/* * Wilcard X100P FXO Interface Driver for Zapata Telephony interface * * Written by Mark Spencer * Matthew Fredrickson * * Copyright (C) 2001, Linux Support Services, Inc. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include #include #ifdef STANDALONE_ZAPATA #include "zaptel.h" #else #include #endif #ifdef LINUX26 #include #endif /* Uncomment to enable tasklet handling in the FXO driver. Not recommended in general, but may improve interactive performance */ /* #define ENABLE_TASKLETS */ /* Un-comment the following for POTS line support for Japan */ /* #define JAPAN */ /* Un-comment for lines (eg from and ISDN TA) that remove */ /* phone power during ringing */ /* #define ZERO_BATT_RING */ #define WC_MAX_IFACES 128 #define WC_CNTL 0x00 #define WC_OPER 0x01 #define WC_AUXC 0x02 #define WC_AUXD 0x03 #define WC_MASK0 0x04 #define WC_MASK1 0x05 #define WC_INTSTAT 0x06 #define WC_DMAWS 0x08 #define WC_DMAWI 0x0c #define WC_DMAWE 0x10 #define WC_DMARS 0x18 #define WC_DMARI 0x1c #define WC_DMARE 0x20 #define WC_AUXFUNC 0x2b #define WC_SERCTL 0x2d #define WC_FSCDELAY 0x2f #define FLAG_EMPTY 0 #define FLAG_WRITE 1 #define FLAG_READ 2 #ifdef ZERO_BATT_RING /* Need to debounce Off/On hook too */ #define JAPAN #endif #define RING_DEBOUNCE 64 /* Ringer Debounce (in ms) */ #ifdef JAPAN #define BATT_DEBOUNCE 30 /* Battery debounce (in ms) */ #define OH_DEBOUNCE 350 /* Off/On hook debounce (in ms) */ #else #define BATT_DEBOUNCE 80 /* Battery debounce (in ms) */ #endif #define MINPEGTIME 10 * 8 /* 30 ms peak to peak gets us no more than 100 Hz */ #define PEGTIME 50 * 8 /* 50ms peak to peak gets us rings of 10 Hz or more */ #define PEGCOUNT 5 /* 5 cycles of pegging means RING */ struct reg { unsigned long flags; unsigned char index; unsigned char reg; unsigned char value; }; static int wecareregs[] = { 5, 6, 9, 11, 12, 13, 17, 19, }; struct wcfxo { struct pci_dev *dev; char *variety; struct zt_span span; struct zt_chan chan; int usecount; int dead; int pos; unsigned long flags; int freeregion; int ring; int offhook; int battery; int wregcount; int readpos; int rreadpos; unsigned int pegtimer; int pegcount; int peg; int battdebounce; int nobatttimer; int ringdebounce; #ifdef JAPAN int ohdebounce; #endif int allread; int regoffset; /* How far off our registers are from what we expect */ int alt; int ignoreread; int reset; /* Up to 6 register can be written at a time */ struct reg regs[ZT_CHUNKSIZE]; struct reg oldregs[ZT_CHUNKSIZE]; unsigned char lasttx[ZT_CHUNKSIZE]; /* Up to 32 registers of whatever we most recently read */ unsigned char readregs[32]; unsigned long ioaddr; dma_addr_t readdma; dma_addr_t writedma; volatile int *writechunk; /* Double-word aligned write memory */ volatile int *readchunk; /* Double-word aligned read memory */ #ifdef ZERO_BATT_RING int onhook; #endif #ifdef ENABLE_TASKLETS int taskletrun; int taskletsched; int taskletpending; int taskletexec; int txerrors; int ints; struct tasklet_struct wcfxo_tlet; #endif }; #define FLAG_INVERTSER (1 << 0) #define FLAG_USE_XTAL (1 << 1) #define FLAG_DOUBLE_CLOCK (1 << 2) #define FLAG_RESET_ON_AUX5 (1 << 3) struct wcfxo_desc { char *name; unsigned long flags; }; static struct wcfxo_desc wcx100p = { "Wildcard X100P", FLAG_INVERTSER | FLAG_USE_XTAL | FLAG_DOUBLE_CLOCK }; static struct wcfxo_desc wcx101p = { "Wildcard X101P", FLAG_USE_XTAL | FLAG_DOUBLE_CLOCK }; static struct wcfxo_desc generic = { "Generic Clone", FLAG_USE_XTAL | FLAG_DOUBLE_CLOCK }; static struct wcfxo *ifaces[WC_MAX_IFACES]; static void wcfxo_release(struct wcfxo *wc); static int debug = 0; static int monitor = 0; static int quiet = 0; static int boost = 0; static int opermode = 0; static struct fxo_mode { char *name; int ohs; int act; int dct; int rz; int rt; int lim; int vol; } fxo_modes[] = { { "FCC", 0, 0, 2, 0, 0, 0, 0 }, /* US */ { "CTR21", 0, 0, 3, 0, 0, 3, 0 }, /* Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and UK */ }; static inline void wcfxo_transmitprep(struct wcfxo *wc, unsigned char ints) { volatile int *writechunk; int x; int written=0; unsigned short cmd; /* if nothing to transmit, have to do the zt_transmit() anyway */ if (!(ints & 3)) { /* Calculate Transmission */ zt_transmit(&wc->span); return; } /* Remember what it was we just sent */ memcpy(wc->lasttx, wc->chan.writechunk, ZT_CHUNKSIZE); if (ints & 0x01) { /* Write is at interrupt address. Start writing from normal offset */ writechunk = wc->writechunk; } else { writechunk = wc->writechunk + ZT_CHUNKSIZE * 2; } zt_transmit(&wc->span); for (x=0;xflags & FLAG_INVERTSER) writechunk[x << 1] = cpu_to_le32( ~((unsigned short)(ZT_XLAW(wc->chan.writechunk[x], (&wc->chan)))| 0x1) << 16 ); else writechunk[x << 1] = cpu_to_le32( ((unsigned short)(ZT_XLAW(wc->chan.writechunk[x], (&wc->chan)))| 0x1) << 16 ); /* We always have a command to follow our signal */ if (!wc->regs[x].flags) { /* Fill in an empty register command with a read for a potentially useful register */ wc->regs[x].flags = FLAG_READ; wc->regs[x].reg = wecareregs[wc->readpos]; wc->regs[x].index = wc->readpos; wc->readpos++; if (wc->readpos >= (sizeof(wecareregs) / sizeof(wecareregs[0]))) { wc->allread = 1; wc->readpos = 0; } } /* Prepare the command to follow it */ switch(wc->regs[x].flags) { case FLAG_READ: cmd = (wc->regs[x].reg | 0x20) << 8; break; case FLAG_WRITE: cmd = (wc->regs[x].reg << 8) | (wc->regs[x].value & 0xff); written = 1; /* Wait at least four samples before reading */ wc->ignoreread = 4; break; default: printk("wcfxo: Huh? No read or write??\n"); cmd = 0; } /* Setup the write chunk */ if (wc->flags & FLAG_INVERTSER) writechunk[(x << 1) + 1] = cpu_to_le32(~(cmd << 16)); else writechunk[(x << 1) + 1] = cpu_to_le32(cmd << 16); } if (written) wc->readpos = 0; wc->wregcount = 0; for (x=0;xoldregs[x] = wc->regs[x]; wc->regs[x].flags = FLAG_EMPTY; } } static inline void wcfxo_receiveprep(struct wcfxo *wc, unsigned char ints) { volatile int *readchunk; int x; int realreg; int realval; int sample; if (ints & 0x04) /* Read is at interrupt address. Valid data is available at normal offset */ readchunk = wc->readchunk; else readchunk = wc->readchunk + ZT_CHUNKSIZE * 2; /* Keep track of how quickly our peg alternates */ wc->pegtimer+=ZT_CHUNKSIZE; for (x=0;xoldregs[x].flags == FLAG_READ && !wc->ignoreread) { realreg = wecareregs[(wc->regs[x].index + wc->regoffset) % (sizeof(wecareregs) / sizeof(wecareregs[0]))]; realval = (le32_to_cpu(readchunk[(x << 1) +wc->alt]) >> 16) & 0xff; if ((realval == 0x89) && (realreg != 0x9)) { /* Some sort of slippage, correct for it */ while(realreg != 0x9) { /* Find register 9 */ realreg = wecareregs[(wc->regs[x].index + ++wc->regoffset) % (sizeof(wecareregs) / sizeof(wecareregs[0]))]; wc->regoffset = wc->regoffset % (sizeof(wecareregs) / sizeof(wecareregs[0])); } if (debug) printk("New regoffset: %d\n", wc->regoffset); } /* Receive into the proper register */ wc->readregs[realreg] = realval; } /* Look for pegging to indicate ringing */ sample = (short)(le32_to_cpu(readchunk[(x << 1) + (1 - wc->alt)]) >> 16); if ((sample > 32000) && (wc->peg != 1)) { if ((wc->pegtimer < PEGTIME) && (wc->pegtimer > MINPEGTIME)) wc->pegcount++; wc->pegtimer = 0; wc->peg = 1; } else if ((sample < -32000) && (wc->peg != -1)) { if ((wc->pegtimer < PEGTIME) && (wc->pegtimer > MINPEGTIME)) wc->pegcount++; wc->pegtimer = 0; wc->peg = -1; } wc->chan.readchunk[x] = ZT_LIN2X((sample), (&wc->chan)); } if (wc->pegtimer > PEGTIME) { /* Reset pegcount if our timer expires */ wc->pegcount = 0; } /* Decrement debouncer if appropriate */ if (wc->ringdebounce) wc->ringdebounce--; if (!wc->offhook && !wc->ringdebounce) { if (!wc->ring && (wc->pegcount > PEGCOUNT)) { /* It's ringing */ if (debug) printk("RING!\n"); zt_hooksig(&wc->chan, ZT_RXSIG_RING); wc->ring = 1; } if (wc->ring && !wc->pegcount) { /* No more ring */ if (debug) printk("NO RING!\n"); zt_hooksig(&wc->chan, ZT_RXSIG_OFFHOOK); wc->ring = 0; } } if (wc->ignoreread) wc->ignoreread--; /* Do the echo cancellation... We are echo cancelling against what we sent two chunks ago*/ zt_ec_chunk(&wc->chan, wc->chan.readchunk, wc->lasttx); /* Receive the result */ zt_receive(&wc->span); } #ifdef ENABLE_TASKLETS static void wcfxo_tasklet(unsigned long data) { struct wcfxo *wc = (struct wcfxo *)data; wc->taskletrun++; /* Run tasklet */ if (wc->taskletpending) { wc->taskletexec++; wcfxo_receiveprep(wc, wc->ints); wcfxo_transmitprep(wc, wc->ints); } wc->taskletpending = 0; } #endif static void wcfxo_stop_dma(struct wcfxo *wc); static void wcfxo_restart_dma(struct wcfxo *wc); #ifdef LINUX26 static irqreturn_t wcfxo_interrupt(int irq, void *dev_id, struct pt_regs *regs) #else static void wcfxo_interrupt(int irq, void *dev_id, struct pt_regs *regs) #endif { struct wcfxo *wc = dev_id; unsigned char ints; unsigned char b; #ifdef DEBUG_RING static int oldb = 0; static int oldcnt = 0; #endif ints = inb(wc->ioaddr + WC_INTSTAT); outb(ints, wc->ioaddr + WC_INTSTAT); if (!ints) #ifdef LINUX26 return IRQ_NONE; #else return; #endif if (ints & 0x0c) { /* if there is a rx interrupt pending */ #ifdef ENABLE_TASKLETS wc->ints = ints; if (!wc->taskletpending) { wc->taskletpending = 1; wc->taskletsched++; tasklet_hi_schedule(&wc->wcfxo_tlet); } else wc->txerrors++; #else wcfxo_receiveprep(wc, ints); /* transmitprep looks to see if there is anything to transmit and returns by itself if there is nothing */ wcfxo_transmitprep(wc, ints); #endif } if (ints & 0x10) { printk("FXO PCI Master abort\n"); /* Stop DMA andlet the watchdog start it again */ wcfxo_stop_dma(wc); #ifdef LINUX26 return IRQ_RETVAL(1); #else return; #endif } if (ints & 0x20) { printk("PCI Target abort\n"); #ifdef LINUX26 return IRQ_RETVAL(1); #else return; #endif } if (1 /* !(wc->report % 0xf) */) { /* Check for BATTERY from register and debounce for 8 ms */ b = wc->readregs[0xc] & 0xf; if (!b) { wc->nobatttimer++; #if 0 if (wc->battery) printk("Battery loss: %d (%d debounce)\n", b, wc->battdebounce); #endif if (wc->battery && !wc->battdebounce) { if (debug) printk("NO BATTERY!