/* * Wildcard S100U USB FXS Interface Zapata Telephony Driver * * Written by Mark Spencer * Matthew Fredrickson * * Copyright (C) 2001, Linux Support Services, Inc. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ /* Save power at the expense of not always being able to transmit on hook. If this is set, we only transit on hook for some time after a ring (POWERSAVE_TIMEOUT) */ /* #define PROSLIC_POWERSAVE */ #define POWERSAVE_TIME 4000 #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE > KERNEL_VERSION(2,4,19) #define USB2420 #endif #ifdef STANDALONE_ZAPATA #include "zaptel.h" #else #include #endif /* STANDALONE_ZAPATA */ #include "wcusb.h" #include "proslic.h" #ifndef FILL_CONTROL_URB #define FILL_CONTROL_URB usb_fill_control_urb #endif #ifdef DEBUG_WILDCARD #define DPRINTK(x) printk x #else #define DPRINTK(x) #endif // Function prototypes static int readProSlicDirectReg(struct usb_device *dev, unsigned char address, unsigned char* data); static int initializeIndirectRegisters(struct usb_device *dev); static int verifyIndirectRegisters(struct usb_device *dev); static int writeProSlicDirectReg(struct usb_device *dev, unsigned char address, unsigned char data); static int writeProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short data); static int readProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short *data); static int writeProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short data); static alpha indirect_regs[] = { {0,255,"DTMF_ROW_0_PEAK",0x55C2}, {1,255,"DTMF_ROW_1_PEAK",0x51E6}, {2,255,"DTMF_ROW2_PEAK",0x4B85}, {3,255,"DTMF_ROW3_PEAK",0x4937}, {4,255,"DTMF_COL1_PEAK",0x3333}, {5,255,"DTMF_FWD_TWIST",0x0202}, {6,255,"DTMF_RVS_TWIST",0x0202}, {7,255,"DTMF_ROW_RATIO_TRES",0x0198}, {8,255,"DTMF_COL_RATIO_TRES",0x0198}, {9,255,"DTMF_ROW_2ND_ARM",0x0611}, {10,255,"DTMF_COL_2ND_ARM",0x0202}, {11,255,"DTMF_PWR_MIN_TRES",0x00E5}, {12,255,"DTMF_OT_LIM_TRES",0x0A1C}, {13,0,"OSC1_COEF",0x7B30}, {14,1,"OSC1X",0x0063}, {15,2,"OSC1Y",0x0000}, {16,3,"OSC2_COEF",0x7870}, {17,4,"OSC2X",0x007D}, {18,5,"OSC2Y",0x0000}, {19,6,"RING_V_OFF",0x0000}, {20,7,"RING_OSC",0x7EF0}, {21,8,"RING_X",0x0160}, {22,9,"RING_Y",0x0000}, {23,255,"PULSE_ENVEL",0x2000}, {24,255,"PULSE_X",0x2000}, {25,255,"PULSE_Y",0x0000}, //{26,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower {26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower {27,14,"XMIT_DIGITAL_GAIN",0x4000}, //{27,"XMIT_DIGITAL_GAIN",0x2000}, {28,15,"LOOP_CLOSE_TRES",0x1000}, {29,16,"RING_TRIP_TRES",0x3600}, {30,17,"COMMON_MIN_TRES",0x1000}, {31,18,"COMMON_MAX_TRES",0x0200}, {32,19,"PWR_ALARM_Q1Q2",0x07C0}, {33,20,"PWR_ALARM_Q3Q4",0x2600}, {34,21,"PWR_ALARM_Q5Q6",0x1B80}, {35,22,"LOOP_CLOSURE_FILTER",0x8000}, {36,23,"RING_TRIP_FILTER",0x0320}, {37,24,"TERM_LP_POLE_Q1Q2",0x008C}, {38,25,"TERM_LP_POLE_Q3Q4",0x0100}, {39,26,"TERM_LP_POLE_Q5Q6",0x0010}, {40,27,"CM_BIAS_RINGING",0x0C00}, {41,64,"DCDC_MIN_V",0x0C00}, {42,255,"DCDC_XTRA",0x1000}, {43,66,"LOOP_CLOSE_TRES_LOW",0x1000}, }; static int debug = 0; #define FLAG_FLIP_RELAYS (1 << 0) static struct wc_usb_desc wcusb = { "Wildcard S100U USB FXS Interface" }; static struct wc_usb_desc wcusb2 = { "Wildcard S110U USB FXS Interface", FLAG_FLIP_RELAYS }; static struct wc_usb_desc wc_usb_phone = { "Wildcard Phone Test driver" }; static struct wc_usb_pvt *ifaces[WC_MAX_IFACES]; static void wcusb_check_keypad(struct wc_usb_pvt *p); static int set_aux_ctrl(struct wc_usb_pvt *p, char auxpins, int on); static int Wcusb_WriteWcRegs(struct usb_device *dev, unsigned