/* * TE410P Quad-T1/E1 PCI Driver version 0.1, 12/16/02 * * Written by Mark Spencer * Based on previous works, designs, and archetectures conceived and * written by Jim Dixon . * * Copyright (C) 2001 Jim Dixon / Zapata Telephony. * Copyright (C) 2001, Linux Support Services, Inc. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include #ifdef STANDALONE_ZAPATA #include "zaptel.h" #else #include #endif #ifdef LINUX26 #include #endif #include "wct4xxp.h" /* * Tasklets provide better system interactive response at the cost of the * possibility of losing a frame of data at very infrequent intervals. If * you are more concerned with the performance of your machine, enable the * tasklets. If you are strict about absolutely no drops, then do not enable * tasklets. */ /* #define ENABLE_TASKLETS */ /* Define to get more attention-grabbing but slightly more I/O using alarm status */ #define FANCY_ALARM static int debug; static int timingcable; static int highestorder; static int t1e1override = -1; static int loopback = 0; static int alarmdebounce = 0; static int noburst = 0; #ifdef FANCY_ALARM static int altab[] = { 0, 0, 0, 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 20, 22, 24, 25, 27, 28, 29, 30, 31, 31, 32, 31, 31, 30, 29, 28, 27, 25, 23, 22, 20, 18, 16, 13, 11, 9, 8, 6, 4, 3, 2, 1, 0, 0, }; #endif #define MAX_SPANS 16 #define FLAG_STARTED (1 << 0) #define FLAG_NMF (1 << 1) #define FLAG_SENDINGYELLOW (1 << 2) #define TYPE_T1 1 /* is a T1 card */ #define TYPE_E1 2 /* is an E1 card */ #define CANARY 0xc0de static int inirq = 0; struct t4 { /* This structure exists one per card */ struct pci_dev *dev; /* Pointer to PCI device */ int intcount; int num; /* Which card we are */ int t1e1; /* T1/E1 select pins */ int globalconfig; /* Whether global setup has been done */ int syncsrc; /* active sync source */ int syncs[4]; /* sync sources */ int psyncs[4]; /* span-relative sync sources */ int alarmtimer[4]; /* Alarm timer */ int redalarms[4]; int blinktimer; int alarmcount[4]; /* How much red alarm we've seen */ #ifdef FANCY_ALARM int alarmpos; #endif int irq; /* IRQ used by device */ int order; /* Order */ int flags; /* Device flags */ int spanflags[4]; /* Span flags */ int syncpos[4]; /* span-relative sync sources */ int master; /* Are we master */ int ledreg; /* LED Register */ int e1check[4]; /* E1 check */ unsigned int dmactrl; int e1recover; /* E1 recovery timer */ dma_addr_t readdma; dma_addr_t writedma; unsigned long memaddr; /* Base address of card */ unsigned long memlen; volatile unsigned int *membase; /* Base address of card */ struct zt_span spans[4]; /* Spans */ struct zt_chan *chans[4]; /* Pointers to blocks of 24(30/31) contiguous zt_chans for each span */ unsigned char txsigs[4][16]; /* Copy of tx sig registers */ int loopupcnt[4]; /* loop up code counter */ int loopdowncnt[4]; /* loop down code counter */ int spansstarted; /* number of spans started */ /* spinlock_t lock; */ /* lock context */ spinlock_t reglock; /* lock register access */ unsigned char ec_chunk1[4][31][ZT_CHUNKSIZE]; /* first EC chunk buffer */ unsigned char ec_chunk2[4][31][ZT_CHUNKSIZE]; /* second EC chunk buffer */ volatile unsigned int *writechunk; /* Double-word aligned write memory */ volatile unsigned int *readchunk; /* Double-word aligned read memory */ unsigned short canary; #ifdef ENABLE_TASKLETS int taskletrun; int taskletsched; int taskletpending; int taskletexec; int txerrors; struct tasklet_struct t4xxp_tlet; #endif int spantype[4]; /* card type, T1 or E1 */ unsigned int passno; /* number of interrupt passes */ char *variety; int last0; /* for detecting double-missed IRQ */ int checktiming; /* Set >0 to cause the timing source to be checked */ }; static void __set_clear(struct t4 *wc, int span); static int t4_startup(struct zt_span *span); static int t4_shutdown(struct zt_span *span); static int t4_rbsbits(struct zt_chan *chan, int bits); static int t4_maint(struct zt_span *span, int cmd); static int t4_reset_dma(struct t4 *wc); static int t4_ioctl(struct zt_chan *chan, unsigned int cmd, unsigned long data); static void __t4_set_timing_source(struct t4 *wc, int unit); #define WC_RDADDR 0 #define WC_WRADDR 1 #define WC_COUNT 2 #define WC_DMACTRL 3 #define WC_INTR 4 /* #define WC_GPIO 5 */ #define WC_VERSION 6 #define WC_LEDS 7 #define WC_ACTIVATE (1 << 12) #define WC_GPIOCTL 8 #define WC_GPIO 9 #define WC_LADDR 10 #define WC_LDATA 11 #define WC_LREAD (1 << 15) #define WC_LWRITE (1 << 16) #define WC_OFF (0) #define WC_RED (1) #define WC_GREEN (2) #define WC_YELLOW (3) #define MAX_T4_CARDS 64 #ifdef ENABLE_TASKLETS static void t4_tasklet(unsigned long data); #endif static struct t4 *cards[MAX_T4_CARDS]; static inline void __t4_pci_out(struct t4 *wc, const unsigned int addr, const unsigned int value) { unsigned int tmp; wc->membase[addr] = value; #if 1 tmp = wc->membase[addr]; if ((value != tmp) && (addr != WC_LEDS) && (addr != WC_LDATA) && (addr != WC_GPIO) && (addr != WC_INTR)) printk("Tried to load %08x into %08x, but got %08x instead\n", value, addr, tmp); #endif } static inline unsigned int __t4_pci_in(struct t4 *wc, const unsigned int addr) { return wc->membase[addr]; } static inline void t4_pci_out(struct t4 *wc, const unsigned int addr, const unsigned int value) { unsigned long flags; spin_lock_irqsave(&wc->reglock, flags); __t4_pci_out(wc, addr, value); spin_unlock_irqrestore(&wc->reglock, flags); } static inline void __t4_set_led(struct t4 *wc, int span, int color) { int oldreg = wc->ledreg; wc->ledreg &= ~(0x3 << (span << 1)); wc->ledreg |= (color << (span << 1)); if (oldreg != wc->ledreg) __t4_pci_out(wc, WC_LEDS, wc->ledreg); } static inline void t4_activate(struct t4 *wc) { wc->ledreg |= WC_ACTIVATE; t4_pci_out(wc, WC_LEDS, wc->ledreg); } static inline unsigned int t4_pci_in(struct t4 *wc, const unsigned int addr) { unsigned int ret; unsigned long