK) static int neonmwi_monitor = 0; /* Note: this causes use of full wave ring detect */ static int neonmwi_level = 75; /* neon mwi trip voltage */ static int neonmwi_envelope = 10; static int neonmwi_offlimit = 16000; /* Time in milliseconds the monitor is checked before saying no message is waiting */ static int neonmwi_offlimit_cycles; /* Time in milliseconds the monitor is checked before saying no message is waiting */ #ifdef VPM_SUPPORT static int vpmsupport = 1; static int vpmdtmfsupport = 0; #define VPM_DEFAULT_DTMFTHRESHOLD 1250 static int dtmfthreshold = VPM_DEFAULT_DTMFTHRESHOLD; /* * This parameter is used to adjust the NLP type used. The options are: * 0 : None * 1 : Mute * 2 : Random Noise * 3 : Hoth Noise * 4 : Suppression NLP - In order to use this, you must set the vpmnlpmaxsupp parameter to * some value in order to give the amount of dB to suppress to the suppressor */ static int vpmnlptype = 1; /* This is the threshold (in dB) for enabling and disabling of the NLP */ static int vpmnlpthresh = 24; /* See vpmnlptype = 4 for more info */ static int vpmnlpmaxsupp = 0; #endif static int wctdm_init_proslic(struct wctdm *wc, int card, int fast , int manual, int sane); static inline int CMD_BYTE(int card, int bit, int altcs) { /* Let's add some trickery to make the TDM410 work */ if (altcs == 3) { if (card == 2) { card = 4; altcs = 0; } else if (card == 3) { card = 5; altcs = 2; } } return (((((card) & 0x3) * 3 + (bit)) * 7) \ + ((card) >> 2) + (altcs) + ((altcs) ? -21 : 0)); } /* sleep in user space until woken up. Equivilant of tsleep() in BSD */ int schluffen(wait_queue_head_t *q) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(q, &wait); current->state = TASK_INTERRUPTIBLE; if (!signal_pending(current)) schedule(); current->state = TASK_RUNNING; remove_wait_queue(q, &wait); if (signal_pending(current)) return -ERESTARTSYS; return(0); } static inline int empty_slot(struct wctdm *wc, int card) { int x; for (x=0;xcmdq[card].cmds[x]) return x; } return -1; } #ifdef VPM_SUPPORT static inline void cmd_dequeue_vpm150m(struct wctdm *wc, volatile unsigned char *writechunk, int whichframe) { unsigned long flags; struct vpm150m_cmd *curcmd = NULL; struct vpm150m *vpm150m = wc->vpm150m; int x; unsigned char leds = ~((wc->intcount / 1000) % 8) & 0x7; /* Skip audio */ writechunk += 24; spin_lock_irqsave(&wc->reglock, flags); if (test_bit(VPM150M_SPIRESET, &vpm150m->control) || test_bit(VPM150M_HPIRESET, &vpm150m->control)) { if (debug & DEBUG_ECHOCAN) printk("HW Resetting VPMADT032...\n"); for (x = 24; x < 28; x++) { if (x == 24) { if (test_and_clear_bit(VPM150M_SPIRESET, &vpm150m->control)) writechunk[CMD_BYTE(x, 0, 0)] = 0x08; else if (test_and_clear_bit(VPM150M_HPIRESET, &vpm150m->control)) writechunk[CMD_BYTE(x, 0, 0)] = 0x0b; } else writechunk[CMD_BYTE(x, 0, 0)] = 0x00 | leds; writechunk[CMD_BYTE(x, 1, 0)] = 0; writechunk[CMD_BYTE(x, 2, 0)] = 0x00; } spin_unlock_irqrestore(&wc->reglock, flags); return; } /* Search for something waiting to transmit */ for (x = 0; x < VPM150M_MAX_COMMANDS; x++) { if ((vpm150m->cmdq[x].desc & (__VPM150M_RD | __VPM150M_WR)) && !(vpm150m->cmdq[x].desc & (__VPM150M_FIN | __VPM150M_TX))) { curcmd = &vpm150m->cmdq[x]; curcmd->txident = wc->txident; curcmd->desc |= __VPM150M_TX; break; } } if (curcmd) { #if 0 printk("Found command txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", curcmd->txident, curcmd->desc, curcmd->addr, curcmd->data); #endif if (curcmd->desc & __VPM150M_RWPAGE) { /* Set CTRL access to page*/ writechunk[CMD_BYTE(24, 0, 0)] = (0x8 << 4); writechunk[CMD_BYTE(24, 1, 0)] = 0; writechunk[CMD_BYTE(24, 2, 0)] = 0x20; /* Do a page write */ if (curcmd->desc & __VPM150M_WR) writechunk[CMD_BYTE(25, 0, 0)] = ((0x8 | 0x4) << 4); else writechunk[CMD_BYTE(25, 0, 0)] = ((0x8 | 0x4 | 0x1) << 4); writechunk[CMD_BYTE(25, 1, 0)] = 0; if (curcmd->desc & __VPM150M_WR) writechunk[CMD_BYTE(25, 2, 0)] = curcmd->data[0] & 0xf; else writechunk[CMD_BYTE(25, 2, 0)] = 0; /* Clear XADD */ writechunk[CMD_BYTE(26, 0, 0)] = (0x8 << 4); writechunk[CMD_BYTE(26, 1, 0)] = 0; writechunk[CMD_BYTE(26, 2, 0)] = 0; /* Fill in to buffer to size */ writechunk[CMD_BYTE(27, 0, 0)] = 0; writechunk[CMD_BYTE(27, 1, 0)] = 0; writechunk[CMD_BYTE(27, 2, 0)] = 0; } else { /* Set address */ writechunk[CMD_BYTE(24, 0, 0)] = ((0x8 | 0x4) << 4); writechunk[CMD_BYTE(24, 1, 0)] = (curcmd->addr >> 8) & 0xff; writechunk[CMD_BYTE(24, 2, 0)] = curcmd->addr & 0xff; /* Send/Get our data */ if (curcmd->desc & __VPM150M_WR) { if (curcmd->datalen > 1) writechunk[CMD_BYTE(25, 0, 0)] = ((0x8 | (0x1 << 1)) << 4); else writechunk[CMD_BYTE(25, 0, 0)] = ((0x8 | (0x3 << 1)) << 4); } else if (curcmd->datalen > 1) writechunk[CMD_BYTE(25, 0, 0)] = ((0x8 | (0x1 << 1) | 0x1) << 4); else writechunk[CMD_BYTE(25, 0, 0)] = ((0x8 | (0x3 << 1) | 0x1) << 4); writechunk[CMD_BYTE(25, 1, 0)] = (curcmd->data[0] >> 8) & 0xff; writechunk[CMD_BYTE(25, 2, 0)] = curcmd->data[0] & 0xff; if (curcmd->datalen > 1) { if (curcmd->desc & __VPM150M_WR) writechunk[CMD_BYTE(26, 0, 0)] = ((0x8 | (0x1 << 1)) << 4); else writechunk[CMD_BYTE(26, 0, 0)] = ((0x8 | (0x1 << 1) | 0x1) << 4); writechunk[CMD_BYTE(26, 1, 0)] = (curcmd->data[1] >> 8) & 0xff; writechunk[CMD_BYTE(26, 2, 0)] = curcmd->data[1] & 0xff; } else { /* Fill in the rest */ writechunk[CMD_BYTE(26, 0, 0)] = 0; writechunk[CMD_BYTE(26, 1, 0)] = 0; writechunk[CMD_BYTE(26, 2, 0)] = 0; } if (curcmd->datalen > 2) { if (curcmd->desc & __VPM150M_WR) writechunk[CMD_BYTE(27, 0, 0)] = ((0x8 | (0x1 << 1)) << 4); else writechunk[CMD_BYTE(27, 0, 0)] = ((0x8 | (0x1 << 1) | 0x1) << 4); writechunk[CMD_BYTE(27, 1, 0)] = (curcmd->data[2] >> 8) & 0xff; writechunk[CMD_BYTE(27, 2, 0)] = curcmd->data[2] & 0xff; } else { /* Fill in the rest */ writechunk[CMD_BYTE(27, 0, 0)] = 0; writechunk[CMD_BYTE(27, 1, 0)] = 0; writechunk[CMD_BYTE(27, 2, 0)] = 0; } } } else if (test_and_clear_bit(VPM150M_SWRESET, &vpm150m->control)) { printk("Booting VPMADT032\n"); for (x = 24; x < 28; x++) { if (x == 24) writechunk[CMD_BYTE(x, 0, 0)] = (0x8 << 4); else writechunk[CMD_BYTE(x, 0, 0)] = 0x00; writechunk[CMD_BYTE(x, 1, 0)] = 0; if (x == 24) writechunk[CMD_BYTE(x, 2, 0)] = 0x01; else writechunk[CMD_BYTE(x, 2, 0)] = 0x00; } } else { for (x = 24; x < 28; x++) { writechunk[CMD_BYTE(x, 0, 0)] = 0x00; writechunk[CMD_BYTE(x, 1, 0)] = 0x00; writechunk[CMD_BYTE(x, 2, 0)] = 0x00; } } #ifdef VPM150M_SUPPORT /* Add our leds in */ for (x = 24; x < 28; x++) writechunk[CMD_BYTE(x, 0, 0)] |= leds; /* Now let's figure out if we need to check for DTMF */ if (test_bit(VPM150M_ACTIVE, &vpm150m->control) && !whichframe && !(wc->intcount % 100)) queue_work(vpm150m->wq, &vpm150m->work); #endif spin_unlock_irqrestore(&wc->reglock, flags); } #endif /* VPM_SUPPORT */ static inline void cmd_dequeue(struct wctdm *wc, volatile unsigned char *writechunk, int card, int pos) { unsigned long flags; unsigned int curcmd=0; int x; int subaddr = card & 0x3; #ifdef FANCY_ECHOCAN int ecval; ecval = wc->echocanpos; ecval += EC_SIZE_Q * ectrans[(card & 0x3)]; ecval = ecval % EC_SIZE; #endif /* if a QRV card, map it to its first channel */ if ((wc->modtype[card] == MOD_TYPE_QRV) && (card & 3)) { return; } if (wc->altcs[card]) subaddr = 0; /* Skip audio */ writechunk += 24; spin_lock_irqsave(&wc->reglock, flags); /* Search for something waiting to transmit */ if (pos) { for (x=0;xcmdq[card].cmds[x] & (__CMD_RD | __CMD_WR)) && !(wc->cmdq[card].cmds[x] & (__CMD_TX | __CMD_FIN))) { curcmd = wc->cmdq[card].cmds[x]; #if 0 printk("Transmitting command '%08x' in slot %d\n", wc->cmdq[card].cmds[x], wc->txident); #endif wc->cmdq[card].cmds[x] |= (wc->txident << 24) | __CMD_TX; break; } } } if (!curcmd) { /* If nothing else, use filler */ if (wc->modtype[card] == MOD_TYPE_FXS) curcmd = CMD_RD(64); else if (wc->modtype[card] == MOD_TYPE_FXO) curcmd = CMD_RD(12); else if (wc->modtype[card] == MOD_TYPE_QRV) curcmd = CMD_RD(3); else if (wc->modtype[card] == MOD_TYPE_VPM) { #ifdef FANCY_ECHOCAN if (wc->blinktimer >= 0xf) { curcmd = CMD_WR(0x1ab, 0x0f); } else if (wc->blinktimer == (ectab[ecval] >> 1)) { curcmd = CMD_WR(0x1ab, 0x00); } else #endif curcmd = CMD_RD(0x1a0); } } if (wc->modtype[card] == MOD_TYPE_FXS) { writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = (1 << (subaddr)); if (curcmd & __CMD_WR) writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = (curcmd >> 8) & 0x7f; else writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x80 | ((curcmd >> 8) & 0x7f); writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = curcmd & 0xff; } else if (wc->modtype[card] == MOD_TYPE_FXO) { if (curcmd & __CMD_WR) writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = 0x20 | fxo_addrs[subaddr]; else writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = 0x60 | fxo_addrs[subaddr]; writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = (curcmd >> 8) & 0xff; writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = curcmd & 0xff; } else if (wc->modtype[card] == MOD_TYPE_FXSINIT) { /* Special case, we initialize the FXS's into the three-byte command mode then switch to the regular mode. To send it into thee byte mode, treat the path as 6 two-byte commands and in the last one we initialize register 0 to 0x80. All modules read this as the command to switch to daisy chain mode and we're done. */ writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = 0x00; writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x00; if ((card & 0x1) == 0x1) writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = 0x80; else writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = 0x00; #ifdef VPM_SUPPORT } else if (wc->modtype[card] == MOD_TYPE_VPM) { if (curcmd & __CMD_WR) writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = ((card & 0x3) << 4) | 0xc | ((curcmd >> 16) & 0x1); else writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = ((card & 0x3) << 4) | 0xa | ((curcmd >> 16) & 0x1); writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = (curcmd >> 8) & 0xff; writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = curcmd & 0xff; } else if (wc->modtype[card] == MOD_TYPE_VPM150M) { #endif } else if (wc->modtype[card] == MOD_TYPE_QRV) { writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = 0x00; if (!curcmd) { writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x00; writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = 0x00; } else { if (curcmd & __CMD_WR) writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x40 | ((curcmd >> 8) & 0x3f); else writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0xc0 | ((curcmd >> 8) & 0x3f); writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = curcmd & 0xff; } } else if (wc->modtype[card] == MOD_TYPE_NONE) { writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = 0x00; writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x00; writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = 0x00; } #if 0 /* XXX */ if (cmddesc < 40) printk("Pass %d, card = %d (modtype=%d), pos = %d, CMD_BYTES = %d,%d,%d, (%02x,%02x,%02x) curcmd = %08x\n", cmddesc, card, wc->modtype[card], pos, CMD_BYTE(card, 0), CMD_BYTE(card, 1), CMD_BYTE(card, 2), writechunk[CMD_BYTE(card, 0)], writechunk[CMD_BYTE(card, 1)], writechunk[CMD_BYTE(card, 2)], curcmd); #endif spin_unlock_irqrestore(&wc->reglock, flags); #if 0 /* XXX */ cmddesc++; #endif } #ifdef VPM_SUPPORT static inline void cmd_decifer_vpm150m(struct wctdm *wc, volatile unsigned char *readchunk) { unsigned long flags; unsigned char ident; int x, i; /* Skip audio */ readchunk += 24; spin_lock_irqsave(&wc->reglock, flags); /* Search for any pending results */ for (x = 0; x < VPM150M_MAX_COMMANDS; x++) { if ((wc->vpm150m->cmdq[x].desc & (__VPM150M_RD | __VPM150M_WR)) && (wc->vpm150m->cmdq[x].desc & (__VPM150M_TX)) && !(wc->vpm150m->cmdq[x].desc & (__VPM150M_FIN))) { ident = wc->vpm150m->cmdq[x].txident; if (ident == wc->rxident) { /* Store result */ for (i = 0; i < wc->vpm150m->cmdq[x].datalen; i++) { wc->vpm150m->cmdq[x].data[i] = (0xff & readchunk[CMD_BYTE((25 + i), 1, 0)]) << 8; wc->vpm150m->cmdq[x].data[i] |= readchunk[CMD_BYTE((25 + i), 2, 0)]; } if (wc->vpm150m->cmdq[x].desc & __VPM150M_WR) { /* Go ahead and clear out writes since they need no acknowledgement */ wc->vpm150m->cmdq[x].desc = 0; } else wc->vpm150m->cmdq[x].desc |= __VPM150M_FIN; break; } } } spin_unlock_irqrestore(&wc->reglock, flags); } #endif /* VPM_SUPPORT */ static inline void cmd_decifer(struct wctdm *wc, volatile unsigned char *readchunk, int card) { unsigned long flags; unsigned char ident; int x; /* if a QRV card, map it to its first channel */ if ((wc->modtype[card] == MOD_TYPE_QRV) && (card & 3)) { return; } /* Skip audio */ readchunk += 24; spin_lock_irqsave(&wc->reglock, flags); /* Search for any pending results */ for (x=0;xcmdq[card].cmds[x] & (__CMD_RD | __CMD_WR)) && (wc->cmdq[card].cmds[x] & (__CMD_TX)) && !