char index, unsigned char *data, int len) { unsigned int pipe = usb_sndctrlpipe(dev, 0); int requesttype; int res; requesttype = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE; res = usb_control_msg(dev, pipe, REQUEST_NORMAL, requesttype, 0, index, data, len, CONTROL_TIMEOUT_JIFFIES); if (res == -ETIMEDOUT) { printk("wcusb: timeout on vendor write\n"); return -1; } else if (res < 0) { printk("wcusb: Error executing control: status=%d\n", le32_to_cpu(res)); return -1; } return 0; } static int Wcusb_ReadWcRegs(struct usb_device *dev, unsigned char index, unsigned char *data, int len) { unsigned int pipe = usb_rcvctrlpipe(dev, 0); int requesttype; int res; requesttype = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE; res = usb_control_msg(dev, pipe, REQUEST_NORMAL, requesttype, 0, index, data, len, CONTROL_TIMEOUT_JIFFIES); if (res == -ETIMEDOUT) { printk("wcusb: timeout on vendor write\n"); return -1; } else if (res < 0) { printk("wcusb: Error executing control: status=%d\n", le32_to_cpu(res)); return -1; } else { DPRINTK(("wcusb: Executed read, result = %d (data = %04x)\n", le32_to_cpu(res), (int) *data)); } return 0; } #ifdef USB2420 #ifdef LINUX26 static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb, struct pt_regs *regs)); static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb, struct pt_regs *regs)); static void wcusb_async_control(struct urb *urb, struct pt_regs *regs); #else static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb)); static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb)); static void wcusb_async_control(struct urb *urb); #endif /* LINUX26 */ #else static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(urb_t *urb)); static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(urb_t *urb)); static void wcusb_async_control(urb_t *urb); #endif static void proslic_read_direct_async(struct wc_usb_pvt *p, unsigned char address) { p->wcregindex = address; p->wcregbuf[0] = address | 0x80; p->wcregbuf[1] = 0; p->wcregbuf[2] = 0; p->wcregbuf[3] = 0x67; wcusb_async_write(p, WCUSB_SPORT0, p->wcregbuf, 4, STATE_WCREAD_WRITEREG, wcusb_async_control); } static void proslic_write_direct_async(struct wc_usb_pvt *p, unsigned char address, unsigned char val) { p->wcregindex = address; p->wcregbuf[0] = address & 0x7f; p->wcregbuf[1] = val; p->wcregbuf[2] = 0; p->wcregbuf[3] = 0x27; wcusb_async_write(p, WCUSB_SPORT0, p->wcregbuf, 4, STATE_WCWRITE_WRITERES, wcusb_async_control); } #ifdef USB2420 #ifdef LINUX26 static void wcusb_async_control(struct urb *urb, struct pt_regs *regs) #else static void wcusb_async_control(struct urb *urb) #endif #else static void wcusb_async_control(urb_t *urb) #endif { struct wc_usb_pvt *p = urb->context; p->urbcount--; if (urb->status) { printk("Error in transfer...\n"); /* return is the "right thing", but don't... */ p->timer = 50; /* return; */ } if (!(p->flags & FLAG_RUNNING)) { return; } switch (p->controlstate) { case STATE_WCREAD_WRITEREG: /* We've written the register to sport0, now read form sport 1 */ wcusb_async_read(p, WCUSB_SPORT1, &p->wcregval, 1, STATE_WCREAD_READRES, wcusb_async_control); return; case STATE_WCREAD_READRES: switch(p->wcregindex) { case 68: if (!p->hookstate && (p->wcregval & 1)) { p->hookstate = 1; if (debug) printk("Going off hook...\n"); zt_hooksig(&p->chan, ZT_RXSIG_OFFHOOK); } else if (p->hookstate && !(p->wcregval & 1)) { p->hookstate = 0; if (debug) printk("Going on hook...