flags; spin_lock_irqsave(&wc->reglock, flags); ret = __t4_pci_in(wc, addr); spin_unlock_irqrestore(&wc->reglock, flags); return ret; } static inline unsigned int __t4_framer_in(struct t4 *wc, int unit, const unsigned int addr) { unsigned int ret; unit &= 0x3; __t4_pci_out(wc, WC_LADDR, (unit << 8) | (addr & 0xff)); __t4_pci_out(wc, WC_LADDR, (unit << 8) | (addr & 0xff) | ( 1 << 10) | WC_LREAD); ret = __t4_pci_in(wc, WC_LDATA); __t4_pci_out(wc, WC_LADDR, 0); return ret & 0xff; } static inline unsigned int t4_framer_in(struct t4 *wc, int unit, const unsigned int addr) { unsigned long flags; unsigned int ret; spin_lock_irqsave(&wc->reglock, flags); ret = __t4_framer_in(wc, unit, addr); spin_unlock_irqrestore(&wc->reglock, flags); return ret; } static inline void __t4_framer_out(struct t4 *wc, int unit, const unsigned int addr, const unsigned int value) { unit &= 0x3; if (debug) printk("Writing %02x to address %02x of unit %d\n", value, addr, unit); __t4_pci_out(wc, WC_LADDR, (unit << 8) | (addr & 0xff)); __t4_pci_out(wc, WC_LDATA, value); __t4_pci_out(wc, WC_LADDR, (unit << 8) | (addr & 0xff) | (1 << 10)); __t4_pci_out(wc, WC_LADDR, (unit << 8) | (addr & 0xff) | (1 << 10) | WC_LWRITE); __t4_pci_out(wc, WC_LADDR, (unit << 8) | (addr & 0xff) | (1 << 10)); __t4_pci_out(wc, WC_LADDR, (unit << 8) | (addr & 0xff)); __t4_pci_out(wc, WC_LADDR, 0); if (debug) printk("Write complete\n"); #if 0 { unsigned int tmp; tmp = t4_framer_in(wc, unit, addr); if (tmp != value) { printk("Expected %d from unit %d register %d but got %d instead\n", value, unit, addr, tmp); } } #endif } static inline void t4_framer_out(struct t4 *wc, int unit, const unsigned int addr, const unsigned int value) { unsigned long flags; spin_lock_irqsave(&wc->reglock, flags); __t4_framer_out(wc, unit, addr, value); spin_unlock_irqrestore(&wc->reglock, flags); } static void __set_clear(struct t4 *wc, int span) { int i,j; unsigned short val=0; for (i=0;i<24;i++) { j = (i/8); if (wc->spans[span].chans[i].flags & ZT_FLAG_CLEAR) val |= 1 << (7 - (i % 8)); if ((i % 8)==7) { if (debug) printk("Putting %d in register %02x on span %d\n", val, 0x2f + j, span + 1); __t4_framer_out(wc,span, 0x2f + j, val); val = 0; } } } #if 0 static void set_clear(struct t4 *wc, int span) { unsigned long flags; spin_lock_irqsave(&wc->reglock, flags); __set_clear(wc, span); spin_unlock_irqrestore(&wc->reglock, flags); } #endif static int t4_ioctl(struct zt_chan *chan, unsigned int cmd, unsigned long data) { struct t4_regs regs; int x; switch(cmd) { case WCT4_GET_REGS: for (x=0;xpvt, x); for (x=0;xpvt, chan->span->offset, x); if (copy_to_user((struct t4_regs *)data, ®s, sizeof(regs))) return -EFAULT; break; default: return -ENOTTY; } return 0; } static int t4_maint(struct zt_span *span, int cmd) { struct t4 *wc = span->pvt; if (wc->spantype[span->offset] == TYPE_E1) { switch(cmd) { case ZT_MAINT_NONE: printk("XXX Turn off local and remote loops E1 XXX\n"); break; case ZT_MAINT_LOCALLOOP: printk("XXX Turn on local loopback E1 XXX\n"); break; case ZT_MAINT_REMOTELOOP: printk("XXX Turn on remote loopback E1 XXX\n"); break; case ZT_MAINT_LOOPUP: printk("XXX Send loopup code E1 XXX\n"); break; case ZT_MAINT_LOOPDOWN: printk("XXX Send loopdown code E1 XXX\n"); break; case ZT_MAINT_LOOPSTOP: printk("XXX Stop sending loop codes E1 XXX\n"); break; default: printk("TE410P: Unknown E1 maint command: %d\n", cmd); break; } } else { switch(cmd) { case ZT_MAINT_NONE: printk("XXX Turn off local and remote loops T1 XXX\n"); break; case ZT_MAINT_LOCALLOOP: printk("XXX Turn on local loop and no remote loop XXX\n"); break; case ZT_MAINT_REMOTELOOP: printk("XXX Turn on remote loopup XXX\n"); break; case ZT_MAINT_LOOPUP: t4_framer_out(wc, span->offset, 0x21, 0x50); /* FMR5: Nothing but RBS mode */ break; case ZT_MAINT_LOOPDOWN: t4_framer_out(wc, span->offset, 0x21, 0x60); /* FMR5: Nothing but RBS mode */ break; case ZT_MAINT_LOOPSTOP: t4_framer_out(wc, span->offset, 0x21, 0x40); /* FMR5: Nothing but RBS mode */ break; default: printk("TE410P: Unknown T1 maint command: %d\n", cmd); break; } } return 0; } static int t4_rbsbits(struct zt_chan *chan, int bits) { u_char m,c; int k,n,b; struct t4 *wc = chan->pvt; unsigned long flags; if(debug) printk("Setting bits to %d on channel %s\n", bits, chan->name); spin_lock_irqsave(&wc->reglock, flags); k = chan->span->offset; if (wc->spantype[k] == TYPE_E1) { /* do it E1 way */ if (chan->chanpos == 16) { spin_unlock_irqrestore(&wc->reglock, flags); return 0; } n = chan->chanpos - 1; if (chan->chanpos > 15) n--; b = (n % 15); c = wc->txsigs[k][b]; m = (n / 15) << 2; /* nibble selector */ c &= (0xf << m); /* keep the other nibble */ c |= (bits & 0xf) << (4 - m); /* put our new nibble here */ wc->txsigs[k][b] = c; /* output them to the chip */ __t4_framer_out(wc,k,0x71 + b,c); } else if (wc->spans[k].lineconfig & ZT_CONFIG_D4) { n = chan->chanpos - 1; b = (n/4); c = wc->txsigs[k][b]; m = ((3 - (n % 4)) << 1); /* nibble selector */ c &= ~(0x3 << m); /* keep the other nibble */ c |= ((bits >> 2) & 0x3) << m; /* put our new nibble here */ wc->txsigs[k][b] = c; /* output them to the chip */ __t4_framer_out(wc,k,0x70 + b,c); __t4_framer_out(wc,k,0x70 + b + 6,c); } else if (wc->spans[k].lineconfig & ZT_CONFIG_ESF) { n = chan->chanpos - 1; b = (n/2); c = wc->txsigs[k][b]; m = ((n % 2) << 2); /* nibble selector */ c &= (0xf << m); /* keep the other nibble */ c |= (bits & 0xf) << (4 - m); /* put our new nibble here */ wc->txsigs[k][b] = c; /* output them to the chip */ __t4_framer_out(wc,k,0x70 + b,c); } spin_unlock_irqrestore(&wc->reglock, flags); if (debug) printk("Finished setting RBS bits\n"); return 0; } static int t4_shutdown(struct zt_span *span) { int tspan; int wasrunning; unsigned long flags; struct t4 *wc = span->pvt; tspan = span->offset + 1; if (tspan < 0) { printk("T4XXP: Span '%d' isn't us?