(wc->cmdq[card].cmds[x] & (__CMD_FIN))) { ident = (wc->cmdq[card].cmds[x] >> 24) & 0xff; if (ident == wc->rxident) { /* Store result */ wc->cmdq[card].cmds[x] |= readchunk[CMD_BYTE(card, 2, wc->altcs[card])]; wc->cmdq[card].cmds[x] |= __CMD_FIN; if (wc->cmdq[card].cmds[x] & __CMD_WR) { /* Go ahead and clear out writes since they need no acknowledgement */ wc->cmdq[card].cmds[x] = 0x00000000; } else if (x >= USER_COMMANDS) { /* Clear out ISR reads */ wc->cmdq[card].isrshadow[x - USER_COMMANDS] = wc->cmdq[card].cmds[x] & 0xff; wc->cmdq[card].cmds[x] = 0x00000000; } break; } } } #if 0 /* XXX */ if (!pos && (cmddesc < 256)) printk("Card %d: Command '%08x' => %02x\n",card, wc->cmdq[card].lasttx[pos], wc->cmdq[card].lastrd[pos]); #endif spin_unlock_irqrestore(&wc->reglock, flags); } static inline void cmd_checkisr(struct wctdm *wc, int card) { if (!wc->cmdq[card].cmds[USER_COMMANDS + 0]) { if (wc->sethook[card]) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = wc->sethook[card]; wc->sethook[card] = 0; } else if (wc->modtype[card] == MOD_TYPE_FXS) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = CMD_RD(68); /* Hook state */ } else if (wc->modtype[card] == MOD_TYPE_FXO) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = CMD_RD(5); /* Hook/Ring state */ } else if (wc->modtype[card] == MOD_TYPE_QRV) { wc->cmdq[card & 0xfc].cmds[USER_COMMANDS + 0] = CMD_RD(3); /* COR/CTCSS state */ #ifdef VPM_SUPPORT } else if (wc->modtype[card] == MOD_TYPE_VPM) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = CMD_RD(0xb9); /* DTMF interrupt */ #endif } } if (!wc->cmdq[card].cmds[USER_COMMANDS + 1]) { if (wc->modtype[card] == MOD_TYPE_FXS) { #ifdef PAQ_DEBUG wc->cmdq[card].cmds[USER_COMMANDS + 1] = CMD_RD(19); /* Transistor interrupts */ #else wc->cmdq[card].cmds[USER_COMMANDS + 1] = CMD_RD(64); /* Battery mode */ #endif } else if (wc->modtype[card] == MOD_TYPE_FXO) { wc->cmdq[card].cmds[USER_COMMANDS + 1] = CMD_RD(29); /* Battery */ } else if (wc->modtype[card] == MOD_TYPE_QRV) { wc->cmdq[card & 0xfc].cmds[USER_COMMANDS + 1] = CMD_RD(3); /* Battery */ #ifdef VPM_SUPPORT } else if (wc->modtype[card] == MOD_TYPE_VPM) { wc->cmdq[card].cmds[USER_COMMANDS + 1] = CMD_RD(0xbd); /* DTMF interrupt */ #endif } } } static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char *writechunk) { int x,y; /* Calculate Transmission */ if (likely(wc->initialized)) { zt_transmit(&wc->span); } for (x=0;xcards;y++) { if (!x) { cmd_checkisr(wc, y); } if (likely(wc->initialized)) { if (y < wc->type) writechunk[y] = wc->chans[y].writechunk[x]; } cmd_dequeue(wc, writechunk, y, x); } #ifdef VPM_SUPPORT if (!x) wc->blinktimer++; if (wc->vpm) { for (y=24;y<28;y++) { if (!x) { cmd_checkisr(wc, y); } cmd_dequeue(wc, writechunk, y, x); } #ifdef FANCY_ECHOCAN if (wc->vpm && wc->blinktimer >= 0xf) { wc->blinktimer = -1; wc->echocanpos++; } #endif } else if (wc->vpm150m) { cmd_dequeue_vpm150m(wc, writechunk, x); } #endif if (x < ZT_CHUNKSIZE - 1) { writechunk[EFRAME_SIZE] = wc->ctlreg; writechunk[EFRAME_SIZE + 1] = wc->txident++; #if 1 if ((wc->type == 4) && ((wc->ctlreg & 0x10) || (wc->modtype[NUM_CARDS] == MOD_TYPE_NONE))) { writechunk[EFRAME_SIZE + 2] = 0; for (y = 0; y < 4; y++) { if (wc->modtype[y] == MOD_TYPE_NONE) writechunk[EFRAME_SIZE + 2] |= (1 << y); } } else writechunk[EFRAME_SIZE + 2] = 0xf; #endif } writechunk += (EFRAME_SIZE + EFRAME_GAP); } } static inline int wctdm_setreg_full(struct wctdm *wc, int card, int addr, int val, int inisr) { unsigned long flags; int hit=0; int ret; /* if a QRV card, use only its first channel */ if (wc->modtype[card] == MOD_TYPE_QRV) { if (card & 3) return(0); } do { spin_lock_irqsave(&wc->reglock, flags); hit = empty_slot(wc, card); if (hit > -1) { wc->cmdq[card].cmds[hit] = CMD_WR(addr, val); } spin_unlock_irqrestore(&wc->reglock, flags); if (inisr) break; if (hit < 0) { if ((ret = schluffen(&wc->regq))) return ret; } } while (hit < 0); return (hit > -1) ? 0 : -1; } static inline int wctdm_setreg_intr(struct wctdm *wc, int card, int addr, int val) { return wctdm_setreg_full(wc, card, addr, val, 1); } static inline int wctdm_setreg(struct wctdm *wc, int card, int addr, int val) { return wctdm_setreg_full(wc, card, addr, val, 0); } static inline int wctdm_getreg(struct wctdm *wc, int card, int addr) { unsigned long flags; int hit; int ret=0; /* if a QRV card, use only its first channel */ if (wc->modtype[card] == MOD_TYPE_QRV) { if (card & 3) return(0); } do { spin_lock_irqsave(&wc->reglock, flags); hit = empty_slot(wc, card); if (hit > -1) { wc->cmdq[card].cmds[hit] = CMD_RD(addr); } spin_unlock_irqrestore(&wc->reglock, flags); if (hit < 0) { if ((ret = schluffen(&wc->regq))) return ret; } } while (hit < 0); do { spin_lock_irqsave(&wc->reglock, flags); if (wc->cmdq[card].cmds[hit] & __CMD_FIN) { ret = wc->cmdq[card].cmds[hit] & 0xff; wc->cmdq[card].cmds[hit] = 0x00000000; hit = -1; } spin_unlock_irqrestore(&wc->reglock, flags); if (hit > -1) { if ((ret = schluffen(&wc->regq))) return ret; } } while (hit > -1); return ret; } #ifdef VPM_SUPPORT static inline unsigned char wctdm_vpm_in(struct wctdm *wc, int unit, const unsigned int addr) { return wctdm_getreg(wc, unit + NUM_CARDS, addr); } static inline void wctdm_vpm_out(struct wctdm *wc, int unit, const unsigned int addr, const unsigned char val) { wctdm_setreg(wc, unit + NUM_CARDS, addr, val); } static inline void cmd_vpm150m_retransmit(struct wctdm *wc) { unsigned long flags; int x; spin_lock_irqsave(&wc->reglock, flags); for (x = 0; x < VPM150M_MAX_COMMANDS; x++) { if (!(wc->vpm150m->cmdq[x].desc & __VPM150M_FIN)) { //printk("Retransmit!\n"); wc->vpm150m->cmdq[x].desc &= ~(__VPM150M_TX); } } spin_unlock_irqrestore(&wc->reglock, flags); } #endif static inline void cmd_retransmit(struct wctdm *wc) { int x,y; unsigned long flags; /* Force retransmissions */ spin_lock_irqsave(&wc->reglock, flags); for (x=0;xcards;y++) { if (!(wc->cmdq[y].cmds[x] & __CMD_FIN)) wc->cmdq[y].cmds[x] &= ~(__CMD_TX | (0xff << 24)); } } spin_unlock_irqrestore(&wc->reglock, flags); #ifdef VPM_SUPPORT if (wc->vpm150m) cmd_vpm150m_retransmit(wc); #endif } static inline void wctdm_receiveprep(struct wctdm *wc, unsigned char *readchunk) { int x,y; unsigned char expected; BUG_ON(NULL == readchunk); for (x=0;xrxident+1; wc->rxident = readchunk[EFRAME_SIZE + 1]; if (wc->rxident != expected) { wc->span.irqmisses++; cmd_retransmit(wc); } } for (y=0;y < wc->cards;y++) { if (likely(wc->initialized)) { if (y < wc->type) { wc->chans[y].readchunk[x] = readchunk[y]; } } cmd_decifer(wc, readchunk, y); } #ifdef VPM_SUPPORT if (wc->vpm) { for (y=NUM_CARDS;y < NUM_CARDS + NUM_EC; y++) cmd_decifer(wc, readchunk, y); } else if (wc->vpm150m) cmd_decifer_vpm150m(wc, readchunk); #endif readchunk += (EFRAME_SIZE + EFRAME_GAP); } /* XXX We're wasting 8 taps. We should get closer :( */ if (likely(wc->initialized)) { for (x=0;xtype;x++) { if (wc->cardflag & (1 << x)) zt_ec_chunk(&wc->chans[x], wc->chans[x].readchunk, wc->chans[x].writechunk); } zt_receive(&wc->span); } /* Wake up anyone sleeping to read/write a new register */ wake_up_interruptible(&wc->regq); } static int wait_access(struct wctdm *wc, int card) { unsigned char data=0; long origjiffies; int count = 0; #define MAX 10 /* attempts */ origjiffies = jiffies; /* Wait for indirect access */ while (count++ < MAX) { data = wctdm_getreg(wc, card, I_STATUS); if (!data) return 0; } if(count > (MAX-1)) printk(" ##### Loop error (%02x) #####\n", data); return 0; } static unsigned char translate_3215(unsigned char address) { int x; for (x=0;xflags[card] & FLAG_3215) { address = translate_3215(address); if (address == 255) return 0; } if(!wait_access(wc, card)) { wctdm_setreg(wc, card, IDA_LO,(unsigned char)(data & 0xFF)); wctdm_setreg(wc, card, IDA_HI,(unsigned char)((data & 0xFF00)>>8)); wctdm_setreg(wc, card, IAA,address); res = 0; }; return res; } static int wctdm_proslic_getreg_indirect(struct wctdm *wc, int card, unsigned char address) { int res = -1; char *p=NULL; /* Translate 3215 addresses */ if (wc->flags[card] & FLAG_3215) { address = translate_3215(address); if (address == 255) return 0; } if (!wait_access(wc, card)) { wctdm_setreg(wc, card, IAA, address); if (!wait_access(wc, card)) { unsigned char data1, data2; data1 = wctdm_getreg(wc, card, IDA_LO); data2 = wctdm_getreg(wc, card, IDA_HI); res = data1 | (data2 << 8); } else p = "Failed to wait inside"; } else p = "failed to wait"; if (p) printk("%s\n",p); return res; } static int wctdm_proslic_init_indirect_regs(struct wctdm *wc, int card) { unsigned char i; for (i=0; iflags[card] & FLAG_3215) || (indirect_regs[i].altaddr != 255))) { printk("!!!!!!! %s iREG %X = %X should be %X\n", indirect_regs[i].name,indirect_regs[i].address,j,initial ); passed = 0; } } if (passed) { if (debug & DEBUG_CARD) printk("Init Indirect Registers completed successfully.\n"); } else { printk(" !!!!! Init Indirect Registers UNSUCCESSFULLY.\n"); return -1; } return 0; } static inline void wctdm_proslic_recheck_sanity(struct wctdm *wc, int card) { int res; #ifdef PAQ_DEBUG res = wc->cmdq[card].isrshadow[1]; res &= ~0x3; if (res) { wc->cmdq[card].isrshadow[1]=0; wc->mods[card].fxs.palarms++; if (wc->mods[card].fxs.palarms < MAX_ALARMS) { printk("Power alarm (%02x) on module %d, resetting!\n", res, card + 1); if (wc->mods[card].fxs.lasttxhook == 4) wc->mods[card].fxs.lasttxhook = 0x11; wc->sethook[card] = CMD_WR(19, res); #if 0 wc->sethook[card] = CMD_WR(64, wc->mods[card].fxs.lasttxhook); #endif /* wctdm_setreg_intr(wc, card, 64, wc->mods[card].fxs.lasttxhook); */ /* Update shadow register to avoid extra power alarms until next read */ wc->cmdq[card].isrshadow[1] = 0; } else { if (wc->mods[card].fxs.palarms == MAX_ALARMS) printk("Too many power alarms on card %d, NOT resetting!\n", card + 1); } } #else res = wc->cmdq[card].isrshadow[1]; /* This makes sure the lasthook was put in reg 64 the linefeed reg */ if (((res & 0x0f) | 0x10) == wc->mods[card].fxs.lasttxhook) wc->mods[card].fxs.lasttxhook &= 0x0f; res = !res && /* reg 64 has to be zero at last isr read */ !(wc->mods[card].fxs.lasttxhook & 0x10 ) && /* not a transition */ wc->mods[card].fxs.lasttxhook; /* not an intended zero */ if (res) { wc->mods[card].fxs.palarms++; if (wc->mods[card].fxs.palarms < MAX_ALARMS) { printk("Power alarm on module %d, resetting!\n", card + 1); if (wc->mods[card].fxs.lasttxhook == 4) wc->mods[card].fxs.lasttxhook = 0x11; wc->mods[card].fxs.lasttxhook |= 0x10; wc->sethook[card] = CMD_WR(64, wc->mods[card].fxs.lasttxhook); /* wctdm_setreg_intr(wc, card, 64, wc->mods[card].fxs.lasttxhook); */ /* Update shadow register to avoid extra power alarms until next read */ wc->cmdq[card].isrshadow[1] = wc->mods[card].fxs.lasttxhook; } else { if (wc->mods[card].fxs.palarms == MAX_ALARMS) printk("Too many power alarms on card %d, NOT resetting!\n", card + 1); } } #endif } static inline void wctdm_qrvdri_check_hook(struct wctdm *wc, int card) { signed char b,b1; int qrvcard = card & 0xfc; if (wc->qrvdebtime[card] >= 2) wc->qrvdebtime[card]--; b = wc->cmdq[qrvcard].isrshadow[0]; /* Hook/Ring state */ b &= 0xcc; /* use bits 3-4 and 6-7 only */ if (wc->radmode[qrvcard] & RADMODE_IGNORECOR) b &= ~4; else if (!(wc->radmode[qrvcard] & RADMODE_INVERTCOR)) b ^= 4; if (wc->radmode[qrvcard + 1] | RADMODE_IGNORECOR) b &= ~0x40; else if (!(wc->radmode[qrvcard + 1] | RADMODE_INVERTCOR)) b ^= 0x40; if ((wc->radmode[qrvcard] & RADMODE_IGNORECT) || (!(wc->radmode[qrvcard] & RADMODE_EXTTONE))) b &= ~8; else if (!(wc->radmode[qrvcard] & RADMODE_EXTINVERT)) b ^= 8; if ((wc->radmode[qrvcard + 1] & RADMODE_IGNORECT) || (!(wc->radmode[qrvcard + 1] & RADMODE_EXTTONE))) b &= ~0x80; else if (!(wc->radmode[qrvcard + 1] & RADMODE_EXTINVERT)) b ^= 0x80; /* now b & MASK should be zero, if its active */ /* check for change in chan 0 */ if ((!(b & 0xc)) != wc->qrvhook[qrvcard + 2]) { wc->qrvdebtime[qrvcard] = wc->debouncetime[qrvcard]; wc->qrvhook[qrvcard + 2] = !(b & 0xc); } /* if timed-out and ready */ if (wc->qrvdebtime[qrvcard] == 1) { b1 = wc->qrvhook[qrvcard + 2]; if (debug) printk("QRV channel %d rx state changed to %d\n",qrvcard,wc->qrvhook[qrvcard + 2]); zt_hooksig(&wc->chans[qrvcard], (b1) ? ZT_RXSIG_OFFHOOK : ZT_RXSIG_ONHOOK); wc->qrvdebtime[card] = 0; } /* check for change in chan 1 */ if ((!(b & 0xc0)) != wc->qrvhook[qrvcard + 3]) { wc->qrvdebtime[qrvcard + 1] = QRV_DEBOUNCETIME; wc->qrvhook[qrvcard + 3] = !(b & 0xc0); } if (wc->qrvdebtime[qrvcard + 1] == 1) { b1 = wc->qrvhook[qrvcard + 3]; if (debug) printk("QRV channel %d rx state changed to %d\n",qrvcard + 1,wc->qrvhook[qrvcard + 3]); zt_hooksig(&wc->chans[qrvcard + 1], (b1) ? ZT_RXSIG_OFFHOOK : ZT_RXSIG_ONHOOK); wc->qrvdebtime[card] = 0; } return; } static inline void wctdm_voicedaa_check_hook(struct wctdm *wc, int card) { #define MS_PER_CHECK_HOOK 1 unsigned char res; signed char b; struct fxo *fxo = &wc->mods[card].fxo; unsigned int abs_voltage; /* Try to track issues that plague slot one FXO's */ b = wc->cmdq[card].isrshadow[0]; /* Hook/Ring state */ b &= 0x9b; if (fxo->offhook) { if (b != 0x9) wctdm_setreg_intr(wc, card, 5, 0x9); } else { if (b != 0x8) wctdm_setreg_intr(wc, card, 5, 0x8); } if (!fxo->offhook) { if(fwringdetect || neonmwi_monitor) { /* Look for ring status bits (Ring Detect Signal Negative and * Ring Detect Signal Positive) to transition back and forth * some number of times to indicate that a ring is occurring. * Provide some number of samples to allow for the transitions * to occur before ginving up. * NOTE: neon mwi voltages will trigger one of these bits to go active * but not to have transitions between the two bits (i.e. no negative * to positive or positive to negative transversals ) */ res = wc->cmdq[card].isrshadow[0] & 0x60; if (0 == wc->mods[card].fxo.wasringing) { if (res) { /* Look for positive/negative crossings in ring status reg */ fxo->wasringing = 2; fxo->ringdebounce = ringdebounce /16; fxo->lastrdtx = res; fxo->lastrdtx_count = 0; } } else if (2 == fxo->wasringing) { /* If ring detect signal has transversed */ if (res && res != fxo->lastrdtx) { /* if there are at least 3 ring polarity transversals */ if(++fxo->lastrdtx_count >= 2) { fxo->wasringing = 1; if (debug) printk("FW RING on %d/%d!