\n"); wc->battery = 0; #ifdef JAPAN if ((!wc->ohdebounce) && wc->offhook) { zt_hooksig(&wc->chan, ZT_RXSIG_ONHOOK); if (debug) printk("Signalled On Hook\n"); #ifdef ZERO_BATT_RING wc->onhook++; #endif } #else zt_hooksig(&wc->chan, ZT_RXSIG_ONHOOK); #endif wc->battdebounce = BATT_DEBOUNCE; } else if (!wc->battery) wc->battdebounce = BATT_DEBOUNCE; if ((wc->nobatttimer > 5000) && #ifdef ZERO_BATT_RING !(wc->readregs[0x05] & 0x04) && #endif (!wc->span.alarms)) { wc->span.alarms = ZT_ALARM_RED; zt_alarm_notify(&wc->span); } } else if (b == 0xf) { if (!wc->battery && !wc->battdebounce) { if (debug) printk("BATTERY!\n"); #ifdef ZERO_BATT_RING if (wc->onhook) { wc->onhook = 0; zt_hooksig(&wc->chan, ZT_RXSIG_OFFHOOK); if (debug) printk("Signalled Off Hook\n"); } #else zt_hooksig(&wc->chan, ZT_RXSIG_OFFHOOK); #endif wc->battery = 1; wc->nobatttimer = 0; wc->battdebounce = BATT_DEBOUNCE; if (wc->span.alarms) { wc->span.alarms = 0; zt_alarm_notify(&wc->span); } } else if (wc->battery) wc->battdebounce = BATT_DEBOUNCE; } else { /* It's something else... */ wc->battdebounce = BATT_DEBOUNCE; } if (wc->battdebounce) wc->battdebounce--; #ifdef JAPAN if (wc->ohdebounce) wc->ohdebounce--; #endif } #ifdef LINUX26 return IRQ_RETVAL(1); #endif } static int wcfxo_setreg(struct wcfxo *wc, unsigned char reg, unsigned char value) { int x; if (wc->wregcount < ZT_CHUNKSIZE) { x = wc->wregcount; wc->regs[x].reg = reg; wc->regs[x].value = value; wc->regs[x].flags = FLAG_WRITE; wc->wregcount++; return 0; } printk("wcfxo: Out of space to write register %02x with %02x\n", reg, value); return -1; } static int wcfxo_open(struct zt_chan *chan) { struct wcfxo *wc = chan->pvt; if (wc->dead) return -ENODEV; wc->usecount++; #ifndef LINUX26 MOD_INC_USE_COUNT; #endif return 0; } static int wcfxo_watchdog(struct zt_span *span, int event) { printk("FXO: Restarting DMA\n"); wcfxo_restart_dma(span->pvt); return 0; } static int wcfxo_close(struct zt_chan *chan) { struct wcfxo *wc = chan->pvt; wc->usecount--; #ifndef LINUX26 MOD_DEC_USE_COUNT; #endif /* If we're dead, release us now */ if (!wc->usecount && wc->dead) wcfxo_release(wc); return 0; } static int wcfxo_hooksig(struct zt_chan *chan, zt_txsig_t txsig) { struct wcfxo *wc = chan->pvt; int reg=0; switch(txsig) { case ZT_TXSIG_START: case ZT_TXSIG_OFFHOOK: /* Take off hook and enable normal mode reception. This must be done in two steps because of a hardware bug. */ reg = wc->readregs[0x5] & ~0x08; wcfxo_setreg(wc, 0x5, reg); reg = reg | 0x1; wcfxo_setreg(wc, 0x5, reg); wc->offhook = 1; #ifdef JAPAN wc->battery = 1; wc->battdebounce = BATT_DEBOUNCE; wc->ohdebounce = OH_DEBOUNCE; #endif break; case ZT_TXSIG_ONHOOK: /* Put on hook and enable on hook line monitor */ reg = wc->readregs[0x5] & 0xfe; wcfxo_setreg(wc, 0x5, reg); reg = reg | 0x08; wcfxo_setreg(wc, 0x5, reg); wc->offhook = 0; /* Don't accept a ring for another 1000 ms */ wc->ringdebounce = 1000; #ifdef JAPAN wc->ohdebounce = OH_DEBOUNCE; #endif break; default: printk("wcfxo: Can't set tx state to %d\n", txsig); } if (debug) printk("Setting hook state to %d (%02x)\n", txsig, reg); return 0; } static int wcfxo_initialize(struct wcfxo *wc) { /* Zapata stuff */ sprintf(wc->span.name, "WCFXO/%d", wc->pos); sprintf(wc->span.desc, "%s