\n", span->spanno); return -1; } spin_lock_irqsave(&wc->reglock, flags); wasrunning = span->flags & ZT_FLAG_RUNNING; span->flags &= ~ZT_FLAG_RUNNING; if (wasrunning) wc->spansstarted--; __t4_set_led(wc, span->offset, WC_OFF); if ((!(wc->spans[0].flags & ZT_FLAG_RUNNING)) && (!(wc->spans[1].flags & ZT_FLAG_RUNNING)) && (!(wc->spans[2].flags & ZT_FLAG_RUNNING)) && (!(wc->spans[3].flags & ZT_FLAG_RUNNING))) { /* No longer in use, disable interrupts */ printk("TE410P: Disabling interrupts since there are no active spans\n"); wc->dmactrl = 0x0; __t4_pci_out(wc, WC_DMACTRL, 0x00000000); /* Acknowledge any pending interrupts */ __t4_pci_out(wc, WC_INTR, 0x00000000); __t4_set_timing_source(wc,4); } else wc->checktiming = 1; spin_unlock_irqrestore(&wc->reglock, flags); if (debug) printk("Span %d (%s) shutdown\n", span->spanno, span->name); return 0; } static int t4_spanconfig(struct zt_span *span, struct zt_lineconfig *lc) { int i; struct t4 *wc = span->pvt; if (debug) printk("TE410P: Configuring span %d\n", span->spanno); /* XXX We assume lineconfig is okay and shouldn't XXX */ span->lineconfig = lc->lineconfig; span->txlevel = lc->lbo; span->rxlevel = 0; if (lc->sync < 0) lc->sync = 0; if (lc->sync > 4) lc->sync = 0; /* remove this span number from the current sync sources, if there */ for(i = 0; i < 4; i++) { if (wc->syncs[i] == span->spanno) { wc->syncs[i] = 0; wc->psyncs[i] = 0; } } wc->syncpos[span->offset] = lc->sync; /* if a sync src, put it in proper place */ if (lc->sync) { wc->syncs[lc->sync - 1] = span->spanno; wc->psyncs[lc->sync - 1] = span->offset + 1; } wc->checktiming = 1; /* If we're already running, then go ahead and apply the changes */ if (span->flags & ZT_FLAG_RUNNING) return t4_startup(span); return 0; } static int t4_chanconfig(struct zt_chan *chan, int sigtype) { int alreadyrunning; unsigned long flags; struct t4 *wc = chan->pvt; alreadyrunning = wc->spans[chan->span->offset].flags & ZT_FLAG_RUNNING; if (debug) { if (alreadyrunning) printk("TE410P: Reconfigured channel %d (%s) sigtype %d\n", chan->channo, chan->name, sigtype); else printk("TE410P: Configured channel %d (%s) sigtype %d\n", chan->channo, chan->name, sigtype); } /* nothing more to do if an E1 */ if (wc->spantype[chan->span->offset] == TYPE_E1) return 0; spin_lock_irqsave(&wc->reglock, flags); if (alreadyrunning) __set_clear(wc, chan->span->offset); spin_unlock_irqrestore(&wc->reglock, flags); return 0; } static int t4_open(struct zt_chan *chan) { #ifndef LINUX26 MOD_INC_USE_COUNT; #else try_module_get(THIS_MODULE); #endif return 0; } static int t4_close(struct zt_chan *chan) { #ifndef LINUX26 MOD_DEC_USE_COUNT; #else module_put(THIS_MODULE); #endif return 0; } static void init_spans(struct t4 *wc) { int x,y,c; for (x=0;x<4;x++) { sprintf(wc->spans[x].name, "TE4/%d/%d", wc->num, x + 1); sprintf(wc->spans[x].desc, "TE410P (PCI) Card %d Span %d", wc->num, x+1); wc->spans[x].spanconfig = t4_spanconfig; wc->spans[x].chanconfig = t4_chanconfig; wc->spans[x].startup = t4_startup; wc->spans[x].shutdown = t4_shutdown; wc->spans[x].rbsbits = t4_rbsbits; wc->spans[x].maint = t4_maint; wc->spans[x].open = t4_open; wc->spans[x].close = t4_close; if (wc->spantype[x] == TYPE_T1) { wc->spans[x].channels = 24; wc->spans[x].deflaw = ZT_LAW_MULAW; } else { wc->spans[x].channels = 31; wc->spans[x].deflaw = ZT_LAW_ALAW; } wc->spans[x].chans = wc->chans[x]; wc->spans[x].flags = ZT_FLAG_RBS; wc->spans[x].linecompat = ZT_CONFIG_AMI | ZT_CONFIG_B8ZS | ZT_CONFIG_D4 | ZT_CONFIG_ESF; wc->spans[x].ioctl = t4_ioctl; wc->spans[x].pvt = wc; wc->spans[x].offset = x; init_waitqueue_head(&wc->spans[x].maintq); for (y=0;yspans[x].channels;y++) { struct zt_chan *mychans = wc->chans[x] + y; sprintf(mychans->name, "TE4/%d/%d/%d", wc->num, x + 1, y + 1); mychans->sigcap = ZT_SIG_EM | ZT_SIG_CLEAR | ZT_SIG_FXSLS | ZT_SIG_FXSGS | ZT_SIG_FXSKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS | ZT_SIG_FXOKS | ZT_SIG_CAS | ZT_SIG_EM_E1 | ZT_SIG_DACS_RBS; c = (x * wc->spans[x].channels) + y; mychans->pvt = wc; mychans->chanpos = y + 1; } } } static void t4_serial_setup(struct t4 *wc, int unit) { if (!wc->globalconfig) { wc->globalconfig = 1; printk("TE410P: Setting up global serial parameters\n"); t4_framer_out(wc, 0, 0x85, 0xe0); /* GPC1: Multiplex mode enabled, FSC is output, active low, RCLK from channel 0 */ t4_framer_out(wc, 0, 0x08, 0x01); /* IPC: Interrupt push/pull active low */ /* Global clocks (8.192 Mhz CLK) */ t4_framer_out(wc, 0, 0x92, 0x00); t4_framer_out(wc, 0, 0x93, 0x18); t4_framer_out(wc, 0, 0x94, 0xfb); t4_framer_out(wc, 0, 0x95, 0x0b); t4_framer_out(wc, 0, 0x96, 0x00); t4_framer_out(wc, 0, 0x97, 0x0b); t4_framer_out(wc, 0, 0x98, 0xdb); t4_framer_out(wc, 0, 0x99, 0xdf); } /* Configure interrupts */ t4_framer_out(wc, unit, 0x46, 0x40); /* GCR: Interrupt on Activation/Deactivation of AIX, LOS */ /* Configure system interface */ t4_framer_out(wc, unit, 0x3e, 0xc2); /* SIC1: 8.192 Mhz clock/bus, double buffer receive / transmit, byte interleaved */ t4_framer_out(wc, unit, 0x3f, unit << 1); /* SIC2: No FFS, no center receive eliastic buffer, phase */ t4_framer_out(wc, unit, 0x40, 0x04); /* SIC3: Edges for capture */ t4_framer_out(wc, unit, 0x45, 0x00); /* CMR2: We provide sync and clock for tx and rx. */ if (!wc->t1e1) { t4_framer_out(wc, unit, 0x22, 0x03); /* XC0: Normal operation of Sa-bits */ t4_framer_out(wc, unit, 0x23, 0x84); /* XC1: 0 offset */ t4_framer_out(wc, unit, 0x24, 0x03); /* RC0: Just shy of 1023 */ t4_framer_out(wc, unit, 0x25, 0x84); /* RC1: The rest of RC0 */ } else { t4_framer_out(wc, unit, 0x22, 0x00); /* XC0: Normal operation of Sa-bits */ t4_framer_out(wc, unit, 0x23, 0x04); /* XC1: 0 offset */ t4_framer_out(wc, unit, 0x24, 0x04); /* RC0: Just shy of 1023 */ t4_framer_out(wc, unit, 0x25, 0x04); /* RC1: The rest of RC0 */ } /* Configure ports */ t4_framer_out(wc, unit, 0x80, 0x00); /* PC1: SPYR/SPYX