\n", wc->span.spanno, card + 1); zt_hooksig(&wc->chans[card], ZT_RXSIG_RING); fxo->ringdebounce = ringdebounce / 16; } else { fxo->lastrdtx = res; fxo->ringdebounce = ringdebounce / 16; } /* ring indicator (positve or negative) has not transitioned, check debounce count */ } else if (--fxo->ringdebounce == 0) { fxo->wasringing = 0; } } else { /* I am in ring state */ if (res) { /* If any ringdetect bits are still active */ fxo->ringdebounce = ringdebounce / 16; } else if (--fxo->ringdebounce == 0) { fxo->wasringing = 0; if (debug) printk("FW NO RING on %d/%d!\n", wc->span.spanno, card + 1); zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); } } } else { res = wc->cmdq[card].isrshadow[0]; if ((res & 0x60) && (fxo->battery == BATTERY_PRESENT)) { fxo->ringdebounce += (ZT_CHUNKSIZE * 16); if (fxo->ringdebounce >= ZT_CHUNKSIZE * ringdebounce) { if (!fxo->wasringing) { fxo->wasringing = 1; zt_hooksig(&wc->chans[card], ZT_RXSIG_RING); if (debug) printk("RING on %d/%d!\n", wc->span.spanno, card + 1); } fxo->ringdebounce = ZT_CHUNKSIZE * ringdebounce; } } else { fxo->ringdebounce -= ZT_CHUNKSIZE * 4; if (fxo->ringdebounce <= 0) { if (fxo->wasringing) { fxo->wasringing = 0; zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); if (debug) printk("NO RING on %d/%d!\n", wc->span.spanno, card + 1); } fxo->ringdebounce = 0; } } } } b = wc->cmdq[card].isrshadow[1]; /* Voltage */ abs_voltage = abs(b); if (fxovoltage) { if (!(wc->intcount % 100)) { printk("Port %d: Voltage: %d Debounce %d\n", card + 1, b, fxo->battdebounce); } } if (abs_voltage < battthresh) { /* possible existing states: battery lost, no debounce timer battery lost, debounce timer (going to battery present) battery present or unknown, no debounce timer battery present or unknown, debounce timer (going to battery lost) */ if (fxo->battery == BATTERY_LOST) { if (fxo->battdebounce) { /* we were going to BATTERY_PRESENT, but battery was lost again, so clear the debounce timer */ fxo->battdebounce = 0; } } else { if (fxo->battdebounce) { /* going to BATTERY_LOST, see if we are there yet */ if (--fxo->battdebounce == 0) { fxo->battery = BATTERY_LOST; if (debug) printk("NO BATTERY on %d/%d!\n", wc->span.spanno, card + 1); #ifdef JAPAN if (!wc->ohdebounce && wc->offhook) { zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); if (debug) printk("Signalled On Hook\n"); #ifdef ZERO_BATT_RING wc->onhook++; #endif } #else zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); /* set the alarm timer, taking into account that part of its time period has already passed while debouncing occurred */ fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK; #endif } } else { /* start the debounce timer to verify that battery has been lost */ fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK; } } } else { /* possible existing states: battery lost or unknown, no debounce timer battery lost or unknown, debounce timer (going to battery present) battery present, no debounce timer battery present, debounce timer (going to battery lost) */ if (fxo->battery == BATTERY_PRESENT) { if (fxo->battdebounce) { /* we were going to BATTERY_LOST, but battery appeared again, so clear the debounce timer */ fxo->battdebounce = 0; } } else { if (fxo->battdebounce) { /* going to BATTERY_PRESENT, see if we are there yet */ if (--fxo->battdebounce == 0) { fxo->battery = BATTERY_PRESENT; if (debug) printk("BATTERY on %d/%d (%s)!\n", wc->span.spanno, card + 1, (b < 0) ? "-" : "+"); #ifdef ZERO_BATT_RING if (wc->onhook) { wc->onhook = 0; zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); if (debug) printk("Signalled Off Hook\n"); } #else zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); #endif /* set the alarm timer, taking into account that part of its time period has already passed while debouncing occurred */ fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK; } } else { /* start the debounce timer to verify that battery has appeared */ fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK; } } if (fxo->lastpol >= 0) { if (b < 0) { fxo->lastpol = -1; fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK; } } if (fxo->lastpol <= 0) { if (b > 0) { fxo->lastpol = 1; fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK; } } } if (fxo->battalarm) { if (--fxo->battalarm == 0) { /* the alarm timer has expired, so update the battery alarm state for this channel */ zt_alarm_channel(&wc->chans[card], fxo->battery == BATTERY_LOST ? ZT_ALARM_RED : ZT_ALARM_NONE); } } if (fxo->polaritydebounce) { fxo->polaritydebounce--; if (fxo->polaritydebounce < 1) { if (fxo->lastpol != fxo->polarity) { if (debug & DEBUG_CARD) printk("%lu Polarity reversed (%d -> %d)\n", jiffies, fxo->polarity, fxo->lastpol); if (fxo->polarity) zt_qevent_lock(&wc->chans[card], ZT_EVENT_POLARITY); fxo->polarity = fxo->lastpol; } } } /* Look for neon mwi pulse */ if (neonmwi_monitor && !wc->mods[card].fxo.offhook) { /* Look for NEONMWI_ON_DEBOUNCE mS of consecutive voltage readings * where the voltage is over the neon limit butdoes not vary greatly * from the last reading */ if (fxo->battery == 1 && abs_voltage > neonmwi_level && (0 == fxo->neonmwi_last_voltage || (b >= fxo->neonmwi_last_voltage - neonmwi_envelope && b <= fxo->neonmwi_last_voltage + neonmwi_envelope ))) { fxo->neonmwi_last_voltage = b; if (NEONMWI_ON_DEBOUNCE == fxo->neonmwi_debounce) { fxo->neonmwi_offcounter = neonmwi_offlimit_cycles; if(0 == fxo->neonmwi_state) { zt_qevent_lock(&wc->chans[card], ZT_EVENT_NEONMWI_ACTIVE); fxo->neonmwi_state = 1; if (debug) printk("NEON MWI active for card %d\n", card+1); } fxo->neonmwi_debounce++; /* terminate the processing */ } else if (NEONMWI_ON_DEBOUNCE > fxo->neonmwi_debounce) { fxo->neonmwi_debounce++; } else { /* Insure the count gets reset */ fxo->neonmwi_offcounter = neonmwi_offlimit_cycles; } } else { fxo->neonmwi_debounce = 0; fxo->neonmwi_last_voltage = 0; } /* If no neon mwi pulse for given period of time, indicte no neon mwi state */ if (fxo->neonmwi_state && 0 < fxo->neonmwi_offcounter ) { fxo->neonmwi_offcounter--; if (0 == fxo->neonmwi_offcounter) { zt_qevent_lock(&wc->chans[card], ZT_EVENT_NEONMWI_INACTIVE); fxo->neonmwi_state = 0; if (debug) printk("NEON MWI cleared for card %d\n", card+1); } } } #undef MS_PER_CHECK_HOOK } static inline void wctdm_proslic_check_hook(struct wctdm *wc, int card) { char res; int hook; /* For some reason we have to debounce the hook detector. */ res = wc->cmdq[card].isrshadow[0]; /* Hook state */ hook = (res & 1); if (hook != wc->mods[card].fxs.lastrxhook) { /* Reset the debounce (must be multiple of 4ms) */ wc->mods[card].fxs.debounce = 8 * (4 * 8); #if 0 printk("Resetting debounce card %d hook %d, %d\n", card, hook, wc->mods[card].fxs.debounce); #endif } else { if (wc->mods[card].fxs.debounce > 0) { wc->mods[card].fxs.debounce-= 4 * ZT_CHUNKSIZE; #if 0 printk("Sustaining hook %d, %d\n", hook, wc->mods[card].fxs.debounce); #endif if (!wc->mods[card].fxs.debounce) { #if 0 printk("Counted down debounce, newhook: %d...\n", hook); #endif wc->mods[card].fxs.debouncehook = hook; } if (!wc->mods[card].fxs.oldrxhook && wc->mods[card].fxs.debouncehook) { /* Off hook */ if (debug & DEBUG_CARD) printk("wctdm: Card %d Going off hook\n", card); zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); if (robust) wctdm_init_proslic(wc, card, 1, 0, 1); wc->mods[card].fxs.oldrxhook = 1; } else if (wc->mods[card].fxs.oldrxhook && !wc->mods[card].fxs.debouncehook) { /* On hook */ if (debug & DEBUG_CARD) printk("wctdm: Card %d Going on hook\n", card); zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); wc->mods[card].fxs.oldrxhook = 0; } } } wc->mods[card].fxs.lastrxhook = hook; } #ifdef VPM_SUPPORT static inline void wctdm_vpm_check(struct wctdm *wc, int x) { if (wc->cmdq[x].isrshadow[0]) { if (debug & DEBUG_ECHOCAN) printk("VPM: Detected dtmf ON channel %02x on chip %d!\n", wc->cmdq[x].isrshadow[0], x - NUM_CARDS); wc->sethook[x] = CMD_WR(0xb9, wc->cmdq[x].isrshadow[0]); wc->cmdq[x].isrshadow[0] = 0; /* Cancel most recent lookup, if there is one */ wc->cmdq[x].cmds[USER_COMMANDS+0] = 0x00000000; } else if (wc->cmdq[x].isrshadow[1]) { if (debug & DEBUG_ECHOCAN) printk("VPM: Detected dtmf OFF channel %02x on chip %d!\n", wc->cmdq[x].isrshadow[1], x - NUM_CARDS); wc->sethook[x] = CMD_WR(0xbd, wc->cmdq[x].isrshadow[1]); wc->cmdq[x].isrshadow[1] = 0; /* Cancel most recent lookup, if there is one */ wc->cmdq[x].cmds[USER_COMMANDS+1] = 0x00000000; } } #include "adt_lec.c" static int wctdm_echocan_with_params(struct zt_chan *chan, struct zt_echocanparams *ecp, struct zt_echocanparam *p) { struct wctdm *wc = chan->pvt; if (wc->vpm) { int channel; int unit; channel = (chan->chanpos - 1); unit = (chan->chanpos - 1) & 0x3; if (wc->vpm < 2) channel >>= 2; if(debug & DEBUG_ECHOCAN) printk("echocan: Unit is %d, Channel is %d length %d\n", unit, channel, ecp->tap_length); if (ecp->tap_length) wctdm_vpm_out(wc,unit,channel,0x3e); else wctdm_vpm_out(wc,unit,channel,0x01); return 0; #ifdef VPM150M_SUPPORT } else if (wc->vpm150m) { struct vpm150m *vpm150m = wc->vpm150m; unsigned int ret; int channo = chan->chanpos - 1; if ((ret = adt_lec_parse_params(&vpm150m->desiredecstate[channo], ecp, p))) return ret; vpm150m->desiredecstate[channo].tap_length = ecp->tap_length; if (memcmp(&vpm150m->curecstate[channo], &vpm150m->desiredecstate[channo], sizeof(vpm150m->curecstate[channo])) && test_bit(VPM150M_ACTIVE, &vpm150m->control)) queue_work(vpm150m->wq, &vpm150m->work); return 0; #endif } else return -ENODEV; } #endif static inline void wctdm_isr_misc(struct wctdm *wc) { int x; if (unlikely(!wc->initialized)) { return; } for (x=0;xcards;x++) { if (wc->cardflag & (1 << x)) { if (wc->modtype[x] == MOD_TYPE_FXS) { if (!(wc->intcount % 10000)) { /* Accept an alarm once per 10 seconds */ if (wc->mods[x].fxs.palarms) wc->mods[x].fxs.palarms--; } wctdm_proslic_check_hook(wc, x); if (!(wc->intcount & 0xfc)) wctdm_proslic_recheck_sanity(wc, x); if (wc->mods[x].fxs.lasttxhook == 0x4) { /* RINGing, prepare for OHT */ wc->mods[x].fxs.ohttimer = OHT_TIMER << 3; wc->mods[x].fxs.idletxhookstate = 0x2; /* OHT mode when idle */ } else { if (wc->mods[x].fxs.ohttimer) { wc->mods[x].fxs.ohttimer-= ZT_CHUNKSIZE; if (!wc->mods[x].fxs.ohttimer) { wc->mods[x].fxs.idletxhookstate = 0x1; /* Switch to active */ if (wc->mods[x].fxs.lasttxhook == 0x2) { /* Apply the change if appropriate */ wc->mods[x].fxs.lasttxhook = 0x11; wc->sethook[x] = CMD_WR(64, wc->mods[x].fxs.lasttxhook); /* wctdm_setreg_intr(wc, x, 64, wc->mods[x].fxs.lasttxhook); */ } } } } } else if (wc->modtype[x] == MOD_TYPE_FXO) { wctdm_voicedaa_check_hook(wc, x); } else if (wc->modtype[x] == MOD_TYPE_QRV) { wctdm_qrvdri_check_hook(wc, x); } } } #ifdef VPM_SUPPORT if (wc->vpm > 0) { for (x=NUM_CARDS;xrxints++; wctdm_receiveprep(wc, vbb); } void handle_transmit(void* vbb, void* context) { struct wctdm *wc = context; memset(vbb, 0, SFRAME_SIZE); wc->txints++; wctdm_transmitprep(wc, vbb); wctdm_isr_misc(wc); wc->intcount++; voicebus_transmit(wc->vb, vbb); } static int wctdm_voicedaa_insane(struct wctdm *wc, int card) { int blah; blah = wctdm_getreg(wc, card, 2); if (blah != 0x3) return -2; blah = wctdm_getreg(wc, card, 11); if (debug & DEBUG_CARD) printk("VoiceDAA System: %02x\n", blah & 0xf); return 0; } static int wctdm_proslic_insane(struct wctdm *wc, int card) { int blah,insane_report; insane_report=0; blah = wctdm_getreg(wc, card, 0); if (debug & DEBUG_CARD) printk("ProSLIC on module %d, product %d, version %d\n", card, (blah & 0x30) >> 4, (blah & 0xf)); #if 0 if ((blah & 0x30) >> 4) { printk("ProSLIC on module %d is not a 3210.\n", card); return -1; } #endif if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) { /* SLIC not loaded */ return -1; } if ((blah & 0xf) < 2) { printk("ProSLIC 3210 version %d is too old\n", blah & 0xf); return -1; } if (wctdm_getreg(wc, card, 1) & 0x80) /* ProSLIC 3215, not a 3210 */ wc->flags[card] |= FLAG_3215; blah = wctdm_getreg(wc, card, 8); if (blah != 0x2) { printk("ProSLIC on module %d insane (1) %d should be 2\n", card, blah); return -1; } else if ( insane_report) printk("ProSLIC on module %d Reg 8 Reads %d Expected is 0x2\n",card,blah); blah = wctdm_getreg(wc, card, 64); if (blah != 0x0) { printk("ProSLIC on module %d insane (2)\n", card); return -1; } else if ( insane_report) printk("ProSLIC on module %d Reg 64 Reads %d Expected is 0x0\n",card,blah); blah = wctdm_getreg(wc, card, 11); if (blah != 0x33) { printk("ProSLIC on module %d insane (3)\n", card); return -1; } else if ( insane_report) printk("ProSLIC on module %d Reg 11 Reads %d Expected is 0x33\n",card,blah); /* Just be sure it's setup right. */ wctdm_setreg(wc, card, 30, 0); if (debug & DEBUG_CARD) printk("ProSLIC on module %d seems sane.\n", card); return 0; } static int wctdm_proslic_powerleak_test(struct wctdm *wc, int card) { unsigned long origjiffies; unsigned char vbat; /* Turn off linefeed */ wctdm_setreg(wc, card, 64, 0); /* Power down */ wctdm_setreg(wc, card, 14, 0x10); /* Wait for one second */ origjiffies = jiffies; while((vbat = wctdm_getreg(wc, card, 82)) > 0x6) { if ((jiffies - origjiffies) >= (HZ/2)) break;; } if (vbat < 0x06) { printk("Excessive leakage detected on module %d: %d volts (%02x) after %d ms\n", card, 376 * vbat / 1000, vbat, (int)((jiffies - origjiffies) * 1000 / HZ)); return -1; } else if (debug & DEBUG_CARD) { printk("Post-leakage voltage: %d volts\n", 376 * vbat / 1000); } return 0; } static int wctdm_powerup_proslic(struct wctdm *wc, int card, int fast) { unsigned char vbat; unsigned long origjiffies; int lim; /* Set period of DC-DC converter to 1/64 khz */ wctdm_setreg(wc, card, 92, 0xc0 /* was 0xff */); /* Wait for VBat to powerup */ origjiffies = jiffies; /* Disable powerdown */ wctdm_setreg(wc, card, 14, 0); /* If fast, don't bother checking anymore */ if (fast) return 0; while((vbat = wctdm_getreg(wc, card, 82)) < 0xc0) { /* Wait no more than 500ms */ if ((jiffies - origjiffies) > HZ/2) { break; } } if (vbat < 0xc0) { printk("ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM CARD??