Board %d", wc->variety, wc->pos + 1); sprintf(wc->chan.name, "WCFXO/%d/%d", wc->pos, 0); wc->chan.sigcap = ZT_SIG_FXSKS | ZT_SIG_FXSLS | ZT_SIG_SF; wc->chan.chanpos = 1; wc->span.chans = &wc->chan; wc->span.channels = 1; wc->span.hooksig = wcfxo_hooksig; wc->span.open = wcfxo_open; wc->span.close = wcfxo_close; wc->span.flags = ZT_FLAG_RBS; wc->span.deflaw = ZT_LAW_MULAW; wc->span.watchdog = wcfxo_watchdog; #ifdef ENABLE_TASKLETS tasklet_init(&wc->wcfxo_tlet, wcfxo_tasklet, (unsigned long)wc); #endif init_waitqueue_head(&wc->span.maintq); wc->span.pvt = wc; wc->chan.pvt = wc; if (zt_register(&wc->span, 0)) { printk("Unable to register span with zaptel\n"); return -1; } return 0; } static int wcfxo_hardware_init(struct wcfxo *wc) { /* Hardware stuff */ /* Reset PCI Interface chip and registers */ outb(0x0e, wc->ioaddr + WC_CNTL); if (wc->flags & FLAG_RESET_ON_AUX5) { /* Set hook state to on hook for when we switch. Make sure reset is high */ outb(0x34, wc->ioaddr + WC_AUXD); } else { /* Set hook state to on hook for when we switch */ outb(0x24, wc->ioaddr + WC_AUXD); } /* Set all to outputs except AUX 4, which is an input */ outb(0xef, wc->ioaddr + WC_AUXC); /* Back to normal, with automatic DMA wrap around */ outb(0x01, wc->ioaddr + WC_CNTL); /* Make sure serial port and DMA are out of reset */ outb(inb(wc->ioaddr + WC_CNTL) & 0xf9, WC_CNTL); /* Configure serial port for MSB->LSB operation */ if (wc->flags & FLAG_DOUBLE_CLOCK) outb(0xc1, wc->ioaddr + WC_SERCTL); else outb(0xc0, wc->ioaddr + WC_SERCTL); if (wc->flags & FLAG_USE_XTAL) { /* Use the crystal oscillator */ outb(0x04, wc->ioaddr + WC_AUXFUNC); } /* Delay FSC by 2 so it's properly aligned */ outb(0x2, wc->ioaddr + WC_FSCDELAY); /* Setup DMA Addresses */ outl(wc->writedma, wc->ioaddr + WC_DMAWS); /* Write start */ outl(wc->writedma + ZT_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMAWI); /* Middle (interrupt) */ outl(wc->writedma + ZT_CHUNKSIZE * 16 - 4, wc->ioaddr + WC_DMAWE); /* End */ outl(wc->readdma, wc->ioaddr + WC_DMARS); /* Read start */ outl(wc->readdma + ZT_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMARI); /* Middle (interrupt) */ outl(wc->readdma + ZT_CHUNKSIZE * 16 - 4, wc->ioaddr + WC_DMARE); /* End */ /* Clear interrupts */ outb(0xff, wc->ioaddr + WC_INTSTAT); return 0; } static void wcfxo_enable_interrupts(struct wcfxo *wc) { /* Enable interrupts (we care about all of them) */ outb(0x3f, wc->ioaddr + WC_MASK0); /* No external interrupts */ outb(0x00, wc->ioaddr + WC_MASK1); } static void wcfxo_start_dma(struct wcfxo *wc) { /* Reset Master and TDM */ outb(0x0f, wc->ioaddr + WC_CNTL); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1); outb(0x01, wc->ioaddr + WC_CNTL); outb(0x01, wc->ioaddr + WC_OPER); } static void wcfxo_restart_dma(struct wcfxo *wc) { /* Reset Master and TDM */ outb(0x01, wc->ioaddr + WC_CNTL); outb(0x01, wc->ioaddr + WC_OPER); } static void wcfxo_stop_dma(struct wcfxo *wc) { outb(0x00, wc->ioaddr + WC_OPER); } static void wcfxo_reset_tdm(struct wcfxo *wc) { /* Reset TDM */ outb(0x0f, wc->ioaddr + WC_CNTL); } static void wcfxo_disable_interrupts(struct wcfxo *wc) { outb(0x00, wc->ioaddr + WC_MASK0); outb(0x00, wc->ioaddr + WC_MASK1); } static int wcfxo_set_daa_mode(struct wcfxo *wc) { /* Set country specific parameters (OHS, ACT, DCT, RZ, RT, LIM, VOL) */ int reg16 = ((fxo_modes[opermode].ohs & 0x1) << 6) | ((fxo_modes[opermode].act & 0x1) << 5) | ((fxo_modes[opermode].dct & 0x3) << 2) | ((fxo_modes[opermode].rz & 0x1) << 1) | ((fxo_modes[opermode].rt & 0x1) << 0); int reg17 = ((fxo_modes[opermode].lim & 0x3) << 3); int reg18 = ((fxo_modes[opermode].vol & 0x3) << 3); wcfxo_setreg(wc, 0x16, reg16); wcfxo_setreg(wc, 0x17, reg17); wcfxo_setreg(wc, 0x18, reg18); /* Wait a couple of jiffies for our writes to finish */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1 + (ZT_CHUNKSIZE * HZ) / 800); printk("wcfxo: DAA mode is '%s'\n", fxo_modes[opermode].name); return 0; } static int wcfxo_init_daa(struct wcfxo *wc) { /* This must not be called in an interrupt */ /* We let things settle for a bit */ unsigned char reg15; // set_current_state(TASK_INTERRUPTIBLE); // schedule_timeout(10); /* Soft-reset it */ wcfxo_setreg(wc, 0x1, 0x80); /* Let the reset go */ set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(1 + (ZT_CHUNKSIZE * HZ) / 800); /* We have a clock at 18.432 Mhz, so N1=1, M1=2, CGM=0 */ wcfxo_setreg(wc, 0x7, 0x0); /* This value is N1 - 1 */ wcfxo_setreg(wc, 0x8, 0x1); /* This value is M1 - 1 */ /* We want to sample at 8khz, so N2 = 9, M2 = 10 (N2-1, M2-1) */ wcfxo_setreg(wc, 0x9, 0x89); /* Wait until the PLL's are locked. Time is between 100 uSec and 1 mSec */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1 + HZ/1000 + (ZT_CHUNKSIZE * HZ) / 800); /* No additional ration is applied to the PLL and faster lock times * are possible */ wcfxo_setreg(wc, 0xa, 0x0); /* Enable off hook pin */ wcfxo_setreg(wc, 0x5, 0x0a); if (monitor) { /* Enable ISOcap and external speaker and charge pump if present */ wcfxo_setreg(wc, 0x6, 0x80); } else { /* Enable ISOcap and charge pump if present (leave speaker disabled) */ wcfxo_setreg(wc, 0x6, 0xe0); } /* Wait a couple of jiffies for our writes to finish */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1 + (ZT_CHUNKSIZE * HZ) / 800); reg15 = 0x0; /* Go ahead and attenuate transmit signal by 6 db */ if (quiet) { printk("wcfxo: Attenuating transmit signal for quiet operation\n"); reg15 |= (quiet & 0x3) << 4; } if (boost) { printk("wcfxo: Boosting receive signal\n"); reg15 |= (boost & 0x3); } wcfxo_setreg(wc, 0xf, reg15); /* Didn't get it right. Register 9 is still garbage */ if (wc->readregs[0x9] != 0x89) return -1; #if 0 { int x; int y; for (y=0;y<100;y++) { printk(" reg dump ====== %d ======\n", y); for (x=0;xreadregs[wecareregs[x]]); } set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(100); } } #endif return 0; } static int __devinit wcfxo_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int res; struct wcfxo *wc; struct wcfxo_desc *d = (struct wcfxo_desc *)ent->driver_data; int x; for (x=0;x= WC_MAX_IFACES) { printk("Too many interfaces\n"); return -EIO; } if (pci_enable_device(pdev)) { res = -EIO; } else { wc = kmalloc(sizeof(struct wcfxo), GFP_KERNEL); if (wc) { ifaces[x] = wc; memset(wc, 0, sizeof(struct wcfxo)); wc->ioaddr = pci_resource_start(pdev, 0); wc->dev = pdev; wc->pos = x; wc->variety = d->name; wc->flags = d->flags; /* Keep track of whether we need to free the region */ if (request_region(wc->ioaddr, 0xff, "wcfxo")) wc->freeregion = 1; /* Allocate enough memory for two zt chunks, receive and transmit. Each