input on RPA/XPA */ t4_framer_out(wc, unit, 0x81, 0x22); /* PC2: RMFB/XSIG output/input on RPB/XPB */ t4_framer_out(wc, unit, 0x82, 0x65); /* PC3: Some unused stuff */ t4_framer_out(wc, unit, 0x83, 0x35); /* PC4: Some more unused stuff */ t4_framer_out(wc, unit, 0x84, 0x01); /* PC5: XMFS active low, SCLKR is input, RCLK is output */ if (debug) printk("Successfully initialized serial bus for unit %d\n", unit); } static void __t4_set_timing_source(struct t4 *wc, int unit) { unsigned int timing; int x; if (unit != wc->syncsrc) { timing = 0x34; /* CMR1: RCLK unit, 8.192 Mhz TCLK, RCLK is 8.192 Mhz */ if ((unit > -1) && (unit < 4)) { timing |= (unit << 6); for (x=0;x<4;x++) /* set all 4 receive reference clocks to unit */ __t4_framer_out(wc, x, 0x44, timing); __t4_pci_out(wc, WC_DMACTRL, wc->dmactrl | (1 << 29)); } else { for (x=0;x<4;x++) /* set each receive reference clock to itself */ __t4_framer_out(wc, x, 0x44, timing | (x << 6)); __t4_pci_out(wc, WC_DMACTRL, wc->dmactrl); } wc->syncsrc = unit; if ((unit < 0) || (unit > 3)) unit = 0; else unit++; for (x=0;x<4;x++) wc->spans[x].syncsrc = unit; } else { if (debug) printk("TE410P: Timing source already set to %d\n", unit); } #if 0 printk("wct4xxp: Timing source set to %d\n",unit); #endif } static void __t4_set_timing_source_auto(struct t4 *wc) { int x; wc->checktiming = 0; for (x=0;x<4;x++) { if (wc->syncs[x]) { if ((wc->spans[wc->syncs[x] - 1].flags & ZT_FLAG_RUNNING) && !(wc->spans[wc->syncs[x] - 1].alarms & (ZT_ALARM_RED | ZT_ALARM_BLUE) )) { /* Valid timing sourc e*/ __t4_set_timing_source(wc, wc->syncs[x] - 1); return; } } } __t4_set_timing_source(wc, 4); } static void __t4_configure_t1(struct t4 *wc, int unit, int lineconfig, int txlevel) { unsigned int fmr4, fmr2, fmr1, fmr0, lim2; char *framing, *line; int mytxlevel; if ((txlevel > 7) || (txlevel < 4)) mytxlevel = 0; else mytxlevel = txlevel - 4; fmr1 = 0x9c; /* FMR1: Mode 1, T1 mode, CRC on for ESF, 8.192 Mhz system data rate, no XAIS */ fmr2 = 0x22; /* FMR2: no payload loopback, auto send yellow alarm */ if (loopback) fmr2 |= 0x4; fmr4 = 0x0c; /* FMR4: Lose sync on 2 out of 5 framing bits, auto resync */ lim2 = 0x21; /* LIM2: 50% peak is a "1", Advanced Loss recovery */ lim2 |= (mytxlevel << 6); /* LIM2: Add line buildout */ __t4_framer_out(wc, unit, 0x1d, fmr1); __t4_framer_out(wc, unit, 0x1e, fmr2); /* Configure line interface */ if (lineconfig & ZT_CONFIG_AMI) { line = "AMI"; fmr0 = 0xa0; } else { line = "B8ZS"; fmr0 = 0xf0; } if (lineconfig & ZT_CONFIG_D4) { framing = "D4"; } else { framing = "ESF"; fmr4 |= 0x2; fmr2 |= 0xc0; } __t4_framer_out(wc, unit, 0x1c, fmr0); __t4_framer_out(wc, unit, 0x20, fmr4); __t4_framer_out(wc, unit, 0x21, 0x40); /* FMR5: Enable RBS mode */ __t4_framer_out(wc, unit, 0x37, 0xf0 ); /* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */ __t4_framer_out(wc, unit, 0x36, 0x08); /* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */ __t4_framer_out(wc, unit, 0x02, 0x50); /* CMDR: Reset the receiver and transmitter line interface */ __t4_framer_out(wc, unit, 0x02, 0x00); /* CMDR: Reset the receiver and transmitter line interface */ __t4_framer_out(wc, unit, 0x3a, lim2); /* LIM2: 50% peak amplitude is a "1" */ __t4_framer_out(wc, unit, 0x38, 0x0a); /* PCD: LOS after 176 consecutive "zeros" */ __t4_framer_out(wc, unit, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */ /* Generate pulse mask for T1 */ switch(mytxlevel) { case 3: __t4_framer_out(wc, unit, 0x26, 0x07); /* XPM0 */ __t4_framer_out(wc, unit, 0x27, 0x01); /* XPM1 */ __t4_framer_out(wc, unit, 0x28, 0x00); /* XPM2 */ break; case 2: __t4_framer_out(wc, unit, 0x26, 0x8c); /* XPM0 */ __t4_framer_out(wc, unit, 0x27, 0x11); /* XPM1 */ __t4_framer_out(wc, unit, 0x28, 0x01); /* XPM2 */ break; case 1: __t4_framer_out(wc, unit, 0x26, 0x8c); /* XPM0 */ __t4_framer_out(wc, unit, 0x27, 0x01); /* XPM1 */ __t4_framer_out(wc, unit, 0x28, 0x00); /* XPM2 */ break; case 0: default: __t4_framer_out(wc, unit, 0x26, 0xd7); /* XPM0 */ __t4_framer_out(wc, unit, 0x27, 0x22); /* XPM1 */ __t4_framer_out(wc, unit, 0x28, 0x01); /* XPM2 */ break; } printk("TE410P: Span %d configured for %s/%s\n", unit + 1, framing, line); } static void __t4_configure_e1(struct t4 *wc, int unit, int lineconfig) { unsigned int fmr2, fmr1, fmr0; unsigned int cas = 0; char *crc4 = ""; char *framing, *line; fmr1 = 0x44; /* FMR1: E1 mode, Automatic force resync, PCM30 mode, 8.192 Mhz backplane, no XAIS */ fmr2 = 0x03; /* FMR2: Auto transmit remote alarm, auto loss of multiframe recovery, no payload loopback */ if (loopback) fmr2 |= 0x4; if (lineconfig & ZT_CONFIG_CRC4) { fmr1 |= 0x08; /* CRC4 transmit */ fmr2 |= 0xc0; /* CRC4 receive */ crc4 = "/CRC4"; } __t4_framer_out(wc, unit, 0x1d, fmr1); __t4_framer_out(wc, unit, 0x1e, fmr2); /* Configure line interface */ if (lineconfig & ZT_CONFIG_AMI) { line = "AMI"; fmr0 = 0xa0; } else { line = "HDB3"; fmr0 = 0xf0; } if (lineconfig & ZT_CONFIG_CCS) { framing = "CCS"; } else { framing = "CAS"; cas = 0x40; } __t4_framer_out(wc, unit, 0x1c, fmr0); __t4_framer_out(wc, unit, 0x37, 0xf0 /*| 0x6 */ ); /* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */ __t4_framer_out(wc, unit, 0x36, 0x08); /* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */ __t4_framer_out(wc, unit, 0x02, 0x50); /* CMDR: Reset the receiver and transmitter line interface */ __t4_framer_out(wc, unit, 0x02, 0x00); /* CMDR: Reset the receiver and transmitter line interface */ /* Condition receive line interface for E1 after reset */ __t4_framer_out(wc, unit, 0xbb, 0x17); __t4_framer_out(wc, unit, 0xbc, 0x55); __t4_framer_out(wc, unit, 0xbb, 0x97); __t4_framer_out(wc, unit, 0xbb, 0x11); __t4_framer_out(wc, unit, 0xbc, 0xaa); __t4_framer_out(wc, unit, 0xbb, 0x91); __t4_framer_out(wc, unit, 0xbb, 0x12); __t4_framer_out(wc, unit, 0xbc, 0x55); __t4_framer_out(wc, unit, 0xbb, 0x92); __t4_framer_out(wc, unit, 