\n", card, (int)(((jiffies - origjiffies) * 1000 / HZ)), vbat * 375); return -1; } else if (debug & DEBUG_CARD) { printk("ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); } /* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */ /* If out of range, just set it to the default value */ lim = (loopcurrent - 20) / 3; if ( loopcurrent > 41 ) { lim = 0; if (debug & DEBUG_CARD) printk("Loop current out of range! Setting to default 20mA!\n"); } else if (debug & DEBUG_CARD) printk("Loop current set to %dmA!\n",(lim*3)+20); wctdm_setreg(wc,card,LOOP_I_LIMIT,lim); /* Engage DC-DC converter */ wctdm_setreg(wc, card, 93, 0x19 /* was 0x19 */); #if 0 origjiffies = jiffies; while(0x80 & wctdm_getreg(wc, card, 93)) { if ((jiffies - origjiffies) > 2 * HZ) { printk("Timeout waiting for DC-DC calibration on module %d\n", card); return -1; } } #if 0 /* Wait a full two seconds */ while((jiffies - origjiffies) < 2 * HZ); /* Just check to be sure */ vbat = wctdm_getreg(wc, card, 82); printk("ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); #endif #endif return 0; } static int wctdm_proslic_manual_calibrate(struct wctdm *wc, int card) { unsigned long origjiffies; unsigned char i; wctdm_setreg(wc, card, 21, 0);//(0) Disable all interupts in DR21 wctdm_setreg(wc, card, 22, 0);//(0)Disable all interupts in DR21 wctdm_setreg(wc, card, 23, 0);//(0)Disable all interupts in DR21 wctdm_setreg(wc, card, 64, 0);//(0) wctdm_setreg(wc, card, 97, 0x18); //(0x18)Calibrations without the ADC and DAC offset and without common mode calibration. wctdm_setreg(wc, card, 96, 0x47); //(0x47) Calibrate common mode and differential DAC mode DAC + ILIM origjiffies=jiffies; while( wctdm_getreg(wc,card,96)!=0 ){ if((jiffies-origjiffies)>80) return -1; } //Initialized DR 98 and 99 to get consistant results. // 98 and 99 are the results registers and the search should have same intial conditions. /*******************************The following is the manual gain mismatch calibration****************************/ /*******************************This is also available as a function *******************************************/ // Delay 10ms origjiffies=jiffies; while((jiffies-origjiffies)<1); wctdm_proslic_setreg_indirect(wc, card, 88,0); wctdm_proslic_setreg_indirect(wc,card,89,0); wctdm_proslic_setreg_indirect(wc,card,90,0); wctdm_proslic_setreg_indirect(wc,card,91,0); wctdm_proslic_setreg_indirect(wc,card,92,0); wctdm_proslic_setreg_indirect(wc,card,93,0); wctdm_setreg(wc, card, 98,0x10); // This is necessary if the calibration occurs other than at reset time wctdm_setreg(wc, card, 99,0x10); for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, card, 98,i); origjiffies=jiffies; while((jiffies-origjiffies)<4); if((wctdm_getreg(wc,card,88)) == 0) break; } // for for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, card, 99,i); origjiffies=jiffies; while((jiffies-origjiffies)<4); if((wctdm_getreg(wc,card,89)) == 0) break; }//for /*******************************The preceding is the manual gain mismatch calibration****************************/ /**********************************The following is the longitudinal Balance Cal***********************************/ wctdm_setreg(wc,card,64,1); while((jiffies-origjiffies)<10); // Sleep 100? wctdm_setreg(wc, card, 64, 0); wctdm_setreg(wc, card, 23, 0x4); // enable interrupt for the balance Cal wctdm_setreg(wc, card, 97, 0x1); // this is a singular calibration bit for longitudinal calibration wctdm_setreg(wc, card, 96,0x40); wctdm_getreg(wc,card,96); /* Read Reg 96 just cause */ wctdm_setreg(wc, card, 21, 0xFF); wctdm_setreg(wc, card, 22, 0xFF); wctdm_setreg(wc, card, 23, 0xFF); /**The preceding is the longitudinal Balance Cal***/ return(0); } static int wctdm_proslic_calibrate(struct wctdm *wc, int card) { unsigned long origjiffies; int x; /* Perform all calibrations */ wctdm_setreg(wc, card, 97, 0x1f); /* Begin, no speedup */ wctdm_setreg(wc, card, 96, 0x5f); /* Wait for it to finish */ origjiffies = jiffies; while(wctdm_getreg(wc, card, 96)) { if ((jiffies - origjiffies) > 2 * HZ) { printk("Timeout waiting for calibration of module %d\n", card); return -1; } } if (debug & DEBUG_CARD) { /* Print calibration parameters */ printk("Calibration Vector Regs 98 - 107: \n"); for (x=98;x<108;x++) { printk("%d: %02x\n", x, wctdm_getreg(wc, card, x)); } } return 0; } static void wait_just_a_bit(int foo) { long newjiffies; newjiffies = jiffies + foo; while(jiffies < newjiffies); } /********************************************************************* * Set the hwgain on the analog modules * * card = the card position for this module (0-23) * gain = gain in dB x10 (e.g. -3.5dB would be gain=-35) * tx = (0 for rx; 1 for tx) * *******************************************************************/ static int wctdm_set_hwgain(struct wctdm *wc, int card, __s32 gain, __u32 tx) { if (!(wc->modtype[card] == MOD_TYPE_FXO)) { printk("Cannot adjust gain. Unsupported module type!\n"); return -1; } if (tx) { if (debug) printk("setting FXO tx gain for card=%d to %d\n", card, gain); if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, card, 38, 16 + (gain/-10)); wctdm_setreg(wc, card, 40, 16 + (-gain%10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, card, 38, gain/10); wctdm_setreg(wc, card, 40, (gain%10)); } else { printk("FXO tx gain is out of range (%d)\n", gain); return -1; } } else { /* rx */ if (debug) printk("setting FXO rx gain for card=%d to %d\n", card, gain); if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, card, 39, 16+ (gain/-10)); wctdm_setreg(wc, card, 41, 16 + (-gain%10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, card, 39, gain/10); wctdm_setreg(wc, card, 41, (gain%10)); } else { printk("FXO rx gain is out of range (%d)\n", gain); return -1; } } return 0; } static int wctdm_init_voicedaa(struct wctdm *wc, int card, int fast, int manual, int sane) { unsigned char reg16=0, reg26=0, reg30=0, reg31=0; long newjiffies; if (wc->modtype[card & 0xfc] == MOD_TYPE_QRV) return -2; wc->modtype[card] = MOD_TYPE_NONE; /* Wait just a bit */ wait_just_a_bit(HZ/10); wc->modtype[card] = MOD_TYPE_FXO; wait_just_a_bit(HZ/10); if (!sane && wctdm_voicedaa_insane(wc, card)) return -2; /* Software reset */ wctdm_setreg(wc, card, 1, 0x80); /* Wait just a bit */ wait_just_a_bit(HZ/10); /* Enable PCM, ulaw */ if (alawoverride) wctdm_setreg(wc, card, 33, 0x20); else wctdm_setreg(wc, card, 33, 0x28); /* Set On-hook speed, Ringer impedence, and ringer threshold */ reg16 |= (fxo_modes[_opermode].ohs << 6); reg16 |= (fxo_modes[_opermode].rz << 1); reg16 |= (fxo_modes[_opermode].rt); wctdm_setreg(wc, card, 16, reg16); if(fwringdetect || neonmwi_monitor) { /* Enable ring detector full-wave rectifier mode */ wctdm_setreg(wc, card, 18, 2); wctdm_setreg(wc, card, 24, 0); } else { /* Set to the device defaults */ wctdm_setreg(wc, card, 18, 0); wctdm_setreg(wc, card, 24, 0x19); } /* Enable ring detector full-wave rectifier mode */ wctdm_setreg(wc, card, 18, 2); wctdm_setreg(wc, card, 24, 0); /* Set DC Termination: Tip/Ring voltage adjust, minimum operational current, current limitation */ reg26 |= (fxo_modes[_opermode].dcv << 6); reg26 |= (fxo_modes[_opermode].mini << 4); reg26 |= (fxo_modes[_opermode].ilim << 1); wctdm_setreg(wc, card, 26, reg26); /* Set AC Impedence */ reg30 = (fxo_modes[_opermode].acim); wctdm_setreg(wc, card, 30, reg30); /* Misc. DAA parameters */ reg31 = 0xa3; reg31 |= (fxo_modes[_opermode].ohs2 << 3); wctdm_setreg(wc, card, 31, reg31); /* Set Transmit/Receive timeslot */ wctdm_setreg(wc, card, 34, (card * 8) & 0xff); wctdm_setreg(wc, card, 35, (card * 8) >> 8); wctdm_setreg(wc, card, 36, (card * 8) & 0xff); wctdm_setreg(wc, card, 37, (card * 8) >> 8); /* Enable ISO-Cap */ wctdm_setreg(wc, card, 6, 0x00); /* Wait 1000ms for ISO-cap to come up */ newjiffies = jiffies; newjiffies += 2 * HZ; while((jiffies < newjiffies) && !(wctdm_getreg(wc, card, 11) & 0xf0)) wait_just_a_bit(HZ/10); if (!(wctdm_getreg(wc, card, 11) & 0xf0)) { printk("VoiceDAA did not bring up ISO link properly!\n"); return -1; } if (debug & DEBUG_CARD) printk("ISO-Cap is now up, line side: %02x rev %02x\n", wctdm_getreg(wc, card, 11) >> 4, (wctdm_getreg(wc, card, 13) >> 2) & 0xf); /* Enable on-hook line monitor */ wctdm_setreg(wc, card, 5, 0x08); /* Take values for fxotxgain and fxorxgain and apply them to module */ wctdm_set_hwgain(wc, card, fxotxgain, 1); wctdm_set_hwgain(wc, card, fxorxgain, 0); if(debug) printk("DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wctdm_getreg(wc, card, 38)/16) ? -(wctdm_getreg(wc, card, 38) - 16) : wctdm_getreg(wc, card, 38), (wctdm_getreg(wc, card, 40)/16) ? -(wctdm_getreg(wc, card, 40) - 16) : wctdm_getreg(wc, card, 40), (wctdm_getreg(wc, card, 39)/16) ? -(wctdm_getreg(wc, card, 39) - 16): wctdm_getreg(wc, card, 39), (wctdm_getreg(wc, card, 41)/16)?-(wctdm_getreg(wc, card, 41) - 16) : wctdm_getreg(wc, card, 41)); return 0; } static int wctdm_init_proslic(struct wctdm *wc, int card, int fast, int manual, int sane) { unsigned short tmp[5]; unsigned char r19,r9; int x; int fxsmode=0; if (wc->modtype[card & 0xfc] == MOD_TYPE_QRV) return -2; /* Sanity check the ProSLIC */ if (!sane && wctdm_proslic_insane(wc, card)) return -2; /* By default, don't send on hook */ wc->mods[card].fxs.idletxhookstate = 1; wc->mods[card].fxs.lasttxhook = 0x10; if (sane) { /* Make sure we turn off the DC->DC converter to prevent anything from blowing up */ wctdm_setreg(wc, card, 14, 0x10); } if (wctdm_proslic_init_indirect_regs(wc, card)) { printk(KERN_INFO "Indirect Registers failed to initialize on module %d.\n", card); return -1; } /* Clear scratch pad area */ wctdm_proslic_setreg_indirect(wc, card, 97,0); /* Clear digital loopback */ wctdm_setreg(wc, card, 8, 0); /* Revision C optimization */ wctdm_setreg(wc, card, 108, 0xeb); /* Disable automatic VBat switching for safety to prevent Q7 from accidently turning on and burning out. */ wctdm_setreg(wc, card, 67, 0x07); /* If pulse dialing has trouble at high REN loads change this to 0x17 */ /* Turn off Q7 */ wctdm_setreg(wc, card, 66, 1); /* Flush ProSLIC digital filters by setting to clear, while saving old values */ for (x=0;x<5;x++) { tmp[x] = wctdm_proslic_getreg_indirect(wc, card, x + 35); wctdm_proslic_setreg_indirect(wc, card, x + 35, 0x8000); } /* Power up the DC-DC converter */ if (wctdm_powerup_proslic(wc, card, fast)) { printk("Unable to do INITIAL ProSLIC powerup on module %d\n", card); return -1; } if (!fast) { /* Check for power leaks */ if (wctdm_proslic_powerleak_test(wc, card)) { printk("ProSLIC module %d failed leakage test. Check for short circuit\n", card); } /* Power up again */ if (wctdm_powerup_proslic(wc, card, fast)) { printk("Unable to do FINAL ProSLIC powerup on module %d\n", card); return -1; } #ifndef NO_CALIBRATION /* Perform calibration */ if(manual) { if (wctdm_proslic_manual_calibrate(wc, card)) { //printk("Proslic failed on Manual Calibration\n"); if (wctdm_proslic_manual_calibrate(wc, card)) { printk("Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n"); return -1; } printk("Proslic Passed Manual Calibration on Second Attempt\n"); } } else { if(wctdm_proslic_calibrate(wc, card)) { //printk("ProSlic died on Auto Calibration.\n"); if (wctdm_proslic_calibrate(wc, card)) { printk("Proslic Failed on Second Attempt to Auto Calibrate\n"); return -1; } printk("Proslic Passed Auto Calibration on Second Attempt\n"); } } /* Perform DC-DC calibration */ wctdm_setreg(wc, card, 93, 0x99); r19 = wctdm_getreg(wc, card, 107); if ((r19 < 0x2) || (r19 > 0xd)) { printk("DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19); wctdm_setreg(wc, card, 107, 0x8); } /* Save calibration vectors */ for (x=0;xmods[card].fxs.calregs.vals[x] = wctdm_getreg(wc, card, 96 + x); #endif } else { /* Restore calibration registers */ for (x=0;xmods[card].fxs.calregs.vals[x]); } /* Calibration complete, restore original values */ for (x=0;x<5;x++) { wctdm_proslic_setreg_indirect(wc, card, x + 35, tmp[x]); } if (wctdm_proslic_verify_indirect_regs(wc, card)) { printk(KERN_INFO "Indirect Registers failed verification.\n"); return -1; } #if 0 /* Disable Auto Power Alarm Detect and other "features" */ wctdm_setreg(wc, card, 67, 0x0e); blah = wctdm_getreg(wc, card, 67); #endif #if 0 if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix printk(KERN_INFO "ProSlic IndirectReg Died.