\n"); zt_hooksig(&p->chan, ZT_RXSIG_ONHOOK); } /* Set outgoing hook state if necessary */ if (p->txhook != p->newtxhook) { if (debug) printk("Really setting hook state to %d\n", p->newtxhook); p->txhook = p->newtxhook; proslic_write_direct_async(p, 64, p->newtxhook); } else p->timer = 50; break; case 64: if (debug) printk("Read hook state as %02x\n", p->wcregval); p->timer = 50; break; default: printk("dunno what to do with read/regindex %d\n", p->wcregindex); p->wcregindex = 0; } return; case STATE_WCWRITE_WRITERES: switch(p->wcregindex) { case 64: if (debug) { printk("Hook transition complete to %d\n", ((char *)(urb->transfer_buffer))[1]); #ifdef BOOST_RINGER } if (p->txhook == 4) { /* Ringing -- boost battery to 96V */ proslic_write_direct_async(p, 74, 0x3f); } else { /* Leave battery at default 75V */ proslic_write_direct_async(p, 74, 0x32); } break; case 74: if (debug) { printk("Battery set to -%dV\n", ((char *)(urb->transfer_buffer))[1] * 3 / 2); #endif proslic_read_direct_async(p, 64); } else p->timer = 50; break; default: printk("dunno what to do with write/regindex %d\n", p->wcregindex); p->wcregindex = 0; } return; default: printk("async control in unknown state %d\n", p->controlstate); } } #ifdef USB2420 #ifdef LINUX26 static void keypad_check_done(struct urb *urb, struct pt_regs *regs) #else static void keypad_check_done(struct urb *urb) #endif #else static void keypad_check_done(urb_t *urb) #endif { struct wc_usb_pvt *p = urb->context; struct wc_keypad_data *d = p->pvt_data; static char aux_pattern[] = {0x1e, 0x1d, 0x17, 0xf}; char digit = 'z'; p->urbcount--; if (!d->running) { printk("Stopping stream (check_done)\n"); return; } if (urb->status) { printk("status %d\n", urb->status); } if (debug) printk("i is %d\n", d->i); switch (d->state) { loop_start: case STATE_FOR_LOOP_1_OUT: if (debug) printk("data12 is %x\n", d->data12); if(d->i < sizeof(aux_pattern) / sizeof(char)) { d->tmp = aux_pattern[d->i] | (d->data12 & 0xe0); d->state = STATE_FOR_LOOP_2_IN; if (debug) printk("tmp is %x\n", d->tmp); wcusb_async_write(p, 0x12, &d->tmp, 1, 0, keypad_check_done); return; } else { goto func_end; } case STATE_FOR_LOOP_2_IN: d->state = STATE_FOR_LOOP_PROC_DATA; wcusb_async_read(p, 0xc0, &d->data, 1, 0, keypad_check_done); return; case STATE_FOR_LOOP_PROC_DATA: d->state = STATE_FOR_LOOP_CLEAR_DIGIT; if(debug) printk("data is %x\n", d->data); if ((d->data & 0x1f) != 0x1f) { if(d->data == 0xe && aux_pattern[d->i] == 0x1e) { digit = '1';} else if(d->data == 0xd && aux_pattern[d->i] == 0x1e) { digit = '2';} else if(d->data == 0xb && aux_pattern[d->i] == 0x1e) { digit = '3';} else if(d->data == 0x7 && aux_pattern[d->i] == 0x1e) { p->hookstate = 0; /* On||Off */ zt_hooksig(&p->chan, ZT_RXSIG_ONHOOK); } else if(d->data == 0xe && aux_pattern[d->i] == 0x1d) { digit = '4';} else if(d->data == 0xd && aux_pattern[d->i] == 0x1d) { digit = '5';} else if(d->data == 0xb && aux_pattern[d->i] == 0x1d) { digit = '6';} else if(d->data == 0x7 && aux_pattern[d->i] == 0x1d) { p->hookstate = 1;/* Dial */ zt_hooksig(&p->chan, ZT_RXSIG_OFFHOOK); } else if(d->data == 0xe && aux_pattern[d->i] == 0x17) { digit = '7';} else if(d->data == 0xd && aux_pattern[d->i] == 0x17) { digit = '8';} else if(d->data == 0xb && aux_pattern[d->i] == 0x17) { digit = '9';} else if(d->data == 0x7 && aux_pattern[d->i] == 0x17) d->scanned_event = 15; /* ReDial */ else if(d->data == 0xe && aux_pattern[d->i] == 0xf) { digit = '*';}/* '*' */ else if(d->data == 0xd && aux_pattern[d->i] == 0xf) { digit = '0';} else if(d->data == 0xb && aux_pattern[d->i] == 0xf) { digit = '#';} /* '#' */ else if(d->data == 