0xbb, 0x0c); __t4_framer_out(wc, unit, 0xbb, 0x00); __t4_framer_out(wc, unit, 0xbb, 0x8c); __t4_framer_out(wc, unit, 0x3a, 0x20); /* LIM2: 50% peak amplitude is a "1" */ __t4_framer_out(wc, unit, 0x38, 0x0a); /* PCD: LOS after 176 consecutive "zeros" */ __t4_framer_out(wc, unit, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */ __t4_framer_out(wc, unit, 0x20, 0x9f); /* XSW: Spare bits all to 1 */ __t4_framer_out(wc, unit, 0x21, 0x1c|cas); /* XSP: E-bit set when async. AXS auto, XSIF to 1 */ /* Generate pulse mask for E1 */ __t4_framer_out(wc, unit, 0x26, 0x54); /* XPM0 */ __t4_framer_out(wc, unit, 0x27, 0x02); /* XPM1 */ __t4_framer_out(wc, unit, 0x28, 0x00); /* XPM2 */ printk("TE410P: Span %d configured for %s/%s%s\n", unit + 1, framing, line, crc4); } static int t4_startup(struct zt_span *span) { int i; int tspan; unsigned long flags; int alreadyrunning; struct t4 *wc = span->pvt; tspan = span->offset + 1; if (tspan < 0) { printk("TE410P: Span '%d' isn't us?\n", span->spanno); return -1; } spin_lock_irqsave(&wc->reglock, flags); alreadyrunning = span->flags & ZT_FLAG_RUNNING; /* initialize the start value for the entire chunk of last ec buffer */ for(i = 0; i < span->channels; i++) { memset(wc->ec_chunk1[span->offset][i], ZT_LIN2X(0,&span->chans[i]),ZT_CHUNKSIZE); memset(wc->ec_chunk2[span->offset][i], ZT_LIN2X(0,&span->chans[i]),ZT_CHUNKSIZE); } /* Force re-evaluation fo timing source */ if (timingcable) wc->syncsrc = -1; if (wc->spantype[span->offset] == TYPE_E1) { /* if this is an E1 card */ __t4_configure_e1(wc, span->offset, span->lineconfig); } else { /* is a T1 card */ __t4_configure_t1(wc, span->offset, span->lineconfig, span->txlevel); __set_clear(wc, span->offset); } if (!alreadyrunning) { span->flags |= ZT_FLAG_RUNNING; wc->spansstarted++; /* enable interrupts */ /* Start DMA, enabling DMA interrupts on read only */ wc->dmactrl = 0xc0000003 | (1 << 29); if (noburst) wc->dmactrl |= (1 << 26); __t4_pci_out(wc, WC_DMACTRL, wc->dmactrl); } spin_unlock_irqrestore(&wc->reglock, flags); if (wc->syncs[0] == span->spanno) printk("SPAN %d: Primary Sync Source\n",span->spanno); if (wc->syncs[1] == span->spanno) printk("SPAN %d: Secondary Sync Source\n",span->spanno); if (wc->syncs[2] == span->spanno) printk("SPAN %d: Tertiary Sync Source\n",span->spanno); if (wc->syncs[3] == span->spanno) printk("SPAN %d: Quaternary Sync Source\n",span->spanno); return 0; } static inline void e1_check(struct t4 *wc, int span, int val) { if ((wc->spans[span].channels > 24) && (wc->spans[span].flags & ZT_FLAG_RUNNING) && !(wc->spans[span].alarms) && (!wc->e1recover)) { if (val != 0x1b) { wc->e1check[span]++; } else wc->e1check[span] = 0; if (wc->e1check[span] > 100) { /* Wait 1000 ms */ wc->e1recover = 1000 * 8; memset(wc->e1check, 0, sizeof(wc->e1check)); if (debug) printk("Detected loss of E1 alignment on span %d!\n", span); t4_reset_dma(wc); } } } static void t4_receiveprep(struct t4 *wc, int irq) { volatile unsigned int *readchunk; int dbl = 0; int x,y,z; unsigned int tmp; int offset=0; if (!wc->t1e1) offset = 4; if (irq & 1) { /* First part */ readchunk = wc->readchunk; if (!wc->last0) dbl = 1; wc->last0 = 0; } else { readchunk = wc->readchunk + ZT_CHUNKSIZE * 32; if (wc->last0) dbl = 1; wc->last0 = 1; } if (dbl) { for (x=0;x<4;x++) wc->spans[x].irqmisses++; if (debug) printk("TE410P: Double/missed interrupt detected\n"); } for (x=0;xspans[3].chans[z].readchunk[x] = tmp & 0xff; wc->spans[2].chans[z].readchunk[x] = (tmp & 0xff00) >> 8; wc->spans[1].chans[z].readchunk[x] = (tmp & 0xff0000) >> 16; wc->spans[0].chans[z].readchunk[x] = tmp >> 24; } if (wc->t1e1) { if (wc->e1recover > 0) wc->e1recover--; tmp = readchunk[0]; e1_check(wc, 3, (tmp & 0x7f)); e1_check(wc, 2, (tmp & 0x7f00) >> 8); e1_check(wc, 1, (tmp & 0x7f0000) >> 16); e1_check(wc, 0, (tmp & 0x7f000000) >> 24); for (z=24;z<31;z++) { /* Only E1 channels now */ tmp = readchunk[z+1]; if (wc->spans[3].channels > 24) wc->spans[3].chans[z].readchunk[x] = tmp & 0xff; if (wc->spans[2].channels > 24) wc->spans[2].chans[z].readchunk[x] = (tmp & 0xff00) >> 8; if (wc->spans[1].channels > 24) wc->spans[1].chans[z].readchunk[x] = (tmp & 0xff0000) >> 16; if (wc->spans[0].channels > 24) wc->spans[0].chans[z].readchunk[x] = tmp >> 24; } } /* Advance pointer by 4 TDM frame lengths */ readchunk += 32; } for (x=0;x<4;x++) { if (wc->spans[x].flags & ZT_FLAG_RUNNING) { for (y=0;yspans[x].channels;y++) { /* Echo cancel double buffered data */ zt_ec_chunk(&wc->spans[x].chans[y], wc->spans[x].chans[y].readchunk, wc->ec_chunk2[x][y]); memcpy(wc->ec_chunk2[x][y],wc->ec_chunk1[x][y], ZT_CHUNKSIZE); memcpy(wc->ec_chunk1[x][y], wc->spans[x].chans[y].writechunk, ZT_CHUNKSIZE); } zt_receive(&wc->spans[x]); } } } static void t4_transmitprep(struct t4 *wc, int irq) { volatile unsigned int *writechunk; int x,y,z; unsigned int tmp; int offset=0; if (!wc->t1e1) offset = 4; if (irq & 1) { /* First part */ writechunk = wc->writechunk + 1; } else { writechunk = wc->writechunk + ZT_CHUNKSIZE * 32 + 1; } for (y=0;y<4;y++) { if (wc->spans[y].flags & ZT_FLAG_RUNNING) zt_transmit(&wc->spans[y]); } for (x=0;xspans[3].chans[z].writechunk[x]) | (wc->spans[2].chans[z].writechunk[x] << 8) | (wc->spans[1].chans[z].writechunk[x] << 16) | (wc->spans[0].chans[z].writechunk[x] << 24); writechunk[z+offset] = tmp; } if (wc->t1e1) { for (z=24;z<31;z++) { /* Only E1 channels now */ tmp = 0; if (wc->spans[3].channels > 24) tmp |= wc->spans[3].chans[z].writechunk[x]; if (wc->spans[2].channels > 24) tmp |= (wc->spans[2].chans[z].writechunk[x] << 8); if (wc->spans[1].channels > 24) tmp |= (wc->spans[1].chans[z].writechunk[x] << 16); if (wc->spans[0].channels > 24) tmp |= (wc->spans[0].chans[z].writechunk[x] << 24); writechunk[z] = tmp; } } /* Advance pointer by 4 TDM frame lengths */ writechunk += 32; } } static void __t4_check_sigbits(struct t4 *wc, int span) { int a,i,rxs; if (!