\n"); return -1; } #endif if (alawoverride) wctdm_setreg(wc, card, 1, 0x20); else wctdm_setreg(wc, card, 1, 0x28); // U-Law 8-bit interface wctdm_setreg(wc, card, 2, (card * 8) & 0xff); // Tx Start count low byte 0 wctdm_setreg(wc, card, 3, (card * 8) >> 8); // Tx Start count high byte 0 wctdm_setreg(wc, card, 4, (card * 8) & 0xff); // Rx Start count low byte 0 wctdm_setreg(wc, card, 5, (card * 8) >> 8); // Rx Start count high byte 0 wctdm_setreg(wc, card, 18, 0xff); // clear all interrupt wctdm_setreg(wc, card, 19, 0xff); wctdm_setreg(wc, card, 20, 0xff); wctdm_setreg(wc, card, 22, 0xff); wctdm_setreg(wc, card, 73, 0x04); if (fxshonormode) { fxsmode = acim2tiss[fxo_modes[_opermode].acim]; wctdm_setreg(wc, card, 10, 0x08 | fxsmode); if (fxo_modes[_opermode].ring_osc) wctdm_proslic_setreg_indirect(wc, card, 20, fxo_modes[_opermode].ring_osc); if (fxo_modes[_opermode].ring_x) wctdm_proslic_setreg_indirect(wc, card, 21, fxo_modes[_opermode].ring_x); } if (lowpower) wctdm_setreg(wc, card, 72, 0x10); #if 0 wctdm_setreg(wc, card, 21, 0x00); // enable interrupt wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt #endif #if 0 /* Enable loopback */ wctdm_setreg(wc, card, 8, 0x2); wctdm_setreg(wc, card, 14, 0x0); wctdm_setreg(wc, card, 64, 0x0); wctdm_setreg(wc, card, 1, 0x08); #endif if (fastringer) { /* Speed up Ringer */ wctdm_proslic_setreg_indirect(wc, card, 20, 0x7e6d); wctdm_proslic_setreg_indirect(wc, card, 21, 0x01b9); /* Beef up Ringing voltage to 89V */ if (boostringer) { wctdm_setreg(wc, card, 74, 0x3f); if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x247)) return -1; printk("Boosting fast ringer on slot %d (89V peak)\n", card + 1); } else if (lowpower) { if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x14b)) return -1; printk("Reducing fast ring power on slot %d (50V peak)\n", card + 1); } else printk("Speeding up ringer on slot %d (25Hz)\n", card + 1); } else { /* Beef up Ringing voltage to 89V */ if (boostringer) { wctdm_setreg(wc, card, 74, 0x3f); if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x1d1)) return -1; printk("Boosting ringer on slot %d (89V peak)\n", card + 1); } else if (lowpower) { if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x108)) return -1; printk("Reducing ring power on slot %d (50V peak)\n", card + 1); } } if (fxstxgain || fxsrxgain) { r9 = wctdm_getreg(wc, card, 9); switch (fxstxgain) { case 35: r9+=8; break; case -35: r9+=4; break; case 0: break; } switch (fxsrxgain) { case 35: r9+=2; break; case -35: r9+=1; break; case 0: break; } wctdm_setreg(wc, card, 9, r9); } if (debug) printk("DEBUG: fxstxgain:%s fxsrxgain:%s\n",((wctdm_getreg(wc, card, 9)/8) == 1)?"3.5":(((wctdm_getreg(wc,card,9)/4) == 1)?"-3.5":"0.0"),((wctdm_getreg(wc, card, 9)/2) == 1)?"3.5":((wctdm_getreg(wc,card,9)%2)?"-3.5":"0.0")); wc->mods[card].fxs.lasttxhook = 0x11; wctdm_setreg(wc, card, 64, 0x01); return 0; } static int wctdm_init_qrvdri(struct wctdm *wc, int card) { unsigned char x,y; unsigned long endjif; /* have to set this, at least for now */ wc->modtype[card] = MOD_TYPE_QRV; if (!(card & 3)) /* if at base of card, reset and write it */ { wctdm_setreg(wc,card,0,0x80); wctdm_setreg(wc,card,0,0x55); wctdm_setreg(wc,card,1,0x69); wc->qrvhook[card] = wc->qrvhook[card + 1] = 0; wc->qrvhook[card + 2] = wc->qrvhook[card + 3] = 0xff; wc->debouncetime[card] = wc->debouncetime[card + 1] = QRV_DEBOUNCETIME; wc->qrvdebtime[card] = wc->qrvdebtime[card + 1] = 0; wc->radmode[card] = wc->radmode[card + 1] = 0; wc->txgain[card] = wc->txgain[card + 1] = 3599; wc->rxgain[card] = wc->rxgain[card + 1] = 1199; } else { /* channel is on same card as base, no need to test */ if (wc->modtype[card & 0x7c] == MOD_TYPE_QRV) { /* only lower 2 are valid */ if (!(card & 2)) return 0; } wc->modtype[card] = MOD_TYPE_NONE; return 1; } x = wctdm_getreg(wc,card,0); y = wctdm_getreg(wc,card,1); /* if not a QRV card, return as such */ if ((x != 0x55) || (y != 0x69)) { wc->modtype[card] = MOD_TYPE_NONE; return 1; } for(x = 0; x < 0x30; x++) { if ((x >= 0x1c) && (x <= 0x1e)) wctdm_setreg(wc,card,x,0xff); else wctdm_setreg(wc,card,x,0); } wctdm_setreg(wc,card,0,0x80); endjif = jiffies + (HZ/10); while(endjif > jiffies); wctdm_setreg(wc,card,0,0x10); wctdm_setreg(wc,card,0,0x10); endjif = jiffies + (HZ/10); while(endjif > jiffies); /* set up modes */ wctdm_setreg(wc,card,0,0x1c); /* set up I/O directions */ wctdm_setreg(wc,card,1,0x33); wctdm_setreg(wc,card,2,0x0f); wctdm_setreg(wc,card,5,0x0f); /* set up I/O to quiescent state */ wctdm_setreg(wc,card,3,0x11); /* D0-7 */ wctdm_setreg(wc,card,4,0xa); /* D8-11 */ wctdm_setreg(wc,card,7,0); /* CS outputs */ /* set up timeslots */ wctdm_setreg(wc,card,0x13,card + 0x80); /* codec 2 tx, ts0 */ wctdm_setreg(wc,card,0x17,card + 0x80); /* codec 0 rx, ts0 */ wctdm_setreg(wc,card,0x14,card + 0x81); /* codec 1 tx, ts1 */ wctdm_setreg(wc,card,0x18,card + 0x81); /* codec 1 rx, ts1 */ /* set up for max gains */ wctdm_setreg(wc,card,0x26,0x24); wctdm_setreg(wc,card,0x27,0x24); wctdm_setreg(wc,card,0x0b,0x01); /* "Transmit" gain codec 0 */ wctdm_setreg(wc,card,0x0c,0x01); /* "Transmit" gain codec 1 */ wctdm_setreg(wc,card,0x0f,0xff); /* "Receive" gain codec 0 */ wctdm_setreg(wc,card,0x10,0xff); /* "Receive" gain codec 1 */ return 0; } static void qrv_dosetup(struct zt_chan *chan,struct wctdm *wc) { int qrvcard; unsigned char r; long l; /* actually do something with the values */ qrvcard = (chan->chanpos - 1) & 0xfc; if (debug) printk("@@@@@ radmodes: %d,%d rxgains: %d,%d txgains: %d,%d\n", wc->radmode[qrvcard],wc->radmode[qrvcard + 1], wc->rxgain[qrvcard],wc->rxgain[qrvcard + 1], wc->txgain[qrvcard],wc->txgain[qrvcard + 1]); r = 0; if (wc->radmode[qrvcard] & RADMODE_DEEMP) r |= 4; if (wc->radmode[qrvcard + 1] & RADMODE_DEEMP) r |= 8; if (wc->rxgain[qrvcard] < 1200) r |= 1; if (wc->rxgain[qrvcard + 1] < 1200) r |= 2; wctdm_setreg(wc, qrvcard, 7, r); if (debug) printk("@@@@@ setting reg 7 to %02x hex\n",r); r = 0; if (wc->radmode[qrvcard] & RADMODE_PREEMP) r |= 3; else if (wc->txgain[qrvcard] >= 3600) r |= 1; else if (wc->txgain[qrvcard] >= 1200) r |= 2; if (wc->radmode[qrvcard + 1] & RADMODE_PREEMP) r |= 0xc; else if (wc->txgain[qrvcard + 1] >= 3600) r |= 4; else if (wc->txgain[qrvcard + 1] >= 1200) r |= 8; wctdm_setreg(wc, qrvcard, 4, r); if (debug) printk("@@@@@ setting reg 4 to %02x hex\n",r); r = 0; if (wc->rxgain[qrvcard] >= 2400) r |= 1; if (wc->rxgain[qrvcard + 1] >= 2400) r |= 2; wctdm_setreg(wc, qrvcard, 0x25, r); if (debug) printk("@@@@@ setting reg 0x25 to %02x hex\n",r); r = 0; if (wc->txgain[qrvcard] < 2400) r |= 1; else r |= 4; if (wc->txgain[qrvcard + 1] < 2400) r |= 8; else r |= 0x20; wctdm_setreg(wc, qrvcard, 0x26, r); if (debug) printk("@@@@@ setting reg 0x26 to %02x hex\n",r); l = ((long)(wc->rxgain[qrvcard] % 1200) * 10000) / 46875; if (l == 0) l = 1; if (wc->rxgain[qrvcard] >= 2400) l += 181; wctdm_setreg(wc, qrvcard, 0x0b, (unsigned char)l); if (debug) printk("@@@@@ setting reg 0x0b to %02x hex\n",(unsigned char)l); l = ((long)(wc->rxgain[qrvcard + 1] % 1200) * 10000) / 46875; if (l == 0) l = 1; if (wc->rxgain[qrvcard + 1] >= 2400) l += 181; wctdm_setreg(wc, qrvcard, 0x0c, (unsigned char)l); if (debug) printk("@@@@@ setting reg 0x0c to %02x hex\n",(unsigned char)l); l = ((long)(wc->txgain[qrvcard] % 1200) * 10000) / 46875; if (l == 0) l = 1; wctdm_setreg(wc, qrvcard, 0x0f, (unsigned char)l); if (debug) printk("@@@@@ setting reg 0x0f to %02x hex\n", (unsigned char)l); l = ((long)(wc->txgain[qrvcard + 1] % 1200) * 10000) / 46875; if (l == 0) l = 1; wctdm_setreg(wc, qrvcard, 0x10,(unsigned char)l); if (debug) printk("@@@@@ setting reg 0x10 to %02x hex\n",(unsigned char)l); return; } static int wctdm_ioctl(struct zt_chan *chan, unsigned int cmd, unsigned long data) { struct wctdm_stats stats; struct wctdm_regs regs; struct wctdm_regop regop; struct wctdm_echo_coefs echoregs; struct zt_hwgain hwgain; struct wctdm *wc = chan->pvt; int x; union { struct zt_radio_stat s; struct zt_radio_param p; } stack; switch (cmd) { case ZT_ONHOOKTRANSFER: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (get_user(x, (int *)data)) return -EFAULT; wc->mods[chan->chanpos - 1].fxs.ohttimer = x << 3; wc->mods[chan->chanpos - 1].fxs.idletxhookstate = 0x2; /* OHT mode when idle */ if (wc->mods[chan->chanpos - 1].fxs.lasttxhook == 0x1) { /* Apply the change if appropriate */ wc->mods[chan->chanpos - 1].fxs.lasttxhook = 0x12; wc->sethook[chan->chanpos - 1] = CMD_WR(64, wc->mods[chan->chanpos - 1].fxs.lasttxhook); /* wctdm_setreg(wc, chan->chanpos - 1, 64, wc->mods[chan->chanpos - 1].fxs.lasttxhook); */ } break; case WCTDM_GET_STATS: if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { stats.tipvolt = wctdm_getreg(wc, chan->chanpos - 1, 80) * -376; stats.ringvolt = wctdm_getreg(wc, chan->chanpos - 1, 81) * -376; stats.batvolt = wctdm_getreg(wc, chan->chanpos - 1, 82) * -376; } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { stats.tipvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; stats.ringvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; stats.batvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; } else return -EINVAL; if (copy_to_user((struct wctdm_stats *)data, &stats, sizeof(stats))) return -EFAULT; break; case WCTDM_GET_REGS: if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { for (x=0;xchanpos -1, x); for (x=0;xchanpos - 1, x); } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_QRV) { memset(®s, 0, sizeof(regs)); for (x=0;x<0x32;x++) regs.direct[x] = wctdm_getreg(wc, chan->chanpos - 1, x); } else { memset(®s, 0, sizeof(regs)); for (x=0;xchanpos - 1, x); } if (copy_to_user((struct wctdm_regs *)data, ®s, sizeof(regs))) return -EFAULT; break; case WCTDM_SET_REG: if (copy_from_user(®op, (struct wctdm_regop *)data, sizeof(regop))) return -EFAULT; if (regop.indirect) { if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; printk("Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_proslic_setreg_indirect(wc, chan->chanpos - 1, regop.reg, regop.val); } else { regop.val &= 0xff; if (regop.reg == 64) wc->mods[chan->chanpos-1].fxs.lasttxhook = (regop.val & 0x0f) | 0x10; printk("Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_setreg(wc, chan->chanpos - 1, regop.reg, regop.val); } break; case WCTDM_SET_ECHOTUNE: printk("-- Setting echo registers: \n"); if (copy_from_user(&echoregs, (struct wctdm_echo_coefs*)data, sizeof(echoregs))) return -EFAULT; if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { /* Set the ACIM register */ wctdm_setreg(wc, chan->chanpos - 1, 30, echoregs.acim); /* Set the digital echo canceller registers */ wctdm_setreg(wc, chan->chanpos - 1, 45, echoregs.coef1); wctdm_setreg(wc, chan->chanpos - 1, 46, echoregs.coef2); wctdm_setreg(wc, chan->chanpos - 1, 47, echoregs.coef3); wctdm_setreg(wc, chan->chanpos - 1, 48, echoregs.coef4); wctdm_setreg(wc, chan->chanpos - 1, 49, echoregs.coef5); wctdm_setreg(wc, chan->chanpos - 1, 50, echoregs.coef6); wctdm_setreg(wc, chan->chanpos - 1, 51, echoregs.coef7); wctdm_setreg(wc, chan->chanpos - 1, 52, echoregs.coef8); printk("-- Set echo registers successfully\n"); break; } else { return -EINVAL; } break; case ZT_SET_HWGAIN: if (copy_from_user(&hwgain, (struct zt_hwgain*) data, sizeof(hwgain))) return -EFAULT; wctdm_set_hwgain(wc, chan->chanpos-1, hwgain.newgain, hwgain.tx); if (debug) printk("Setting hwgain on channel %d to %d for %s direction\n", chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx"); break; #ifdef VPM_SUPPORT case ZT_TONEDETECT: if (get_user(x, (int *) data)) return -EFAULT; if (!wc->vpm && !wc->vpm150m) return -ENOSYS; if ((wc->vpm || wc->vpm150m) && (x && !vpmdtmfsupport)) return -ENOSYS; if (x & ZT_TONEDETECT_ON) { set_bit(chan->chanpos - 1, &wc->dtmfmask); } else { clear_bit(chan->chanpos - 1, &wc->dtmfmask); } if (x & ZT_TONEDETECT_MUTE) { if (wc->vpm150m) { set_bit(chan->chanpos - 1, &wc->vpm150m->desireddtmfmutestate); } } else { if (wc->vpm150m) { clear_bit(chan->chanpos - 1, &wc->vpm150m->desireddtmfmutestate); } } return 0; #endif case ZT_RADIO_GETPARAM: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_QRV) return -ENOTTY; if (copy_from_user(&stack.p,(struct zt_radio_param *)data,sizeof(struct zt_radio_param))) return -EFAULT; stack.p.data = 0; /* start with 0 value in output */ switch(stack.p.radpar) { case ZT_RADPAR_INVERTCOR: if (wc->radmode[chan->chanpos - 1] & RADMODE_INVERTCOR) stack.p.data = 1; break; case ZT_RADPAR_IGNORECOR: if (wc->radmode[chan->chanpos - 1] & RADMODE_IGNORECOR) stack.p.data = 1; break; case ZT_RADPAR_IGNORECT: if (wc->radmode[chan->chanpos - 1] & RADMODE_IGNORECT) stack.p.data = 1; break; case ZT_RADPAR_EXTRXTONE: stack.p.data = 0; if (wc->radmode[chan->chanpos - 1] & RADMODE_EXTTONE) { stack.p.data = 1; if (wc->radmode[chan->chanpos - 1] & RADMODE_EXTINVERT) { stack.p.data = 2; } } break; case ZT_RADPAR_DEBOUNCETIME: stack.p.data = wc->debouncetime[chan->chanpos - 1]; break; case ZT_RADPAR_RXGAIN: stack.p.data = wc->rxgain[chan->chanpos - 1] - 1199; break; case ZT_RADPAR_TXGAIN: stack.p.data = wc->txgain[chan->chanpos - 1] - 3599; break; case ZT_RADPAR_DEEMP: stack.p.data = 0; if (wc->radmode[chan->chanpos - 1] & RADMODE_DEEMP) { stack.p.data = 1; } break; case ZT_RADPAR_PREEMP: stack.p.data = 0; if (wc->radmode[chan->chanpos - 1] & RADMODE_PREEMP) { stack.p.data = 1; } break; default: return -EINVAL; } if (copy_to_user((struct zt_radio_param *)data,&stack.p,sizeof(struct zt_radio_param))) return -EFAULT; break; case ZT_RADIO_SETPARAM: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_QRV) return -ENOTTY; if (copy_from_user(&stack.p,(struct zt_radio_param *)data,sizeof(struct zt_radio_param))) return -EFAULT; switch(stack.p.radpar) { case ZT_RADPAR_INVERTCOR: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_INVERTCOR; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_INVERTCOR; return 0; case ZT_RADPAR_IGNORECOR: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_IGNORECOR; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_IGNORECOR; return 0; case ZT_RADPAR_IGNORECT: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_IGNORECT; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_IGNORECT; return 0; case ZT_RADPAR_EXTRXTONE: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_EXTTONE; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_EXTTONE; if (stack.p.data > 1) wc->radmode[chan->chanpos - 1] |= RADMODE_EXTINVERT; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_EXTINVERT; return 0; case ZT_RADPAR_DEBOUNCETIME: wc->debouncetime[chan->chanpos - 1] = stack.p.data; return 0; case ZT_RADPAR_RXGAIN: /* if out of range */ if ((stack.p.data <= -1200) || (stack.p.data > 1552)) { return -EINVAL; } wc->rxgain[chan->chanpos - 1] = stack.p.data + 1199; break; case ZT_RADPAR_TXGAIN: /* if out of range */ if (wc->radmode[chan->chanpos -1] & RADMODE_PREEMP) { if ((stack.p.data <= -2400) || (stack.p.data > 0)) { return -EINVAL; } } else { if ((stack.p.data <= -3600) || (stack.p.data > 1200)) { return -EINVAL; } } wc->txgain[chan->chanpos - 1] = stack.p.data + 3599; break; case ZT_RADPAR_DEEMP: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_DEEMP; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_DEEMP; wc->rxgain[chan->chanpos - 1] = 1199; break; case ZT_RADPAR_PREEMP: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_PREEMP; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_PREEMP; wc->txgain[chan->chanpos - 1] = 3599; break; default: return -EINVAL; } qrv_dosetup(chan,wc); return 0; default: return -ENOTTY; } return 0; } static int wctdm_open(struct zt_chan *chan) { struct wctdm *wc = chan->pvt; int channo = chan->chanpos - 1; unsigned long flags; if (!