0x7 && aux_pattern[d->i] == 0xf) d->scanned_event = 16; /* Volume? */ else { (d->i)++; if (debug) printk("Scanned event %d; data = %x\n", d->scanned_event, d->data); goto loop_start; } } else { if(debug) printk("Hit new if\n"); goto func_end; } if (debug) printk("wcusb: got digit %d\n", d->scanned_event); if (digit != 'z') { d->tone = zt_dtmf_tone(digit, 0); if (!d->tone) { printk("wcusb: Didn't get a tone structure\n"); goto func_end; } zt_init_tone_state(&d->ts, d->tone); p->sample = STREAM_DTMF; } d->count = 0; case STATE_FOR_LOOP_CLEAR_DIGIT: if (((d->data & 0xf) != 0xf) && d->count < 200) { wcusb_async_read(p, 0xc0, &d->data, 1, 0, keypad_check_done); return; } (d->i)++; p->sample = STREAM_NORMAL; goto loop_start; } func_end: p->timer = 100; return; } static void wcusb_check_interrupt(struct wc_usb_pvt *p) { /* Start checking for interrupts */ if (p->devclass == WC_KEYPAD) { wcusb_check_keypad(p); } else { proslic_read_direct_async(p, 68); } return; } #ifdef USB2420 #ifdef LINUX26 static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb, struct pt_regs *regs)) #else static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb)) #endif /* LINUX26 */ #else static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(urb_t *urb)) #endif { __u16 size = len; __u16 ind = index; #ifdef USB2420 struct urb *urb = &p->control; memset(urb, 0, sizeof(struct urb)); p->dr.bRequestType = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE; p->dr.bRequest = REQUEST_NORMAL; p->dr.wValue = 0; p->dr.wIndex = cpu_to_le16(ind); p->dr.wLength = cpu_to_le16(size); #else urb_t *urb = &p->control; memset(urb, 0, sizeof(urb_t)); p->dr.requesttype = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE; p->dr.request = REQUEST_NORMAL; p->dr.value = 0; p->dr.index = cpu_to_le16(ind); p->dr.length = cpu_to_le16(size); #endif FILL_CONTROL_URB(urb, p->dev, usb_rcvctrlpipe(p->dev, 0), (unsigned char *)&p->dr, data, len, complete, p); #ifdef LINUX26 if (usb_submit_urb(urb, GFP_KERNEL)) #else if (usb_submit_urb(urb)) #endif { printk("wcusb_async_read: control URB died\n"); p->timer = 50; return -1; } p->controlstate = state; p->urbcount++; return 0; } #ifdef USB2420 #ifdef LINUX26 static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb, struct pt_regs *regs)) #else static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb)) #endif /* LINUX26 */ #else static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(urb_t *urb)) #endif { __u16 size = len; __u16 ind = index; #ifdef USB2420 struct urb *urb = &p->control; memset(urb, 0, sizeof(struct urb)); p->dr.bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE; p->dr.bRequest = REQUEST_NORMAL; p->dr.wValue = 0; p->dr.wIndex = cpu_to_le16(ind); p->dr.wLength = cpu_to_le16(size); #else urb_t *urb = &p->control; memset(urb, 0, sizeof(urb_t)); p->dr.requesttype = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE; p->dr.request = REQUEST_NORMAL; p->dr.value = 0; p->dr.index = cpu_to_le16(ind); p->dr.length = cpu_to_le16(size); #endif FILL_CONTROL_URB(urb, p->dev, usb_sndctrlpipe(p->dev, 0), (unsigned char *)&p->dr, data, len, complete, p); #ifdef LINUX26 if (usb_submit_urb(urb, GFP_KERNEL)) #else if (usb_submit_urb(urb)) #endif { printk("wcusb_async_write: control URB died\n"); return -1; } p->controlstate = state; p->urbcount++; return 0; } /* ** Write register to Wc560 */ static int wcoutp(struct usb_device *dev, unsigned char address, unsigned char data) { if (!Wcusb_WriteWcRegs(dev, address, &data, 1)) return 0; return -1; } /* ** read