(wc->spans[span].flags & ZT_FLAG_RUNNING)) return; if (wc->spantype[span] == TYPE_E1) { for (i = 0; i < 15; i++) { a = __t4_framer_in(wc, span, 0x71 + i); /* Get high channel in low bits */ rxs = (a & 0xf); if (!(wc->spans[span].chans[i+16].sig & ZT_SIG_CLEAR)) { if (wc->spans[span].chans[i+16].rxsig != rxs) zt_rbsbits(&wc->spans[span].chans[i+16], rxs); } rxs = (a >> 4) & 0xf; if (!(wc->spans[span].chans[i].sig & ZT_SIG_CLEAR)) { if (wc->spans[span].chans[i].rxsig != rxs) zt_rbsbits(&wc->spans[span].chans[i], rxs); } } } else if (wc->spans[span].lineconfig & ZT_CONFIG_D4) { for (i = 0; i < 24; i+=4) { a = __t4_framer_in(wc, span, 0x70 + (i>>2)); /* Get high channel in low bits */ rxs = (a & 0x3) << 2; if (!(wc->spans[span].chans[i+3].sig & ZT_SIG_CLEAR)) { if (wc->spans[span].chans[i+3].rxsig != rxs) zt_rbsbits(&wc->spans[span].chans[i+3], rxs); } rxs = (a & 0xc); if (!(wc->spans[span].chans[i+2].sig & ZT_SIG_CLEAR)) { if (wc->spans[span].chans[i+2].rxsig != rxs) zt_rbsbits(&wc->spans[span].chans[i+2], rxs); } rxs = (a >> 2) & 0xc; if (!(wc->spans[span].chans[i+1].sig & ZT_SIG_CLEAR)) { if (wc->spans[span].chans[i+1].rxsig != rxs) zt_rbsbits(&wc->spans[span].chans[i+1], rxs); } rxs = (a >> 4) & 0xc; if (!(wc->spans[span].chans[i].sig & ZT_SIG_CLEAR)) { if (wc->spans[span].chans[i].rxsig != rxs) zt_rbsbits(&wc->spans[span].chans[i], rxs); } } } else { for (i = 0; i < 24; i+=2) { a = __t4_framer_in(wc, span, 0x70 + (i>>1)); /* Get high channel in low bits */ rxs = (a & 0xf); if (!(wc->spans[span].chans[i+1].sig & ZT_SIG_CLEAR)) { if (wc->spans[span].chans[i+1].rxsig != rxs) zt_rbsbits(&wc->spans[span].chans[i+1], rxs); } rxs = (a >> 4) & 0xf; if (!(wc->spans[span].chans[i].sig & ZT_SIG_CLEAR)) { if (wc->spans[span].chans[i].rxsig != rxs) zt_rbsbits(&wc->spans[span].chans[i], rxs); } } } } static void __t4_do_counters(struct t4 *wc) { int span; for (span=0;span<4;span++) { if (wc->alarmtimer[span]) { if (!--wc->alarmtimer[span]) { wc->spans[span].alarms &= ~(ZT_ALARM_RECOVER); zt_alarm_notify(&wc->spans[span]); } } } } static void __t4_check_alarms(struct t4 *wc, int span) { unsigned char c,d; int alarms; int x,j; if (!(wc->spans[span].flags & ZT_FLAG_RUNNING)) return; c = __t4_framer_in(wc, span, 0x4c); d = __t4_framer_in(wc, span, 0x4d); /* Assume no alarms */ alarms = 0; /* And consider only carrier alarms */ wc->spans[span].alarms &= (ZT_ALARM_RED | ZT_ALARM_BLUE | ZT_ALARM_NOTOPEN); if (wc->spantype[span] == TYPE_E1) { if (c & 0x04) { /* No multiframe found, force RAI high after 400ms only if we haven't found a multiframe since last loss of frame */ if (!(wc->spanflags[span] & FLAG_NMF)) { __t4_framer_out(wc, span, 0x20, 0x9f | 0x20); /* LIM0: Force RAI High */ wc->spanflags[span] |= FLAG_NMF; printk("NMF workaround on!\n"); } __t4_framer_out(wc, span, 0x1e, 0xc3); /* Reset to CRC4 mode */ __t4_framer_out(wc, span, 0x1c, 0xf2); /* Force Resync */ __t4_framer_out(wc, span, 0x1c, 0xf0); /* Force Resync */ } else if (!(c & 0x02)) { if ((wc->spanflags[span] & FLAG_NMF)) { __t4_framer_out(wc, span, 0x20, 0x9f); /* LIM0: Clear forced RAI */ wc->spanflags[span] &= ~FLAG_NMF; printk("NMF workaround off!\n"); } } } else { /* Detect loopup code if we're not sending one */ if ((!wc->spans[span].mainttimer) && (d & 0x08)) { /* Loop-up code detected */ if ((wc->loopupcnt[span]++ > 80) && (wc->spans[span].maintstat != ZT_MAINT_REMOTELOOP)) { __t4_framer_out(wc, span, 0x36, 0x08); /* LIM0: Disable any local loop */ __t4_framer_out(wc, span, 0x37, 0xf6 ); /* LIM1: Enable remote loop */ wc->spans[span].maintstat = ZT_MAINT_REMOTELOOP; } } else wc->loopupcnt[span] = 0; /* Same for loopdown code */ if ((!wc->spans[span].mainttimer) && (d & 0x10)) { /* Loop-down code detected */ if ((wc->loopdowncnt[span]++ > 80) && (wc->spans[span].maintstat == ZT_MAINT_REMOTELOOP)) { __t4_framer_out(wc, span, 0x36, 0x08); /* LIM0: Disable any local loop */ __t4_framer_out(wc, span, 0x37, 0xf0 ); /* LIM1: Disable remote loop */ wc->spans[span].maintstat = ZT_MAINT_NONE; } } else wc->loopdowncnt[span] = 0; } if (wc->spans[span].lineconfig & ZT_CONFIG_NOTOPEN) { for (x=0,j=0;x < wc->spans[span].channels;x++) if ((wc->spans[span].chans[x].flags & ZT_FLAG_OPEN) || (wc->spans[span].chans[x].flags & ZT_FLAG_NETDEV)) j++; if (!j) alarms |= ZT_ALARM_NOTOPEN; } if (c & 0xa0) { if (wc->alarmcount[span] >= alarmdebounce) alarms |= ZT_ALARM_RED; else wc->alarmcount[span]++; } else wc->alarmcount[span] = 0; if (c & 0x4) alarms |= ZT_ALARM_BLUE; if (((!wc->spans[span].alarms) && alarms) || (wc->spans[span].alarms && (!alarms))) wc->checktiming = 1; /* Keep track of recovering */ if ((!alarms) && wc->spans[span].alarms) wc->alarmtimer[span] = ZT_ALARMSETTLE_TIME; if (wc->alarmtimer[span]) alarms |= ZT_ALARM_RECOVER; /* If receiving alarms, go into Yellow alarm state */ if (alarms && !(wc->spanflags[span] & FLAG_SENDINGYELLOW)) { unsigned char fmr4; #if 1 printk("wct4xxp: Setting yellow alarm on span %d\n", span + 1); #endif /* We manually do yellow alarm to handle RECOVER and NOTOPEN, otherwise it's auto anyway */ fmr4 = __t4_framer_in(wc, span, 0x20); __t4_framer_out(wc, span, 0x20, fmr4 | 0x20); wc->spanflags[span] |= FLAG_SENDINGYELLOW; } else if ((!alarms) && (wc->spanflags[span] & FLAG_SENDINGYELLOW)) { unsigned char fmr4; #if 1 printk("wct4xxp: Clearing yellow alarm on span %d\n", span + 1); #endif /* We manually do yellow alarm to handle RECOVER */ fmr4 = __t4_framer_in(wc, span, 0x20); __t4_framer_out(wc, span, 0x20, fmr4 & ~0x20); wc->spanflags[span] &= ~FLAG_SENDINGYELLOW; } /* Re-check the timing source when we enter/leave alarm, not withstanding yellow alarm */ if (c & 0x10) alarms |= ZT_ALARM_YELLOW; if (wc->spans[span].mainttimer || wc->spans[span].maintstat) alarms |= ZT_ALARM_LOOPBACK; wc->spans[span].alarms = alarms; zt_alarm_notify(&wc->spans[span]); } static