(wc->cardflag & (1 << (chan->chanpos - 1)))) return -ENODEV; if (wc->dead) return -ENODEV; wc->usecount++; #ifndef LINUX26 MOD_INC_USE_COUNT; #else try_module_get(THIS_MODULE); #endif /* Reset the mwi indicators */ spin_lock_irqsave(&wc->reglock, flags); wc->mods[channo].fxo.neonmwi_debounce = 0; wc->mods[channo].fxo.neonmwi_offcounter = 0; wc->mods[channo].fxo.neonmwi_state = 0; spin_unlock_irqrestore(&wc->reglock, flags); return 0; } static int wctdm_watchdog(struct zt_span *span, int event) { printk("TDM: Called watchdog\n"); return 0; } static int wctdm_close(struct zt_chan *chan) { struct wctdm *wc = chan->pvt; int x; signed char reg; wc->usecount--; #ifndef LINUX26 MOD_DEC_USE_COUNT; #else module_put(THIS_MODULE); #endif for (x=0;xcards;x++) { if (wc->modtype[x] == MOD_TYPE_FXS) wc->mods[x].fxs.idletxhookstate = 1; if (wc->modtype[x] == MOD_TYPE_QRV) { int qrvcard = x & 0xfc; wc->qrvhook[x] = 0; wc->qrvhook[x + 2] = 0xff; wc->debouncetime[x] = QRV_DEBOUNCETIME; wc->qrvdebtime[x] = 0; wc->radmode[x] = 0; wc->txgain[x] = 3599; wc->rxgain[x] = 1199; reg = 0; if (!wc->qrvhook[qrvcard]) reg |= 1; if (!wc->qrvhook[qrvcard + 1]) reg |= 0x10; wc->sethook[qrvcard] = CMD_WR(3, reg); qrv_dosetup(chan,wc); } } /* If we're dead, release us now */ if (!wc->usecount && wc->dead) wctdm_release(wc); return 0; } static int wctdm_hooksig(struct zt_chan *chan, zt_txsig_t txsig) { struct wctdm *wc = chan->pvt; int reg=0,qrvcard; if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_QRV) { qrvcard = (chan->chanpos - 1) & 0xfc; switch(txsig) { case ZT_TXSIG_START: case ZT_TXSIG_OFFHOOK: wc->qrvhook[chan->chanpos - 1] = 1; break; case ZT_TXSIG_ONHOOK: wc->qrvhook[chan->chanpos - 1] = 0; break; default: printk("wctdm24xxp: Can't set tx state to %d\n", txsig); } reg = 0; if (!wc->qrvhook[qrvcard]) reg |= 1; if (!wc->qrvhook[qrvcard + 1]) reg |= 0x10; wc->sethook[qrvcard] = CMD_WR(3, reg); /* wctdm_setreg(wc, qrvcard, 3, reg); */ } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { switch(txsig) { case ZT_TXSIG_START: case ZT_TXSIG_OFFHOOK: wc->mods[chan->chanpos - 1].fxo.offhook = 1; wc->sethook[chan->chanpos - 1] = CMD_WR(5, 0x9); /* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x9); */ break; case ZT_TXSIG_ONHOOK: wc->mods[chan->chanpos - 1].fxo.offhook = 0; wc->sethook[chan->chanpos - 1] = CMD_WR(5, 0x8); /* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x8); */ break; default: printk("wctdm24xxp: Can't set tx state to %d\n", txsig); } } else { switch(txsig) { case ZT_TXSIG_ONHOOK: switch(chan->sig) { case ZT_SIG_EM: case ZT_SIG_FXOKS: case ZT_SIG_FXOLS: wc->mods[chan->chanpos - 1].fxs.lasttxhook = 0x10 | wc->mods[chan->chanpos - 1].fxs.idletxhookstate; break; case ZT_SIG_FXOGS: wc->mods[chan->chanpos - 1].fxs.lasttxhook = 0x13; break; } break; case ZT_TXSIG_OFFHOOK: switch(chan->sig) { case ZT_SIG_EM: wc->mods[chan->chanpos - 1].fxs.lasttxhook = 0x15; break; default: wc->mods[chan->chanpos - 1].fxs.lasttxhook = 0x10 | wc->mods[chan->chanpos - 1].fxs.idletxhookstate; break; } break; case ZT_TXSIG_START: wc->mods[chan->chanpos - 1].fxs.lasttxhook = 0x14; break; case ZT_TXSIG_KEWL: wc->mods[chan->chanpos - 1].fxs.lasttxhook = 0x10; break; default: printk("wctdm24xxp: Can't set tx state to %d\n", txsig); } if (debug & DEBUG_CARD) printk("Setting FXS hook state to %d (%02x)\n", txsig, reg); wc->sethook[chan->chanpos - 1] = CMD_WR(64, wc->mods[chan->chanpos - 1].fxs.lasttxhook); /* wctdm_setreg(wc, chan->chanpos - 1, 64, wc->mods[chan->chanpos - 1].fxs.lasttxhook); */ } return 0; } static void wctdm_dacs_connect(struct wctdm *wc, int srccard, int dstcard) { if (wc->dacssrc[dstcard] > - 1) { printk("wctdm_dacs_connect: Can't have double sourcing yet!\n"); return; } if (!((wc->modtype[srccard] == MOD_TYPE_FXS)||(wc->modtype[srccard] == MOD_TYPE_FXO))){ printk("wctdm_dacs_connect: Unsupported modtype for card %d\n", srccard); return; } if (!((wc->modtype[dstcard] == MOD_TYPE_FXS)||(wc->modtype[dstcard] == MOD_TYPE_FXO))){ printk("wctdm_dacs_connect: Unsupported modtype for card %d\n", dstcard); return; } if (debug) printk("connect %d => %d\n", srccard, dstcard); wc->dacssrc[dstcard] = srccard; /* make srccard transmit to srccard+24 on the TDM bus */ if (wc->modtype[srccard] == MOD_TYPE_FXS) { /* proslic */ wctdm_setreg(wc, srccard, PCM_XMIT_START_COUNT_LSB, ((srccard+24) * 8) & 0xff); wctdm_setreg(wc, srccard, PCM_XMIT_START_COUNT_MSB, ((srccard+24) * 8) >> 8); } else if(wc->modtype[srccard] == MOD_TYPE_FXO) { /* daa */ wctdm_setreg(wc, srccard, 34, ((srccard+24) * 8) & 0xff); /* TX */ wctdm_setreg(wc, srccard, 35, ((srccard+24) * 8) >> 8); /* TX */ } /* have dstcard receive from srccard+24 on the TDM bus */ if (wc->modtype[dstcard] == MOD_TYPE_FXS) { /* proslic */ wctdm_setreg(wc, dstcard, PCM_RCV_START_COUNT_LSB, ((srccard+24) * 8) & 0xff); wctdm_setreg(wc, dstcard, PCM_RCV_START_COUNT_MSB, ((srccard+24) * 8) >> 8); } else if(wc->modtype[dstcard] == MOD_TYPE_FXO) { /* daa */ wctdm_setreg(wc, dstcard, 36, ((srccard+24) * 8) & 0xff); /* RX */ wctdm_setreg(wc, dstcard, 37, ((srccard+24) * 8) >> 8); /* RX */ } } static void wctdm_dacs_disconnect(struct wctdm *wc, int card) { if (wc->dacssrc[card] > -1) { if (debug) printk("wctdm_dacs_disconnect: restoring TX for %d and RX for %d\n",wc->dacssrc[card], card); /* restore TX (source card) */ if(wc->modtype[wc->dacssrc[card]] == MOD_TYPE_FXS){ wctdm_setreg(wc, wc->dacssrc[card], PCM_XMIT_START_COUNT_LSB, (wc->dacssrc[card] * 8) & 0xff); wctdm_setreg(wc, wc->dacssrc[card], PCM_XMIT_START_COUNT_MSB, (wc->dacssrc[card] * 8) >> 8); } else if(wc->modtype[wc->dacssrc[card]] == MOD_TYPE_FXO){ wctdm_setreg(wc, card, 34, (card * 8) & 0xff); wctdm_setreg(wc, card, 35, (card * 8) >> 8); } else { printk("WARNING: wctdm_dacs_disconnect() called on unsupported modtype\n"); } /* restore RX (this card) */ if(wc->modtype[card] == MOD_TYPE_FXS){ wctdm_setreg(wc, card, PCM_RCV_START_COUNT_LSB, (card * 8) & 0xff); wctdm_setreg(wc, card, PCM_RCV_START_COUNT_MSB, (card * 8) >> 8); } else if(wc->modtype[card] == MOD_TYPE_FXO){ wctdm_setreg(wc, card, 36, (card * 8) & 0xff); wctdm_setreg(wc, card, 37, (card * 8) >> 8); } else { printk("WARNING: wctdm_dacs_disconnect() called on unsupported modtype\n"); } wc->dacssrc[card] = -1; } } static int wctdm_dacs(struct zt_chan *dst, struct zt_chan *src) { struct wctdm *wc; if(!nativebridge) return 0; /* should this return -1 since unsuccessful? */ wc = dst->pvt; if(src) { wctdm_dacs_connect(wc, src->chanpos - 1, dst->chanpos - 1); if (debug) printk("dacs connecct: %d -> %d!\n\n", src->chanpos, dst->chanpos); } else { wctdm_dacs_disconnect(wc, dst->chanpos - 1); if (debug) printk("dacs disconnect: %d!\n", dst->chanpos); } return 0; } static int wctdm_initialize(struct wctdm *wc) { int x; struct pci_dev *pdev = voicebus_get_pci_dev(wc->vb); /* Zapata stuff */ sprintf(wc->span.name, "WCTDM/%d", wc->pos); snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Board %d", wc->variety, wc->pos + 1); snprintf(wc->span.location, sizeof(wc->span.location) - 1, "PCI%s Bus %02d Slot %02d", (wc->flags[0] & FLAG_EXPRESS) ? " Express" : "", pdev->bus->number, PCI_SLOT(pdev->devfn) + 1); wc->span.manufacturer = "Digium"; strncpy(wc->span.devicetype, wc->variety, sizeof(wc->span.devicetype) - 1); if (alawoverride) { printk("ALAW override parameter detected. Device will be operating in ALAW\n"); wc->span.deflaw = ZT_LAW_ALAW; } else wc->span.deflaw = ZT_LAW_MULAW; for (x=0;xcards;x++) { sprintf(wc->chans[x].name, "WCTDM/%d/%d", wc->pos, x); wc->chans[x].sigcap = ZT_SIG_FXOKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS | ZT_SIG_SF | ZT_SIG_EM | ZT_SIG_CLEAR; wc->chans[x].sigcap |= ZT_SIG_FXSKS | ZT_SIG_FXSLS | ZT_SIG_SF | ZT_SIG_CLEAR; wc->chans[x].chanpos = x+1; wc->chans[x].pvt = wc; } wc->span.chans = wc->chans; wc->span.channels = wc->type; wc->span.irq = pdev->irq; wc->span.hooksig = wctdm_hooksig; wc->span.open = wctdm_open; wc->span.close = wctdm_close; wc->span.flags = ZT_FLAG_RBS; wc->span.ioctl = wctdm_ioctl; wc->span.watchdog = wctdm_watchdog; wc->span.dacs= wctdm_dacs; #ifdef VPM_SUPPORT wc->span.echocan_with_params = wctdm_echocan_with_params; #endif init_waitqueue_head(&wc->span.maintq); wc->span.pvt = wc; return 0; } static void wctdm_post_initialize(struct wctdm *wc) { int x; /* Finalize signalling */ for (x = 0; x cards; x++) { if (wc->cardflag & (1 << x)) { if (wc->modtype[x] == MOD_TYPE_FXO) wc->chans[x].sigcap = ZT_SIG_FXSKS | ZT_SIG_FXSLS | ZT_SIG_SF | ZT_SIG_CLEAR; else if (wc->modtype[x] == MOD_TYPE_FXS) wc->chans[x].sigcap = ZT_SIG_FXOKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS | ZT_SIG_SF | ZT_SIG_EM | ZT_SIG_CLEAR; else if (wc->modtype[x] == MOD_TYPE_QRV) wc->chans[x].sigcap = ZT_SIG_SF | ZT_SIG_EM | ZT_SIG_CLEAR; } else if (!(wc->chans[x].sigcap & ZT_SIG_BROKEN)) { wc->chans[x].sigcap = 0; } } if (wc->vpm) strncat(wc->span.devicetype, " with VPM100M", sizeof(wc->span.devicetype) - 1); else if (wc->vpm150m) strncat(wc->span.devicetype, " with VPMADT032", sizeof(wc->span.devicetype) - 1); } #ifdef VPM_SUPPORT #ifdef VPM150M_SUPPORT void vpm150m_set_chanconfig_from_state(struct adt_lec_params * parms, int channum, GpakChannelConfig_t *chanconfig) { chanconfig->PcmInPortA = 3; chanconfig->PcmInSlotA = channum; chanconfig->PcmOutPortA = SerialPortNull; chanconfig->PcmOutSlotA = channum; chanconfig->PcmInPortB = 2; chanconfig->PcmInSlotB = channum; chanconfig->PcmOutPortB = 3; chanconfig->PcmOutSlotB = channum; if (vpmdtmfsupport) { chanconfig->ToneTypesA = DTMF_tone; chanconfig->MuteToneA = Enabled; chanconfig->FaxCngDetA = Enabled; } else { chanconfig->ToneTypesA = Null_tone; chanconfig->MuteToneA = Disabled; chanconfig->FaxCngDetA = Disabled; } chanconfig->ToneTypesB = Null_tone; chanconfig->EcanEnableA = Enabled; chanconfig->EcanEnableB = Disabled; chanconfig->MuteToneB = Disabled; chanconfig->FaxCngDetB = Disabled; if (alawoverride) chanconfig->SoftwareCompand = cmpPCMA; else chanconfig->SoftwareCompand = cmpPCMU; chanconfig->FrameRate = rate2ms; chanconfig->EcanParametersA.EcanTapLength = 1024; chanconfig->EcanParametersA.EcanNlpType = parms->nlp_type; chanconfig->EcanParametersA.EcanAdaptEnable = 1; chanconfig->EcanParametersA.EcanG165DetEnable = 1; chanconfig->EcanParametersA.EcanDblTalkThresh = 6; chanconfig->EcanParametersA.EcanNlpThreshold = parms->nlp_threshold; chanconfig->EcanParametersA.EcanNlpConv = 0; chanconfig->EcanParametersA.EcanNlpUnConv = 0; chanconfig->EcanParametersA.EcanNlpMaxSuppress = parms->nlp_max_suppress; chanconfig->EcanParametersA.EcanCngThreshold = 43; chanconfig->EcanParametersA.EcanAdaptLimit = 50; chanconfig->EcanParametersA.EcanCrossCorrLimit = 15; chanconfig->EcanParametersA.EcanNumFirSegments = 3; chanconfig->EcanParametersA.EcanFirSegmentLen = 64; chanconfig->EcanParametersB.EcanTapLength = 1024; chanconfig->EcanParametersB.EcanNlpType = parms->nlp_type; chanconfig->EcanParametersB.EcanAdaptEnable = 1; chanconfig->EcanParametersB.EcanG165DetEnable = 1; chanconfig->EcanParametersB.EcanDblTalkThresh = 6; chanconfig->EcanParametersB.EcanNlpThreshold = parms->nlp_threshold; chanconfig->EcanParametersB.EcanNlpConv = 0; chanconfig->EcanParametersB.EcanNlpUnConv = 0; chanconfig->EcanParametersB.EcanNlpMaxSuppress = parms->nlp_max_suppress; chanconfig->EcanParametersB.EcanCngThreshold = 43; chanconfig->EcanParametersB.EcanAdaptLimit = 50; chanconfig->EcanParametersB.EcanCrossCorrLimit = 15; chanconfig->EcanParametersB.EcanNumFirSegments = 3; chanconfig->EcanParametersB.EcanFirSegmentLen = 64; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) static void vpm150m_bh(void *data) { struct vpm150m *vpm150m = data; #else static void vpm150m_bh(struct work_struct *data) { struct vpm150m *vpm150m = container_of(data, struct vpm150m, work); #endif struct wctdm *wc = vpm150m->wc; int i; for (i = 0; i < wc->type; i++) { int enable = -1; if (test_bit(i, &vpm150m->desireddtmfmutestate)) { if (!test_bit(i, &vpm150m->curdtmfmutestate)) { enable = 1; } } else { if (test_bit(i, &vpm150m->curdtmfmutestate)) { enable = 0; } } if (enable > -1) { unsigned int start = wc->intcount; GPAK_AlgControlStat_t pstatus; int res; if (enable) { res = gpakAlgControl(vpm150m->dspid, i, EnableDTMFMuteA, &pstatus); if (debug & DEBUG_ECHOCAN) printk("DTMF mute enable took %d ms\n", wc->intcount - start); } else { res = gpakAlgControl(vpm150m->dspid, i, DisableDTMFMuteA, &pstatus); if (debug & DEBUG_ECHOCAN) printk("DTMF mute disable took %d ms\n", wc->intcount - start); } if (!res) change_bit(i, &vpm150m->curdtmfmutestate); } } if (test_bit(VPM150M_DTMFDETECT, &vpm150m->control)) { unsigned short channel; GpakAsyncEventCode_t eventcode; GpakAsyncEventData_t eventdata; gpakReadEventFIFOMessageStat_t res; unsigned int start = wc->intcount; do { res = gpakReadEventFIFOMessage(vpm150m->dspid, &channel, &eventcode, &eventdata); if (debug & DEBUG_ECHOCAN) printk("ReadEventFIFOMessage took %d ms\n", wc->intcount - start); if (res == RefInvalidEvent || res == RefDspCommFailure) { printk("VPM Comm Error\n"); continue; } if (res == RefNoEventAvail) { continue; } if (eventcode == EventToneDetect) { GpakToneCodes_t tone = eventdata.toneEvent.ToneCode; int duration = eventdata.toneEvent.ToneDuration; char zaptone = vpm150mtone_to_zaptone(tone); if (debug & DEBUG_ECHOCAN) printk("Channel %d: Detected DTMF tone %d of duration %d!!!