register from Wc560 */ static int wcinp(struct usb_device *dev, unsigned char address, unsigned char* data ) { if (!Wcusb_ReadWcRegs(dev, address, data, 1)) return 0; return -1; } static int waitForProSlicIndirectRegAccess(struct usb_device *dev) { unsigned char count, data; count = 0; while (count++ < 3) { data = 0; readProSlicDirectReg(dev, I_STATUS, &data); if (!data) return 0; } if(count > 2) printk(" ##### Loop error #####\n"); return -1; } static int writeProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short data) { if(!waitForProSlicIndirectRegAccess(dev)) { if (!writeProSlicDirectReg(dev, IDA_LO,(unsigned char)(data & 0xFF))) { if(!writeProSlicDirectReg(dev, IDA_HI,(unsigned char)((data & 0xFF00)>>8))) { if(!writeProSlicDirectReg(dev, IAA,address)) return 0; } } } return -1; } /* ** Read register from ProSlic */ int readProSlicDirectReg(struct usb_device *dev, unsigned char address, unsigned char* dataRead) { unsigned char data[4]; data[0] = address | 0x80; data[1] = 0; data[2] = 0; data[3] = 0x67; // write to WC register 0x26 Wcusb_WriteWcRegs(dev, WCUSB_SPORT0, data, 4); Wcusb_ReadWcRegs(dev, WCUSB_SPORT1, data, 1); *dataRead = data[0]; return 0; } /* ** Write register to ProSlic */ int writeProSlicDirectReg(struct usb_device *dev, unsigned char address, unsigned char RegValue) { unsigned char data[4]; data[0] = address & 0x7f; data[1] = RegValue; data[2] = 0; data[3] = 0x27; // write to WC register 0x26 return Wcusb_WriteWcRegs(dev, WCUSB_SPORT0, data, 4); } static int readProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short *data) { if (!waitForProSlicIndirectRegAccess(dev)) { if (!writeProSlicDirectReg(dev,IAA,address)) { if(!waitForProSlicIndirectRegAccess(dev)) { unsigned char data1, data2; if (!readProSlicDirectReg(dev,IDA_LO, &data1) && !readProSlicDirectReg (dev, IDA_HI, &data2)) { *data = data1 | (data2 << 8); return 0; } else printk("Failed to read direct reg\n"); } else printk("Failed to wait inside\n"); } else printk("failed write direct IAA\n"); } else printk("failed to wait\n"); return -1; } static int initializeIndirectRegisters(struct usb_device *dev) { unsigned char i; for (i=0; i<43; i++) { if(writeProSlicInDirectReg(dev, i,indirect_regs[i].initial)) return -1; } return 0; } static int verifyIndirectRegisters(struct usb_device *dev) { int passed = 1; unsigned short i,j, initial; for (i=0; i<43; i++) { if(readProSlicInDirectReg(dev, (unsigned char) i, &j)) { printk("Failed to read indirect register %d\n", i); return -1; } initial= indirect_regs[i].initial; if ( j != initial ) { printk("!!!!!!! %s iREG %X = %X should be %X\n", indirect_regs[i].name,i,j,initial ); passed = 0; } } if (passed) { if (debug) printk("Init Indirect Registers completed successfully.\n"); } else { printk(" !!!!! Init Indirect Registers UNSUCCESSFULLY.\n"); } return 0; } static int calibrateAndActivateProSlic(struct usb_device *dev) { unsigned char x; if(writeProSlicDirectReg(dev, 92, 0xc8)) return -1; if(writeProSlicDirectReg(dev, 97, 0)) return -1; if(writeProSlicDirectReg(dev, 93, 0x19)) return -1; if(writeProSlicDirectReg(dev, 14, 0)) return -1; if(writeProSlicDirectReg(dev, 93, 0x99)) return -1; if(!readProSlicDirectReg (dev, 93, &x)) { if (debug) printk("DC Cal x=%x\n",x); if (!writeProSlicDirectReg(dev, 97, 0)) { if(!writeProSlicDirectReg(dev, CALIBR1, CALIBRATE_LINE)) { unsigned char data; if(!readProSlicDirectReg(dev, CALIBR1, &data)) return writeProSlicDirectReg(dev, LINE_STATE,ACTIVATE_LINE); } } } return -1; } static int InitProSlic(struct usb_device *dev) { if (writeProSlicDirectReg(dev, 67, 0x0e)) /* Disable Auto Power Alarm Detect and other "features" */ return -1; if (initializeIndirectRegisters(dev)) { printk(KERN_INFO "Indirect Registers failed to initialize.