inline void __handle_leds(struct t4 *wc) { int x; wc->blinktimer++; for (x=0;x<4;x++) { if (wc->spans[x].flags & ZT_FLAG_RUNNING) { if (wc->spans[x].alarms & (ZT_ALARM_RED | ZT_ALARM_BLUE)) { #ifdef FANCY_ALARM if (wc->blinktimer == (altab[wc->alarmpos] >> 1)) { __t4_set_led(wc, x, WC_RED); } if (wc->blinktimer == 0xf) { __t4_set_led(wc, x, WC_OFF); } #else if (wc->blinktimer == 160) { __t4_set_led(wc, x, WC_RED); } else if (wc->blinktimer == 480) { __t4_set_led(wc, x, WC_OFF); } #endif } else if (wc->spans[x].alarms & ZT_ALARM_YELLOW) { /* Yellow Alarm */ __t4_set_led(wc, x, WC_YELLOW); } else if (wc->spans[x].mainttimer || wc->spans[x].maintstat) { #ifdef FANCY_ALARM if (wc->blinktimer == (altab[wc->alarmpos] >> 1)) { __t4_set_led(wc, x, WC_GREEN); } if (wc->blinktimer == 0xf) { __t4_set_led(wc, x, WC_OFF); } #else if (wc->blinktimer == 160) { __t4_set_led(wc, x, WC_GREEN); } else if (wc->blinktimer == 480) { __t4_set_led(wc, x, WC_OFF); } #endif } else { /* No Alarm */ __t4_set_led(wc, x, WC_GREEN); } } else __t4_set_led(wc, x, WC_OFF); } #ifdef FANCY_ALARM if (wc->blinktimer == 0xf) { wc->blinktimer = -1; wc->alarmpos++; if (wc->alarmpos >= (sizeof(altab) / sizeof(altab[0]))) wc->alarmpos = 0; } #else if (wc->blinktimer == 480) wc->blinktimer = 0; #endif } #ifdef LINUX26 static irqreturn_t t4_interrupt(int irq, void *dev_id, struct pt_regs *regs) #else static void t4_interrupt(int irq, void *dev_id, struct pt_regs *regs) #endif { struct t4 *wc = dev_id; unsigned long flags; int x; unsigned int status; #if 0 unsigned int status2; #endif #if 0 if (wc->intcount < 20) printk("Pre-interrupt\n"); #endif inirq = 1; /* Make sure it's really for us */ status = t4_pci_in(wc, WC_INTR); t4_pci_out(wc, WC_INTR, 0); /* Ignore if it's not for us */ if (!status) #ifdef LINUX26 return IRQ_NONE; #else return; #endif if (!wc->spansstarted) { printk("Not prepped yet!\n"); #ifdef LINUX26 return IRQ_NONE; #else return; #endif } wc->intcount++; #if 0 if (wc->intcount < 20) printk("Got interrupt, status = %08x\n", status); #endif if (status & 0x3) { t4_receiveprep(wc, status); t4_transmitprep(wc, status); } #if 0 if ((wc->intcount < 10) || !(wc->intcount % 1000)) { status2 = t4_framer_in(wc, 0, 0x6f); printk("Status2: %04x\n", status2); for (x = 0;x<4;x++) { status2 = t4_framer_in(wc, x, 0x4c); printk("FRS0/%d: %04x\n", x, status2); } } #endif spin_lock_irqsave(&wc->reglock, flags); __handle_leds(wc); __t4_do_counters(wc); x = wc->intcount & 15 /* 63 */; switch(x) { case 0: case 1: case 2: case 3: __t4_check_sigbits(wc, x); break; case 4: case 5: case 6: case 7: __t4_check_alarms(wc, x - 4); break; } if (wc->checktiming > 0) __t4_set_timing_source_auto(wc); spin_unlock_irqrestore(&wc->reglock, flags); #ifdef LINUX26 return IRQ_RETVAL(1); #endif } static int t4_reset_dma(struct t4 *wc) { /* Turn off DMA and such */ wc->dmactrl = 0x0; t4_pci_out(wc, WC_DMACTRL, wc->dmactrl); t4_pci_out(wc, WC_COUNT, 0); t4_pci_out(wc, WC_RDADDR, 0); t4_pci_out(wc, WC_WRADDR, 0); t4_pci_out(wc, WC_INTR, 0); /* Turn it all back on */ t4_pci_out(wc, WC_RDADDR, wc->readdma); t4_pci_out(wc, WC_WRADDR, wc->writedma); t4_pci_out(wc, WC_COUNT, ((ZT_MAX_CHUNKSIZE * 2 * 32 - 1) << 18) | ((ZT_MAX_CHUNKSIZE * 2 * 32 - 1) << 2)); t4_pci_out(wc, WC_INTR, 0); wc->dmactrl = 0xc0000003 | (1 << 29); if (noburst) wc->dmactrl |= (1 << 26); t4_pci_out(wc, WC_DMACTRL, wc->dmactrl); return 0; } static int t4_hardware_init(struct t4 *wc) { int x; unsigned int version; unsigned int falcver; version = t4_pci_in(wc, WC_VERSION); printk("TE410P version %08x\n", version); /* Make sure DMA engine is not running and interrupts are acknowledged */ wc->dmactrl = 0x0; t4_pci_out(wc, WC_DMACTRL, wc->dmactrl); /* Reset Framer and friends */ t4_pci_out(wc, WC_LEDS, 0x00000000); /* Set DMA addresses */ t4_pci_out(wc, WC_RDADDR, wc->readdma); t4_pci_out(wc, WC_WRADDR, wc->writedma); /* Setup counters, interrupt flags */ t4_pci_out(wc, WC_COUNT, ((ZT_MAX_CHUNKSIZE * 2 * 32 - 1) << 18) | ((ZT_MAX_CHUNKSIZE * 2 * 32 - 1) << 2)); /* Reset pending interrupts */ t4_pci_out(wc, WC_INTR, 0x00000000); /* Read T1/E1 status */ if (t1e1override > -1) wc->t1e1 = t1e1override; else wc->t1e1 = ((t4_pci_in(wc, WC_LEDS)) & 0x0f00) >> 8; wc->order = ((t4_pci_in(wc, WC_LEDS)) & 0xf0000000) >> 28; /* Setup LEDS, take out of reset */ t4_pci_out(wc, WC_LEDS, 0x000000ff); t4_activate(wc); t4_framer_out(wc, 0, 0x4a, 0xaa); falcver = t4_framer_in(wc, 0 ,0x4a); printk("FALC version: %08x, Board ID: %02x\n", falcver, wc->order); for (x=0;x< 11;x++) printk("Reg %d: 0x%08x\n", x, t4_pci_in(wc, x)); return 0; } static int __devinit t4_launch(struct t4 *wc) { int x; unsigned long flags; if (wc->spans[0].flags & ZT_FLAG_REGISTERED) return 0; printk("TE410P: Launching card: %d\n", wc->order); /* Setup serial parameters and system interface */ for (x=0;x<4;x++) t4_serial_setup(wc, x); if (zt_register(&wc->spans[0], 0)) { printk(KERN_ERR "Unable to register span %s\n", wc->spans[0].name); return -1; } if (zt_register(&wc->spans[1], 0)) { printk(KERN_ERR "Unable to register span %s\n", wc->spans[1].name); zt_unregister(&wc->spans[0]); return -1; } if (zt_register(&wc->spans[2], 0)) { printk(KERN_ERR "Unable to register span %s\n", wc->spans[2].name); zt_unregister(&wc->spans[0]); zt_unregister(&wc->spans[1]); return -1; } if (zt_register(&wc->spans[3], 0)) { printk(KERN_ERR "Unable to register span %s\n", wc->spans[3].name); zt_unregister(&wc->spans[0]); zt_unregister(&wc->spans[1]); zt_unregister(&wc->spans[2]); return -1; } wc->checktiming = 1; spin_lock_irqsave(&wc->reglock, flags); __t4_set_timing_source(wc,4); spin_unlock_irqrestore(&wc->reglock, flags); #ifdef ENABLE_TASKLETS tasklet_init(&wc->t4_tlet, t4_tasklet, (unsigned long)wc); #endif return 0; } static int __devinit t4_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int res; struct t4 *wc; int x,f; #if 0 int y; unsigned int *canary; #endif if (pci_enable_device(pdev)) { res = -EIO; } else { wc = kmalloc(sizeof(struct t4), GFP_KERNEL); if (wc) { memset(wc, 0x0, sizeof(struct t4)); spin_lock_init(&wc->reglock); wc->variety = (char *)(ent->driver_data); wc->memaddr = pci_resource_start(pdev, 0); wc->memlen = pci_resource_len(pdev, 0); wc->membase = ioremap(wc->memaddr, wc->memlen); /* This rids of the Double missed interrupt message after loading */ wc->last0 = 1; #if 0 if (!request_mem_region(wc->memaddr, wc->memlen, wc->variety)) printk("wct4: Unable to request memory region :(, using anyway...