\n", channel + 1, tone, duration); if (test_bit(channel, &wc->dtmfmask) && (eventdata.toneEvent.ToneDuration > 0)) { struct zt_chan *chan = &wc->chans[channel]; if ((tone != EndofMFDigit) && (zaptone != 0)) { vpm150m->curtone[channel] = tone; if (test_bit(channel, &vpm150m->curdtmfmutestate)) { unsigned long flags; int y; /* Mute the audio data buffers */ spin_lock_irqsave(&chan->lock, flags); for (y = 0; y < chan->numbufs; y++) { if ((chan->inreadbuf > -1) && (chan->readidx[y])) memset(chan->readbuf[chan->inreadbuf], ZT_XLAW(0, chan), chan->readidx[y]); } spin_unlock_irqrestore(&chan->lock, flags); } if (!test_bit(channel, &wc->dtmfactive)) { if (debug & DEBUG_ECHOCAN) printk("Queuing DTMFDOWN %c\n", zaptone); set_bit(channel, &wc->dtmfactive); zt_qevent_lock(chan, (ZT_EVENT_DTMFDOWN | zaptone)); } } else if ((tone == EndofMFDigit) && test_bit(channel, &wc->dtmfactive)) { if (debug & DEBUG_ECHOCAN) printk("Queuing DTMFUP %c\n", vpm150mtone_to_zaptone(vpm150m->curtone[channel])); zt_qevent_lock(chan, (ZT_EVENT_DTMFUP | vpm150mtone_to_zaptone(vpm150m->curtone[channel]))); clear_bit(channel, &wc->dtmfactive); } } } } while ((res != RefNoEventAvail) && (res != RefInvalidEvent) && (res != RefDspCommFailure)); } for (i = 0; i < wc->type; i++) { unsigned int start = wc->intcount; GPAK_AlgControlStat_t pstatus; int res = 1; if ((vpm150m->desiredecstate[i].nlp_type != vpm150m->curecstate[i].nlp_type) || (vpm150m->desiredecstate[i].nlp_threshold != vpm150m->curecstate[i].nlp_threshold) || (vpm150m->desiredecstate[i].nlp_max_suppress != vpm150m->curecstate[i].nlp_max_suppress)) { GPAK_ChannelConfigStat_t cstatus; GPAK_TearDownChanStat_t tstatus; GpakChannelConfig_t chanconfig; if (debug & DEBUG_ECHOCAN) printk("Reconfiguring chan %d for nlp %d, nlp_thresh %d, and max_supp %d\n", i + 1, vpm150m->desiredecstate[i].nlp_type, vpm150m->desiredecstate[i].nlp_threshold, vpm150m->desiredecstate[i].nlp_max_suppress); vpm150m_set_chanconfig_from_state(&vpm150m->desiredecstate[i], i, &chanconfig); if ((res = gpakTearDownChannel(vpm150m->dspid, i, &tstatus))) { goto vpm_bh_out; } if ((res = gpakConfigureChannel(vpm150m->dspid, i, tdmToTdm, &chanconfig, &cstatus))) { goto vpm_bh_out; } if (!vpm150m->desiredecstate[i].tap_length) res = gpakAlgControl(vpm150m->dspid, i, BypassEcanA, &pstatus); } else if (vpm150m->desiredecstate[i].tap_length != vpm150m->curecstate[i].tap_length) { if (vpm150m->desiredecstate[i].tap_length) { res = gpakAlgControl(vpm150m->dspid, i, EnableEcanA, &pstatus); if (debug & DEBUG_ECHOCAN) printk("Echocan enable took %d ms\n", wc->intcount - start); } else { res = gpakAlgControl(vpm150m->dspid, i, BypassEcanA, &pstatus); if (debug & DEBUG_ECHOCAN) printk("Echocan disable took %d ms\n", wc->intcount - start); } } vpm_bh_out: if (!res) vpm150m->curecstate[i] = vpm150m->desiredecstate[i]; } return; } static int vpm150m_config_hw(struct wctdm *wc) { struct vpm150m *vpm150m = wc->vpm150m; gpakConfigPortStatus_t configportstatus; GpakPortConfig_t portconfig; GPAK_PortConfigStat_t pstatus; GpakChannelConfig_t chanconfig; GPAK_ChannelConfigStat_t cstatus; GPAK_AlgControlStat_t algstatus; int res, i; memset(&portconfig, 0, sizeof(GpakPortConfig_t)); /* First Serial Port config */ portconfig.SlotsSelect1 = SlotCfgNone; portconfig.FirstBlockNum1 = 0; portconfig.FirstSlotMask1 = 0x0000; portconfig.SecBlockNum1 = 1; portconfig.SecSlotMask1 = 0x0000; portconfig.SerialWordSize1 = SerWordSize8; portconfig.CompandingMode1 = cmpNone; portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh; portconfig.TxClockPolarity1 = SerClockActHigh; portconfig.RxClockPolarity1 = SerClockActHigh; portconfig.TxDataDelay1 = DataDelay0; portconfig.RxDataDelay1 = DataDelay0; portconfig.DxDelay1 = Disabled; portconfig.ThirdSlotMask1 = 0x0000; portconfig.FouthSlotMask1 = 0x0000; portconfig.FifthSlotMask1 = 0x0000; portconfig.SixthSlotMask1 = 0x0000; portconfig.SevenSlotMask1 = 0x0000; portconfig.EightSlotMask1 = 0x0000; /* Second Serial Port config */ portconfig.SlotsSelect2 = SlotCfg2Groups; portconfig.FirstBlockNum2 = 0; portconfig.FirstSlotMask2 = 0xffff; portconfig.SecBlockNum2 = 1; portconfig.SecSlotMask2 = 0xffff; portconfig.SerialWordSize2 = SerWordSize8; portconfig.CompandingMode2 = cmpNone; portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh; portconfig.TxClockPolarity2 = SerClockActHigh; portconfig.RxClockPolarity2 = SerClockActLow; portconfig.TxDataDelay2 = DataDelay0; portconfig.RxDataDelay2 = DataDelay0; portconfig.DxDelay2 = Disabled; portconfig.ThirdSlotMask2 = 0x0000; portconfig.FouthSlotMask2 = 0x0000; portconfig.FifthSlotMask2 = 0x0000; portconfig.SixthSlotMask2 = 0x0000; portconfig.SevenSlotMask2 = 0x0000; portconfig.EightSlotMask2 = 0x0000; /* Third Serial Port Config */ portconfig.SlotsSelect3 = SlotCfg2Groups; portconfig.FirstBlockNum3 = 0; portconfig.FirstSlotMask3 = 0xffff; portconfig.SecBlockNum3 = 1; portconfig.SecSlotMask3 = 0xffff; portconfig.SerialWordSize3 = SerWordSize8; portconfig.CompandingMode3 = cmpNone; portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh; portconfig.TxClockPolarity3 = SerClockActHigh; portconfig.RxClockPolarity3 = SerClockActLow; portconfig.TxDataDelay3 = DataDelay0; portconfig.RxDataDelay3 = DataDelay0; portconfig.DxDelay3 = Disabled; portconfig.ThirdSlotMask3 = 0x0000; portconfig.FouthSlotMask3 = 0x0000; portconfig.FifthSlotMask3 = 0x0000; portconfig.SixthSlotMask3 = 0x0000; portconfig.SevenSlotMask3 = 0x0000; portconfig.EightSlotMask3 = 0x0000; if ((configportstatus = gpakConfigurePorts(vpm150m->dspid, &portconfig, &pstatus))) { printk("Configuration of ports failed (%d)!\n", configportstatus); return -1; } else { if (debug & DEBUG_ECHOCAN) printk("Configured McBSP ports successfully\n"); } if ((res = gpakPingDsp(vpm150m->dspid, &vpm150m->version))) { printk("Error pinging DSP (%d)\n", res); return -1; } for (i = 0; i < wc->type; i++) { vpm150m->curecstate[i].tap_length = 0; vpm150m->curecstate[i].nlp_type = vpmnlptype; vpm150m->curecstate[i].nlp_threshold = vpmnlpthresh; vpm150m->curecstate[i].nlp_max_suppress = vpmnlpmaxsupp; vpm150m->desiredecstate[i].tap_length = 0; vpm150m->desiredecstate[i].nlp_type = vpmnlptype; vpm150m->desiredecstate[i].nlp_threshold = vpmnlpthresh; vpm150m->desiredecstate[i].nlp_max_suppress = vpmnlpmaxsupp; vpm150m_set_chanconfig_from_state(&vpm150m->curecstate[i], i, &chanconfig); if ((res = gpakConfigureChannel(vpm150m->dspid, i, tdmToTdm, &chanconfig, &cstatus))) { printk("Unable to configure channel (%d)\n", res); if (res == 1) { printk("Reason %d\n", cstatus); } return -1; } if ((res = gpakAlgControl(vpm150m->dspid, i, BypassEcanA, &algstatus))) { printk("Unable to disable echo can on channel %d (reason %d:%d)\n", i + 1, res, algstatus); return -1; } if (vpmdtmfsupport) { if ((res = gpakAlgControl(vpm150m->dspid, i, DisableDTMFMuteA, &algstatus))) { printk("Unable to disable dtmf muting on channel %d (reason %d:%d)\n", i + 1, res, algstatus); return -1; } } } if ((res = gpakPingDsp(vpm150m->dspid, &vpm150m->version))) { printk("Error pinging DSP (%d)\n", res); return -1; } vpm150m->wq = create_singlethread_workqueue("wctdm24xxp"); vpm150m->wc = wc; if (!vpm150m->wq) { printk("Unable to create work queue!\n"); return -1; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) INIT_WORK(&vpm150m->work, vpm150m_bh, vpm150m); #else INIT_WORK(&vpm150m->work, vpm150m_bh); #endif /* Turn on DTMF detection */ if (vpmdtmfsupport) set_bit(VPM150M_DTMFDETECT, &vpm150m->control); set_bit(VPM150M_ACTIVE, &vpm150m->control); return 0; } #endif /* VPM150M_SUPPORT */ enum vpmadt032_init_result { VPMADT032_SUCCESS, VPMADT032_NOT_FOUND, VPMADT032_FAILED, VPMADT032_DISABLED, }; static enum vpmadt032_init_result wctdm_vpm150m_init(struct wctdm *wc) { unsigned short i; struct vpm150m *vpm150m; unsigned short reg; unsigned long flags; struct pci_dev* pdev = voicebus_get_pci_dev(wc->vb); enum vpmadt032_init_result res = VPMADT032_FAILED; #ifdef VPM150M_SUPPORT struct wctdm_firmware fw; struct firmware embedded_firmware; const struct firmware *firmware = &embedded_firmware; #if !defined(HOTPLUG_FIRMWARE) extern void _binary_zaptel_fw_vpmadt032_bin_size; extern u8 _binary_zaptel_fw_vpmadt032_bin_start[]; #else static const char vpmadt032_firmware[] = "zaptel-fw-vpmadt032.bin"; #endif gpakDownloadStatus_t downloadstatus; gpakPingDspStat_t pingstatus; #endif if (!vpmsupport) { printk("VPM: Support Disabled\n"); wc->vpm150m = NULL; return VPMADT032_DISABLED; } vpm150m = kmalloc(sizeof(struct vpm150m), GFP_KERNEL); if (!vpm150m) { printk("Unable to allocate VPM150M!\n"); return VPMADT032_FAILED; } memset(vpm150m, 0, sizeof(struct vpm150m)); /* Init our vpm150m struct */ sema_init(&vpm150m->sem, 1); vpm150m->curpage = 0x80; for (i = 0; i < WC_MAX_IFACES; i++) { if (ifaces[i] == wc) vpm150m->dspid = i; } if (debug & DEBUG_ECHOCAN) printk("Setting VPMADT032 DSP ID to %d\n", vpm150m->dspid); spin_lock_irqsave(&wc->reglock, flags); wc->vpm150m = vpm150m; spin_unlock_irqrestore(&wc->reglock, flags); for (i = 0; i < 10; i++) schluffen(&wc->regq); if (debug & DEBUG_ECHOCAN) printk("VPMADT032 Testing page access: "); for (i = 0; i < 0xf; i++) { int x; for (x = 0; x < 3; x++) { wctdm_vpm150m_setpage(wc, i); reg = wctdm_vpm150m_getpage(wc); if (reg != i) { if (debug & DEBUG_ECHOCAN) printk("Failed: Sent %x != %x VPMADT032 Failed HI page test\n", i, reg); res = VPMADT032_NOT_FOUND; goto failed_exit; } } } if (debug & DEBUG_ECHOCAN) printk("Passed\n"); /* Set us up to page 0 */ wctdm_vpm150m_setpage(wc, 0); if (debug & DEBUG_ECHOCAN) printk("VPMADT032 now doing address test: "); for (i = 0; i < 16; i++) { int x; for (x = 0; x < 2; x++) { wctdm_vpm150m_setreg(wc, 1, 0x1000, &i); wctdm_vpm150m_getreg(wc, 1, 0x1000, ®); if (reg != i) { printk("VPMADT032 Failed address test\n"); goto failed_exit; } } } if (debug & DEBUG_ECHOCAN) printk("Passed\n"); #ifndef VPM150M_SUPPORT printk("Found VPMADT032 module but it is not able to function in anything less than a version 2.6 kernel\n"); printk("Please update your kernel to a 2.6 or later kernel to enable it\n"); goto failed_exit; #else #if 0 /* Load the firmware */ set_bit(VPM150M_SPIRESET, &vpm150m->control); /* Wait for it to boot */ msleep(7000); pingstatus = gpakPingDsp(vpm150m->dspid, &version); if (pingstatus || (version != 0x106)) { #endif #if defined(HOTPLUG_FIRMWARE) if ((request_firmware(&firmware, vpmadt032_firmware, &pdev->dev) != 0) || !firmware) { printk("VPMADT032: firmware %s not available from userspace\n", vpmadt032_firmware); goto failed_exit; } #else embedded_firmware.data = _binary_zaptel_fw_vpmadt032_bin_start; embedded_firmware.size = (size_t) &_binary_zaptel_fw_vpmadt032_bin_size; #endif fw.fw = firmware; fw.offset = 0; set_bit(VPM150M_HPIRESET, &vpm150m->control); while (test_bit(VPM150M_HPIRESET, &vpm150m->control)) schluffen(&wc->regq); printk("VPMADT032 Loading firwmare... "); downloadstatus = gpakDownloadDsp(vpm150m->dspid, &fw); if (firmware != &embedded_firmware) release_firmware(firmware); if (downloadstatus != 0) { printk("Unable to download firmware to VPMADT032 with cause %d\n", downloadstatus); goto failed_exit; } else { printk("Success\n"); } set_bit(VPM150M_SWRESET, &vpm150m->control); while (test_bit(VPM150M_SWRESET, &vpm150m->control)) schluffen(&wc->regq); #if 0 } #endif pingstatus = gpakPingDsp(vpm150m->dspid, &vpm150m->version); if (!pingstatus) { if (debug & DEBUG_ECHOCAN) printk("Version of DSP is %x\n", vpm150m->version); } else { printk("VPMADT032 Failed! Unable to ping the DSP (%d)!