sample uses 32 bits. Allocate an extra set just for control too */ wc->writechunk = (int *)pci_alloc_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, &wc->writedma); if (!wc->writechunk) { printk("wcfxo: Unable to allocate DMA-able memory\n"); if (wc->freeregion) release_region(wc->ioaddr, 0xff); return -ENOMEM; } wc->readchunk = wc->writechunk + ZT_MAX_CHUNKSIZE * 4; /* in doublewords */ wc->readdma = wc->writedma + ZT_MAX_CHUNKSIZE * 16; /* in bytes */ if (wcfxo_initialize(wc)) { printk("wcfxo: Unable to intialize modem\n"); if (wc->freeregion) release_region(wc->ioaddr, 0xff); kfree(wc); return -EIO; } /* Enable bus mastering */ pci_set_master(pdev); /* Keep track of which device we are */ pci_set_drvdata(pdev, wc); if (request_irq(pdev->irq, wcfxo_interrupt, SA_SHIRQ, "wcfxo", wc)) { printk("wcfxo: Unable to request IRQ %d\n", pdev->irq); if (wc->freeregion) release_region(wc->ioaddr, 0xff); kfree(wc); return -EIO; } wcfxo_hardware_init(wc); /* Enable interrupts */ wcfxo_enable_interrupts(wc); /* Initialize Write/Buffers to all blank data */ memset((void *)wc->writechunk,0,ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * 4); /* Start DMA */ wcfxo_start_dma(wc); /* Initialize DAA (after it's started) */ if (wcfxo_init_daa(wc)) { printk("Failed to initailize DAA, giving up...\n"); wcfxo_stop_dma(wc); wcfxo_disable_interrupts(wc); zt_unregister(&wc->span); free_irq(pdev->irq, wc); /* Reset PCI chip and registers */ outb(0x0e, wc->ioaddr + WC_CNTL); if (wc->freeregion) release_region(wc->ioaddr, 0xff); kfree(wc); return -EIO; } wcfxo_set_daa_mode(wc); printk("Found a Wildcard FXO: %s\n", wc->variety); res = 0; } else res = -ENOMEM; } return res; } static void wcfxo_release(struct wcfxo *wc) { zt_unregister(&wc->span); if (wc->freeregion) release_region(wc->ioaddr, 0xff); kfree(wc); printk("Freed a Wildcard\n"); } static void __devexit wcfxo_remove_one(struct pci_dev *pdev) { struct wcfxo *wc = pci_get_drvdata(pdev); if (wc) { /* Stop any DMA */ wcfxo_stop_dma(wc); wcfxo_reset_tdm(wc); /* In case hardware is still there */ wcfxo_disable_interrupts(wc); /* Immediately free resources */ pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma); free_irq(pdev->irq, wc); /* Reset PCI chip and registers */ outb(0x0e, wc->ioaddr + WC_CNTL); /* Release span, possibly delayed */ if (!wc->usecount) wcfxo_release(wc); else wc->dead = 1; } } static struct pci_device_id wcfxo_pci_tbl[] = { { 0xe159, 0x0001, 0x8085, PCI_ANY_ID, 0, 0, (unsigned long) &wcx101p }, { 0xe159, 0x0001, 0x8086, PCI_ANY_ID, 0, 0, (unsigned long) &generic }, { 0xe159, 0x0001, 0x8087, PCI_ANY_ID, 0, 0, (unsigned long) &generic }, { 0x1057, 0x5608, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcx100p }, { 0 } }; MODULE_DEVICE_TABLE (pci, wcfxo_pci_tbl); static struct pci_driver wcfxo_driver = { name: "wcfxo", probe: wcfxo_init_one, #ifdef LINUX26 remove: __devexit_p(wcfxo_remove_one), #else remove: wcfxo_remove_one, #endif id_table: wcfxo_pci_tbl, }; static int __init wcfxo_init(void) { int res; int x; if ((opermode >= sizeof(fxo_modes) / sizeof(fxo_modes[0])) || (opermode < 0)) { printk("Invalid/unknown operating mode specified. Please choose one of:\n"); for (x=0;x"); #ifdef MODULE_LICENSE MODULE_LICENSE("GPL"); #endif module_init(wcfxo_init); module_exit(wcfxo_cleanup);