\n"); #endif if (pci_request_regions(pdev, wc->variety)) printk("wct4xxp: Unable to request regions\n"); printk("Found TE410P at base address %08lx, remapped to %p\n", wc->memaddr, wc->membase); wc->dev = pdev; wc->writechunk = /* 32 channels, Double-buffer, Read/Write, 4 spans */ (unsigned int *)pci_alloc_consistent(pdev, ZT_MAX_CHUNKSIZE * 32 * 2 * 2 * 4, &wc->writedma); if (!wc->writechunk) { printk("wct1xxp: Unable to allocate DMA-able memory\n"); return -ENOMEM; } /* Read is after the whole write piece (in words) */ wc->readchunk = wc->writechunk + ZT_CHUNKSIZE * 32 * 2; /* Same thing but in bytes... */ wc->readdma = wc->writedma + ZT_CHUNKSIZE * 32 * 2 * 4; /* Initialize Write/Buffers to all blank data */ memset((void *)wc->writechunk,0xff,ZT_MAX_CHUNKSIZE * 2 * 32 * 4); memset((void *)wc->readchunk,0xff,ZT_MAX_CHUNKSIZE * 2 * 32 * 4); #if 0 memset((void *)wc->readchunk,0xff,ZT_MAX_CHUNKSIZE * 2 * 32 * 4); /* Initialize canary */ canary = (unsigned int *)(wc->readchunk + ZT_CHUNKSIZE * 64 * 4 - 4); *canary = (CANARY << 16) | (0xffff); #endif /* Enable bus mastering */ pci_set_master(pdev); /* Keep track of which device we are */ pci_set_drvdata(pdev, wc); /* Initialize hardware */ t4_hardware_init(wc); for(x = 0; x < MAX_T4_CARDS; x++) { if (!cards[x]) break; } if (x >= MAX_T4_CARDS) { printk("No cards[] slot available!!\n"); return -ENOMEM; } wc->num = x; cards[x] = wc; if (request_irq(pdev->irq, t4_interrupt, SA_INTERRUPT | SA_SHIRQ, "t4xxp", wc)) { printk("t4xxp: Unable to request IRQ %d\n", pdev->irq); kfree(wc); return -EIO; } for (x=0;x<4;x++) { if (wc->t1e1 & (1 << x)) { wc->spantype[x] = TYPE_E1; wc->chans[x] = kmalloc(sizeof(struct zt_chan) * 31,GFP_KERNEL); memset(wc->chans[x],0,sizeof(struct zt_chan) * 31); } else { wc->spantype[x] = TYPE_T1; wc->chans[x] = kmalloc(sizeof(struct zt_chan) * 24,GFP_KERNEL); memset(wc->chans[x],0,sizeof(struct zt_chan) * 24); } if (!wc->chans[x]) return -ENOMEM; } init_spans(wc); /* Launch cards as appropriate */ x = 0; for(;;) { /* Find a card to activate */ f = 0; for (x=0;cards[x];x++) { if (cards[x]->order <= highestorder) { t4_launch(cards[x]); if (cards[x]->order == highestorder) f = 1; } } /* If we found at least one, increment the highest order and search again, otherwise stop */ if (f) highestorder++; else break; } printk("Found a Wildcard: %s\n", wc->variety); res = 0; } else res = -ENOMEM; } return res; } static int t4_hardware_stop(struct t4 *wc) { /* Turn off DMA, leave interrupts enabled */ wc->dmactrl = 0x0000000; t4_pci_out(wc, WC_DMACTRL, wc->dmactrl); /* Turn on only the read interrupts, not the write */ t4_pci_out(wc, WC_DMACTRL, wc->dmactrl); t4_pci_out(wc, WC_INTR, 0x00000000); current->state = TASK_UNINTERRUPTIBLE; schedule_timeout((25 * HZ) / 1000); /* Turn off counter, address, etc */ t4_pci_out(wc, WC_COUNT, 0x000000); t4_pci_out(wc, WC_RDADDR, 0x0000000); t4_pci_out(wc, WC_WRADDR, 0x0000000); t4_pci_out(wc, WC_GPIO, 0x0000000); t4_pci_out(wc, WC_LEDS, 0x00000000); printk("\nStopped TE410P, Turned off DMA\n"); return 0; } static void __devexit t4_remove_one(struct pci_dev *pdev) { struct t4 *wc = pci_get_drvdata(pdev); if (wc) { /* Stop hardware */ t4_hardware_stop(wc); /* Unregister spans */ if (wc->spans[0].flags & ZT_FLAG_REGISTERED) zt_unregister(&wc->spans[0]); if (wc->spans[1].flags & ZT_FLAG_REGISTERED) zt_unregister(&wc->spans[1]); if (wc->spans[2].flags & ZT_FLAG_REGISTERED) zt_unregister(&wc->spans[2]); if (wc->spans[3].flags & ZT_FLAG_REGISTERED) zt_unregister(&wc->spans[3]); #if 0 /* Stop any DMA */ __t1xxp_stop_dma(wc); /* In case hardware is still there */ __t1xxp_disable_interrupts(wc); t1xxp_stop_stuff(wc); #endif if (wc->membase) iounmap((void *)wc->membase); pci_release_regions(pdev); #if 0 if (wc->memaddr) release_mem_region(wc->memaddr, wc->memlen); #endif /* Immediately free resources */ pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 32 * 4, (void *)wc->writechunk, wc->writedma); #if 1 free_irq(pdev->irq, wc); #endif cards[wc->num] = NULL; pci_set_drvdata(pdev, NULL); } } static struct pci_device_id t4_pci_tbl[] __devinitdata = { { 0x10ee, 0x0314, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long)"Wildcard TE410P-Xilinx" }, { 0, } }; static struct pci_driver t4_driver = { name: "t4xxp", probe: t4_init_one, #ifdef LINUX26 remove: __devexit_p(t4_remove_one), #else remove: t4_remove_one, #endif suspend: NULL, resume: NULL, id_table: t4_pci_tbl, }; static int __init t4_init(void) { int res; res = pci_module_init(&t4_driver); if (res) return -ENODEV; return 0; } static void __exit t4_cleanup(void) { pci_unregister_driver(&t4_driver); } MODULE_AUTHOR("Mark Spencer"); MODULE_DESCRIPTION("TE410P PCI Driver"); #ifdef MODULE_LICENSE MODULE_LICENSE("GPL"); #endif #ifdef LINUX26 module_param(debug, int, 0600); module_param(loopback, int, 0600); module_param(noburst, int, 0600); module_param(timingcable, int, 0600); module_param(t1e1override, int, 0600); module_param(alarmdebounce, int, 0600); #else MODULE_PARM(debug, "i"); MODULE_PARM(loopback, "i"); MODULE_PARM(noburst, "i"); MODULE_PARM(timingcable, "i"); MODULE_PARM(t1e1override, "i"); MODULE_PARM(alarmdebounce, "i"); #endif MODULE_DEVICE_TABLE(pci, t4_pci_tbl); module_init(t4_init); module_exit(t4_cleanup);