\n", pingstatus); goto failed_exit; } if (vpm150m_config_hw(wc)) { goto failed_exit; } return VPMADT032_SUCCESS; #endif /* VPM150M_SUPPORT */ failed_exit: spin_lock_irqsave(&wc->reglock, flags); wc->vpm150m = NULL; spin_unlock_irqrestore(&wc->reglock, flags); kfree(vpm150m); return res; } static void wctdm_vpm_set_dtmf_threshold(struct wctdm *wc, unsigned int threshold) { unsigned int x; for (x = 0; x < 4; x++) { wctdm_vpm_out(wc, x, 0xC4, (threshold >> 8) & 0xFF); wctdm_vpm_out(wc, x, 0xC5, (threshold & 0xFF)); } printk("VPM: DTMF threshold set to %d\n", threshold); } static void wctdm_vpm_init(struct wctdm *wc) { unsigned char reg; unsigned int mask; unsigned int ver; unsigned char vpmver=0; unsigned int i, x, y; if (!vpmsupport) { printk("VPM: Support Disabled\n"); wc->vpm = 0; return; } for (x=0;xvpm = 0; return; } if (!x) { vpmver = wctdm_vpm_in(wc, x, 0x1a6) & 0xf; printk("VPM Revision: %02x\n", vpmver); } /* Setup GPIO's */ for (y=0;y<4;y++) { wctdm_vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */ if (y == 3) wctdm_vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */ else wctdm_vpm_out(wc, x, 0x1ac + y, 0xff); /* GPIO dir */ wctdm_vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */ } /* Setup TDM path - sets fsync and tdm_clk as inputs */ reg = wctdm_vpm_in(wc, x, 0x1a3); /* misc_con */ wctdm_vpm_out(wc, x, 0x1a3, reg & ~2); /* Setup Echo length (256 taps) */ wctdm_vpm_out(wc, x, 0x022, 0); /* Setup timeslots */ if (vpmver == 0x01) { wctdm_vpm_out(wc, x, 0x02f, 0x00); wctdm_vpm_out(wc, x, 0x023, 0xff); mask = 0x11111111 << x; } else { wctdm_vpm_out(wc, x, 0x02f, 0x20 | (x << 3)); wctdm_vpm_out(wc, x, 0x023, 0x3f); mask = 0x0000003f; } /* Setup the tdm channel masks for all chips*/ for (i = 0; i < 4; i++) wctdm_vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff); /* Setup convergence rate */ reg = wctdm_vpm_in(wc,x,0x20); reg &= 0xE0; if (alawoverride) { if (!x) printk("VPM: A-law mode\n"); reg |= 0x01; } else { if (!x) printk("VPM: U-law mode\n"); reg &= ~0x01; } wctdm_vpm_out(wc,x,0x20,(reg | 0x20)); /* Initialize echo cans */ for (i = 0 ; i < MAX_TDM_CHAN; i++) { if (mask & (0x00000001 << i)) wctdm_vpm_out(wc,x,i,0x00); } for (i=0;i<30;i++) schluffen(&wc->regq); /* Put in bypass mode */ for (i = 0 ; i < MAX_TDM_CHAN ; i++) { if (mask & (0x00000001 << i)) { wctdm_vpm_out(wc,x,i,0x01); } } /* Enable bypass */ for (i = 0 ; i < MAX_TDM_CHAN ; i++) { if (mask & (0x00000001 << i)) wctdm_vpm_out(wc,x,0x78 + i,0x01); } /* Enable DTMF detectors (always DTMF detect all spans) */ for (i = 0; i < 6; i++) { if (vpmver == 0x01) wctdm_vpm_out(wc, x, 0x98 + i, 0x40 | (i << 2) | x); else wctdm_vpm_out(wc, x, 0x98 + i, 0x40 | i); } for (i = 0xB8; i < 0xC0; i++) wctdm_vpm_out(wc, x, i, 0xFF); for (i = 0xC0; i < 0xC4; i++) wctdm_vpm_out(wc, x, i, 0xff); } /* set DTMF detection threshold */ wctdm_vpm_set_dtmf_threshold(wc, dtmfthreshold); if (vpmver == 0x01) wc->vpm = 2; else wc->vpm = 1; printk("Enabling VPM100 gain adjustments on any FXO ports found\n"); for (i = 0; i < wc->type; i++) { if (wc->modtype[i] == MOD_TYPE_FXO) { /* Apply negative Tx gain of 4.5db to DAA */ wctdm_setreg(wc, i, 38, 0x14); /* 4db */ wctdm_setreg(wc, i, 40, 0x15); /* 0.5db */ /* Apply negative Rx gain of 4.5db to DAA */ wctdm_setreg(wc, i, 39, 0x14); /* 4db */ wctdm_setreg(wc, i, 41, 0x15); /* 0.5db */ } } } #endif static int wctdm_locate_modules(struct wctdm *wc) { int x; unsigned long flags; unsigned int startinglatency = voicebus_current_latency(wc->vb); wc->ctlreg = 0x00; /* Make sure all units go into daisy chain mode */ spin_lock_irqsave(&wc->reglock, flags); wc->span.irqmisses = 0; for (x=0;xcards;x++) wc->modtype[x] = MOD_TYPE_FXSINIT; #ifdef VPM_SUPPORT wc->vpm = -1; for (x = wc->cards; x < wc->cards+NUM_EC; x++) wc->modtype[x] = MOD_TYPE_VPM; #endif spin_unlock_irqrestore(&wc->reglock, flags); /* Wait just a bit */ for (x=0;x<10;x++) schluffen(&wc->regq); spin_lock_irqsave(&wc->reglock, flags); for (x=0;xcards;x++) wc->modtype[x] = MOD_TYPE_FXS; spin_unlock_irqrestore(&wc->reglock, flags); #if 0 /* XXX */ cmddesc = 0; #endif /* Now that all the cards have been reset, we can stop checking them all if there aren't as many */ spin_lock_irqsave(&wc->reglock, flags); wc->cards = wc->type; spin_unlock_irqrestore(&wc->reglock, flags); /* Reset modules */ for (x=0;xcards;x++) { int sane=0,ret=0,readi=0; retry: if (voicebus_current_latency(wc->vb) > startinglatency) { return -EAGAIN; } /* Init with Auto Calibration */ if (!(ret = wctdm_init_proslic(wc, x, 0, 0, sane))) { wc->cardflag |= (1 << x); if (debug & DEBUG_CARD) { readi = wctdm_getreg(wc,x,LOOP_I_LIMIT); printk("Proslic module %d loop current is %dmA\n",x, ((readi*3)+20)); } printk("Port %d: Installed -- AUTO FXS/DPO\n", x + 1); } else { if(ret!=-2) { sane=1; /* Init with Manual Calibration */ if (!wctdm_init_proslic(wc, x, 0, 1, sane)) { wc->cardflag |= (1 << x); if (debug & DEBUG_CARD) { readi = wctdm_getreg(wc,x,LOOP_I_LIMIT); printk("Proslic module %d loop current is %dmA\n",x, ((readi*3)+20)); } printk("Port %d: Installed -- MANUAL FXS\n",x + 1); } else { printk("Port %d: FAILED FXS (%s)\n", x + 1, fxshonormode ? fxo_modes[_opermode].name : "FCC"); wc->chans[x].sigcap = ZT_SIG_BROKEN | __ZT_SIG_FXO; } } else if (!(ret = wctdm_init_voicedaa(wc, x, 0, 0, sane))) { wc->cardflag |= (1 << x); printk("Port %d: Installed -- AUTO FXO (%s mode)\n",x + 1, fxo_modes[_opermode].name); } else if (!wctdm_init_qrvdri(wc,x)) { wc->cardflag |= 1 << x; printk("Port %d: Installed -- QRV DRI card\n",x + 1); } else { if ((wc->type != 24) && ((x & 0x3) == 1) && !wc->altcs[x]) { spin_lock_irqsave(&wc->reglock, flags); wc->altcs[x] = 2; if (wc->type == 4) { wc->altcs[x+1] = 3; wc->altcs[x+2] = 3; } wc->modtype[x] = MOD_TYPE_FXSINIT; spin_unlock_irqrestore(&wc->reglock, flags); schluffen(&wc->regq); schluffen(&wc->regq); spin_lock_irqsave(&wc->reglock, flags); wc->modtype[x] = MOD_TYPE_FXS; spin_unlock_irqrestore(&wc->reglock, flags); if (debug & DEBUG_CARD) printk("Trying port %d with alternate chip select\n", x + 1); goto retry; } else { printk("Port %d: Not installed\n", x + 1); wc->modtype[x] = MOD_TYPE_NONE; wc->cardflag |= (1 << x); } } } } #ifdef VPM_SUPPORT wctdm_vpm_init(wc); if (wc->vpm) { printk("VPM: Present and operational (Rev %c)\n", 'A' + wc->vpm - 1); wc->ctlreg |= 0x10; } else { enum vpmadt032_init_result res; spin_lock_irqsave(&wc->reglock, flags); for (x = NUM_CARDS; x < NUM_CARDS + NUM_EC; x++) wc->modtype[x] = MOD_TYPE_NONE; spin_unlock_irqrestore(&wc->reglock, flags); res = wctdm_vpm150m_init(wc); /* In case there was an error while we were loading the VPM module. */ if (voicebus_current_latency(wc->vb) > startinglatency) { return -EAGAIN; } switch (res) { case VPMADT032_SUCCESS: printk("VPMADT032: Present and operational (Firmware version %x)\n", wc->vpm150m->version); wc->ctlreg |= 0x10; break; case VPMADT032_DISABLED: case VPMADT032_NOT_FOUND: /* nothing */ break; default: return -EIO; } } #endif /* In case there was an error while we were loading the VPM module. */ if (voicebus_current_latency(wc->vb) > startinglatency) { return -EAGAIN; } return 0; } static struct pci_driver wctdm_driver; static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct wctdm *wc; struct wctdm_desc *d = (struct wctdm_desc *)ent->driver_data; int i; int y; int ret; neonmwi_offlimit_cycles = neonmwi_offlimit /MS_PER_HOOKCHECK; retry: wc = kmalloc(sizeof(struct wctdm), GFP_KERNEL); if (!wc) { /* \todo Print debug message. */ return -ENOMEM; } memset(wc, 0, sizeof(*wc)); spin_lock(&ifacelock); /* \todo this is a candidate for removal... */ for (i = 0; i < WC_MAX_IFACES; ++i) { if (!ifaces[i]) { ifaces[i] = wc; break; } } spin_unlock(&ifacelock); snprintf(wc->board_name, sizeof(wc->board_name)-1, "%s%d", wctdm_driver.name, i); ret = voicebus_init(pdev, SFRAME_SIZE, wc->board_name, handle_receive, handle_transmit, wc, debug, &wc->vb); if (ret) { kfree(wc); return ret; } BUG_ON(!wc->vb); if (VOICEBUS_DEFAULT_LATENCY != latency) { voicebus_set_minlatency(wc->vb, latency); } spin_lock_init(&wc->reglock); wc->curcard = -1; wc->cards = NUM_CARDS; wc->type = d->ports; wc->pos = i; wc->variety = d->name; wc->txident = 1; for (y=0;yflags[y] = d->flags; wc->dacssrc[y] = -1; } init_waitqueue_head(&wc->regq); if (wctdm_initialize(wc)) { voicebus_release(wc->vb); wc->vb = NULL; kfree(wc); return -EIO; } /* Keep track of which device we are */ pci_set_drvdata(pdev, wc); /* Start the hardware processing. */ if (voicebus_start(wc->vb)) { BUG_ON(1); } /* Now track down what modules are installed */ ret = wctdm_locate_modules(wc); if (-EAGAIN == ret ) { /* The voicebus library increased the latency during * initialization. There is a chance that the hardware is in * an inconsistent state, so lets increase the default latency * and start the initialization over. */ printk(KERN_NOTICE "%s: Restarting board initialization " \ "after increasing latency.\n", wc->board_name); latency = voicebus_current_latency(wc->vb); wctdm_release(wc); goto retry; } /* Final initialization */ wctdm_post_initialize(wc); /* We should be ready for zaptel to come in now. */ if (zt_register(&wc->span, 0)) { printk("Unable to register span with zaptel\n"); return -1; } wc->initialized = 1; printk("Found a Wildcard TDM: %s (%d modules)\n", wc->variety, wc->type); ret = 0; return ret; } static void wctdm_release(struct wctdm *wc) { int i; if (wc->initialized) { zt_unregister(&wc->span); } voicebus_release(wc->vb); wc->vb = NULL; spin_lock(&ifacelock); for (i = 0; i < WC_MAX_IFACES; i++) if (ifaces[i] == wc) break; ifaces[i] = NULL; spin_unlock(&ifacelock); kfree(wc); } static void __devexit wctdm_remove_one(struct pci_dev *pdev) { struct wctdm *wc = pci_get_drvdata(pdev); #ifdef VPM150M_SUPPORT unsigned long flags; struct vpm150m *vpm150m = wc->vpm150m; #endif if (wc) { #ifdef VPM150M_SUPPORT if (vpm150m) { clear_bit(VPM150M_DTMFDETECT, &vpm150m->control); clear_bit(VPM150M_ACTIVE, &vpm150m->control); flush_workqueue(vpm150m->wq); destroy_workqueue(vpm150m->wq); } #endif voicebus_stop(wc->vb); #ifdef VPM150M_SUPPORT if (vpm150m) { spin_lock_irqsave(&wc->reglock, flags); wc->vpm150m = NULL; vpm150m->wc = NULL; spin_unlock_irqrestore(&wc->reglock, flags); kfree(wc->vpm150m); } #endif /* Release span, possibly delayed */ if (!wc->usecount) { wctdm_release(wc); printk("Freed a Wildcard\n"); } else wc->dead = 1; } } static struct pci_device_id wctdm_pci_tbl[] = { { 0xd161, 0x2400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm2400 }, { 0xd161, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm800 }, { 0xd161, 0x8002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex800 }, { 0xd161, 0x8003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex2400 }, { 0xd161, 0x8005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm410 }, { 0xd161, 0x8006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex410 }, { 0 } }; MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl); static struct pci_driver wctdm_driver = { name: "wctdm24xxp", probe: wctdm_init_one, #ifdef LINUX26 remove: __devexit_p(wctdm_remove_one), #else remove: wctdm_remove_one, #endif suspend: NULL, resume: NULL, id_table: wctdm_pci_tbl, }; static int __init wctdm_init(void) { int res; int x; for (x = 0; x < (sizeof(fxo_modes) / sizeof(fxo_modes[0])); x++) { if (!strcmp(fxo_modes[x].name, opermode)) break; } if (x < sizeof(fxo_modes) / sizeof(fxo_modes[0])) { _opermode = x; } else { printk("Invalid/unknown operating mode '%s' specified. Please choose one of:\n", opermode); for (x = 0; x < sizeof(fxo_modes) / sizeof(fxo_modes[0]); x++) printk(" %s\n", fxo_modes[x].name); printk("Note this option is CASE SENSITIVE!\n"); return -ENODEV; } if (!strcmp(opermode, "AUSTRALIA")) { boostringer = 1; fxshonormode = 1; } /* for the voicedaa_check_hook defaults, if the user has not overridden them by specifying them as module parameters, then get the values from the selected operating mode */ if (battdebounce == 0) { battdebounce = fxo_modes[_opermode].battdebounce; } if (battalarm == 0) { battalarm = fxo_modes[_opermode].battalarm; } if (battthresh == 0) { battthresh = fxo_modes[_opermode].battthresh; } res = zap_pci_module(&wctdm_driver); if (res) return -ENODEV; return 0; } static void __exit wctdm_cleanup(void) { pci_unregister_driver(&wctdm_driver); } #ifdef LINUX26 module_param(debug, int, 0600); module_param(fxovoltage, int, 0600); module_param(loopcurrent, int, 0600); module_param(robust, int, 0600); module_param(opermode, charp, 0600); module_param(lowpower, int, 0600); module_param(boostringer, int, 0600); module_param(fastringer, int, 0600); module_param(fxshonormode, int, 0600); module_param(battdebounce, uint, 0600); module_param(battalarm, uint, 0600); module_param(battthresh, uint, 0600); module_param(alawoverride, int, 0600); module_param(nativebridge, int, 0600); module_param(fxotxgain, int, 0600); module_param(fxorxgain, int, 0600); module_param(fxstxgain, int, 0600); module_param(fxsrxgain, int, 0600); module_param(ringdebounce, int, 0600); module_param(fwringdetect, int, 0600); module_param(latency, int, 0600); module_param(neonmwi_monitor, int, 0600); module_param(neonmwi_level, int, 0600); module_param(neonmwi_envelope, int, 0600); module_param(neonmwi_offlimit, int, 0600); #ifdef VPM_SUPPORT module_param(vpmsupport, int, 0600); module_param(vpmdtmfsupport, int, 0600); module_param(dtmfthreshold, int, 0600); module_param(vpmnlptype, int, 0600); module_param(vpmnlpthresh, int, 0600); module_param(vpmnlpmaxsupp, int, 0600); #endif #else MODULE_PARM(debug, "i"); MODULE_PARM(fxovoltage, "i"); MODULE_PARM(loopcurrent, "i"); MODULE_PARM(robust, "i"); MODULE_PARM(opermode, "s"); MODULE_PARM(lowpower, "i"); MODULE_PARM(boostringer, "i"); MODULE_PARM(fastringer, "i"); MODULE_PARM(fxshonormode, "i"); MODULE_PARM(battdebounce, "i"); MODULE_PARM(battalarm, "i"); MODULE_PARM(battthresh, "i"); MODULE_PARM(alawoverride, "i"); MODULE_PARM(nativebridge, "i"); MODULE_PARM(fxotxgain, "i"); MODULE_PARM(fxorxgain, "i"); MODULE_PARM(fxstxgain, "i"); MODULE_PARM(fxsrxgain, "i"); MODULE_PARM(ringdebounce, "i"); MODULE_PARM(fwringdetect, "i"); MODULE_PARM(neonmwi_monitor, "i"); MODULE_PARM(neonmwi_level, "i"); MODULE_PARM(neonmwi_envelope, "i"); MODULE_PARM(neonmwi_offlimit, "i"); #ifdef VPM_SUPPORT MODULE_PARM(vpmsupport, "i"); MODULE_PARM(vpmdtmfsupport, "i"); MODULE_PARM(dtmfthreshold, "i"); MODULE_PARM(vpmnlptype, "i"); MODULE_PARM(vpmnlpthresh, "i"); MODULE_PARM(vpmnlpmaxsupp, "i"); #endif #endif MODULE_DESCRIPTION("Wildcard TDM2400P/TDM800P Zaptel Driver"); MODULE_AUTHOR("Mark Spencer "); #if defined(MODULE_ALIAS) MODULE_ALIAS("wctdm8xxp"); #endif #ifdef MODULE_LICENSE MODULE_LICENSE("GPL"); #endif module_init(wctdm_init); module_exit(wctdm_cleanup);