\n"); return -1; } if (verifyIndirectRegisters(dev)) { printk(KERN_INFO "Indirect Registers failed verification.\n"); return -1; } if (calibrateAndActivateProSlic(dev)) { printk(KERN_INFO "ProSlic Died on Activation.\n"); return -1; } if (writeProSlicInDirectReg(dev, 97, 0x0)) { // Stanley: for the bad recording fix printk(KERN_INFO "ProSlic IndirectReg Died.\n"); return -1; } if (writeProSlicDirectReg(dev, 1, 0x2a)) { // U-Law GCI 8-bit interface printk(KERN_INFO "ProSlic DirectReg Died.\n"); return -1; } if (writeProSlicDirectReg(dev, 2, 0)) // Tx Start count low byte 0 return -1; if (writeProSlicDirectReg(dev, 3, 0)) // Tx Start count high byte 0 return -1; if (writeProSlicDirectReg(dev, 4, 0)) // Rx Start count low byte 0 return -1; if (writeProSlicDirectReg(dev, 5, 0)) // Rx Start count high byte 0 return -1; if (writeProSlicDirectReg(dev, 8, 0x0)) // disable loopback return -1; if (writeProSlicDirectReg(dev, 18, 0xff)) // clear all interrupt return -1; if (writeProSlicDirectReg(dev, 19, 0xff)) return -1; if (writeProSlicDirectReg(dev, 20, 0xff)) return -1; if (writeProSlicDirectReg(dev, 21, 0x00)) // enable interrupt return -1; if (writeProSlicDirectReg(dev, 22, 0x02)) // Loop detection interrupt return -1; if (writeProSlicDirectReg(dev, 23, 0x01)) // DTMF detection interrupt return -1; if (writeProSlicDirectReg(dev, 72, 0x20)) return -1; #ifdef BOOST_RINGER /* Beef up Ringing voltage to 89V */ if (writeProSlicInDirectReg(dev, 23, 0x1d1)) return -1; #endif return 0; } static int init_hardware(struct wc_usb_pvt *p) { struct usb_device *dev = p->dev; switch (p->devclass) { case WC_PROSLIC: if (wcoutp(dev, 0x12, 0x00)) /* AUX6 as output, set to low */ return -1; if (wcoutp(dev, 0x13, 0x40)) /* AUX6 is output */ return -1; if (wcoutp(dev, 0, 0x50)) /* extrst, AUX2 is suspend */ return -1; if (wcoutp(dev, 0x29, 0x20)) /* enable SerialUP AUX pin definition */ return -1; if (wcoutp(dev, 0, 0x51)) /* no extrst, AUX2 is suspend */ return -1; /* Make sure there is no gain */ if (wcoutp(dev, 0x22, 0x00)) return -1; if (wcoutp(dev, 0x23, 0xf2)) return -1; if (wcoutp(dev, 0x24, 0x00)) return -1; if (wcoutp(dev, 0x25, 0xc9)) return -1; if (InitProSlic(dev)) { printk("wcusb: Failed to initialize proslic\n"); return -1; } case WC_KEYPAD: set_aux_ctrl(p, WC_AUX0, 1); set_aux_ctrl(p, WC_AUX1, 1); set_aux_ctrl(p, WC_AUX2, 1); set_aux_ctrl(p, WC_AUX3, 1); } if (debug) printk("wcusb: Setting correct interfaces.\n"); /* Setup correct settings (8000 Hz, signed linear) */ if (usb_set_interface(dev, 2, 1)) { printk("wcusb: Unable to setup USB interface 2 to altsetting 1\n"); return -1; } if (usb_set_interface(dev, 3, 1)) { printk("wcusb: Unable to setup USB interface 3 to altsetting 1\n"); return -1; } return 0; } /* Don't call from an interrupt context */ static int set_aux_ctrl(struct wc_usb_pvt *p, char uauxpins, int on) { char udata12 = 0; char udata13 = 0; wcinp(p->dev, 0x12, &udata12); wcinp(p->dev, 0x13, &udata13); wcoutp(p->dev, 0x12, on ? (uauxpins | udata12) : (~uauxpins & udata12)); wcoutp(p->dev, 0x13, uauxpins | udata13); return 0; } static void wcusb_check_keypad(struct wc_usb_pvt *p) { struct wc_keypad_data *d = p->pvt_data; if (!d->running) { printk("Stopping keypad stream\n"); return; } if (debug) printk("Launched a packet\n"); d->state = STATE_FOR_LOOP_1_OUT; d->data = -1; d->data12 = -1; d->scanned_event = -1; d->i = 0; wcusb_async_read(p, 0x12, &d->data12, 1, 0, keypad_check_done); return; } static char wc_dtmf(struct wc_usb_pvt *p) { struct wc_keypad_data *d = p->pvt_data; short linsample = 0; if (!d) { printk("NULL pointer, go away\n"); return 0; } linsample = zt_tone_nextsample(&d->ts, d->tone); return ZT_LIN2MU(linsample); } #ifdef LINUX26 static void wcusb_read_complete(struct urb *q, struct pt_regs *regs) #else static void wcusb_read_complete(struct urb *q) #endif { struct wc_usb_pvt *p = q->context; short *chunk = q->transfer_buffer; int x; if (!p->flags & FLAG_RUNNING) { /* Stop sending URBs since we're not running anymore */ p->urbcount--; return; } switch (p->sample) { case STREAM_NORMAL: for (x = 0; x < ZT_CHUNKSIZE; x++) { p->chan.readchunk[x] = ZT_LIN2MU(le16_to_cpu(chunk[x])); } break; case STREAM_DTMF: for (x = 0; x < ZT_CHUNKSIZE; x++) { p->chan.readchunk[x] = wc_dtmf(p); } break; } /* XXX We could probably optimize some here XXX */ zt_ec_chunk(&p->chan, p->chan.readchunk, p->chan.writechunk); zt_receive(&p->span); q->dev = p->dev; #ifdef LINUX26 if (usb_submit_urb(q, GFP_KERNEL)) #else if (usb_submit_urb(q)) #endif { printk("wcusb: Read cycle failed\n"); } if (p->timer && !--p->timer) { if (p->devclass == WC_KEYPAD) { if(debug) printk("Checking keypad\n"); wcusb_check_keypad(p); } else { wcusb_check_interrupt(p); } } #ifdef PROSLIC_POWERSAVE if (p->devclass != WC_KEYPAD) { if (p->lowpowertimer && !--p->lowpowertimer) { /* Switch back into low power mode */ p->idletxhookstate = 1; if (p->txhook == 2) p->newtxhook = p->idletxhookstate; } } #endif return; } #ifdef LINUX26 static void wcusb_write_complete(struct urb *q, struct pt_regs *regs) #else static void wcusb_write_complete(struct urb *q) #endif { struct wc_usb_pvt *p = q->context; short *chunk = q->transfer_buffer; int x; if (!p->flags & FLAG_RUNNING) { /* Stop sending URBs since we're not running anymore */ p->urbcount--; return; } zt_transmit(&p->span); for (x = 0; x < ZT_CHUNKSIZE; x++) { chunk[x] = cpu_to_le16(ZT_MULAW(p->chan.writechunk[x])); } q->dev = p->dev; #ifdef LINUX26 if (usb_submit_urb(q, GFP_KERNEL)) #else if (usb_submit_urb(q)) #endif { printk("wcusb: Write cycle failed\n"); } return; } static int StopTransmit(struct wc_usb_pvt *p) { p->flags &= ~FLAG_RUNNING; if (p->devclass == WC_KEYPAD) { struct wc_keypad_data *d = p->pvt_data; d->running = 0; } while(p->urbcount) { schedule_timeout(1); } printk("ending transmit\n"); return 0; } static int flip_relays(struct wc_usb_pvt *p, int onoff) { unsigned char ctl; unsigned char data; /* Read data */ if (wcinp(p->dev, 0x12, &data)) return -1; /* Read control */ if (wcinp(p->dev, 0x13, &ctl)) return -1; /* Setup values properly -- Pins AUX3 & AUX4 control the relays */ ctl |= 0x18; if (onoff) { data |= 0x18; } else { data &= 0xe7; } if (wcoutp(p->dev, 0x12, data)) return -1; if (wcoutp(p->dev, 0x13, ctl)) return -1; return 0; } static int prepare_transfer_urbs(struct wc_usb_pvt *p) { int x; /* Endpoint 6 is the wave-in device */ unsigned int readpipe = usb_rcvisocpipe(p->dev, 0x06); /* Endpoint 7 is the wave-out device */ unsigned int writepipe = usb_sndisocpipe(p->dev, 0x07); for (x = 0; x < 2; x++) { p->dataread[x].urb.dev = p->dev; p->dataread[x].urb.pipe = readpipe; #ifdef LINUX26 p->dataread[x].urb.transfer_flags = URB_ISO_ASAP; #else p->dataread[x].urb.transfer_flags = USB_ISO_ASAP; #endif p->dataread[x].urb.number_of_packets = 1; p->dataread[x].urb.context = p; p->dataread[x].urb.complete = wcusb_read_complete; p->dataread[x].urb.iso_frame_desc[0].length = ZT_CHUNKSIZE * 2; p->dataread[x].urb.iso_frame_desc[0].offset = 0; p->dataread[x].urb.transfer_buffer = p->readchunk + ZT_CHUNKSIZE * x; p->dataread[x].urb.transfer_buffer_length = ZT_CHUNKSIZE * 2; p->datawrite[x].urb.dev = p->dev; p->datawrite[x].urb.pipe = writepipe; #ifdef LINUX26 p->datawrite[x].urb.transfer_flags = URB_ISO_ASAP; #else p->datawrite[x].urb.transfer_flags = USB_ISO_ASAP; #endif p->datawrite[x].urb.number_of_packets = 1; p->datawrite[x].urb.context = p; p->datawrite[x].urb.complete = wcusb_write_complete; p->datawrite[x].urb.iso_frame_desc[0].length = ZT_CHUNKSIZE * 2; p->datawrite[x].urb.iso_frame_desc[0].offset = 0; p->datawrite[x].urb.transfer_buffer = p->writechunk + ZT_CHUNKSIZE * x; p->datawrite[x].urb.transfer_buffer_length = ZT_CHUNKSIZE * 2; } return 0; } static int begin_transfer(struct wc_usb_pvt *p) { int x; p->urbcount = 4; p->flags |= FLAG_RUNNING; for (x = 0; x < 2; x++) { #ifdef LINUX26 if (usb_submit_urb(&p->dataread[x].urb, GFP_KERNEL)) #else if (usb_submit_urb(&p->dataread[x].urb)) #endif { printk(KERN_ERR "wcusb: Read submit failed\n"); return -1; } #ifdef LINUX26 if (usb_submit_urb(&p->datawrite[x].urb, GFP_KERNEL)) #else if (usb_submit_urb(&p->datawrite[x].urb)) #endif { printk(KERN_ERR "wcusb: Write submit failed\n"); return -1; } } /* Start checking for interrupts */ wcusb_check_interrupt(p); return 0; } static int wc_usb_hooksig(struct zt_chan *chan, zt_txsig_t txsig) { struct wc_usb_pvt *p = chan->pvt; switch (p->devclass) { case WC_PROSLIC: #ifdef PROSLIC_POWERSAVE if (p->txhook == 4) { /* Switching out of ring... Be sure we idle at 2, not 1 at least for a bit so we can transmit caller*ID */ p->idletxhookstate = 2; p->lowpowertimer = POWERSAVE_TIME; } #endif p->txhook = -1; switch(txsig) { case ZT_TXSIG_ONHOOK: switch(chan->sig) { case ZT_SIG_FXOKS: case ZT_SIG_FXOLS: p->newtxhook = p->idletxhookstate; break; case ZT_SIG_FXOGS: p->newtxhook = 3; break; } break; case ZT_TXSIG_OFFHOOK: p->newtxhook = p->idletxhookstate; break; case ZT_TXSIG_START: p->newtxhook = 4; break; case ZT_TXSIG_KEWL: p->newtxhook = 0; break; } case WC_KEYPAD: switch (txsig) { case ZT_TXSIG_ONHOOK: break; case ZT_TXSIG_OFFHOOK: break; case ZT_TXSIG_START: break; case ZT_TXSIG_KEWL: break; } break; } return 0; } static int wc_usb_open(struct zt_chan *chan) { struct wc_usb_pvt *p = chan->pvt; if (p->dead) return -1; switch (p->devclass) { case WC_KEYPAD: p->hookstate = 0; zt_hooksig(&p->chan, ZT_RXSIG_ONHOOK); break; default: break; } #ifndef LINUX26 MOD_INC_USE_COUNT; #endif p->usecount++; return 0; } static int wc_usb_close(struct zt_chan *chan) { struct wc_usb_pvt *p = chan->pvt; p->usecount--; if (!p->usecount && p->dead) { /* Someone unplugged us while we were running, so now that the program exited, we can release our resources */ zt_unregister(&p->span); ifaces[p->pos] = NULL; if (p->pvt_data) kfree(p->pvt_data); kfree(p); } #ifndef LINUX26 MOD_DEC_USE_COUNT; #endif return 0; } static struct wc_usb_pvt *wc_detect_device(struct usb_device *dev, struct wc_usb_pvt *orig) { struct wc_usb_pvt *p; p = orig; if (!p) { p = kmalloc(sizeof(struct wc_usb_pvt), GFP_KERNEL); if (!p) { printk("wcusb: kmalloc failed\n"); return NULL; } memset(p, 0, sizeof(struct wc_usb_pvt)); } p->dev = dev; #ifdef PROSLIC_POWERSAVE /* By default we can't send on hook */ p->idletxhookstate = 1; #else /* By default we can always send on hook */ p->idletxhookstate = 2; #endif printk("wcusb: wc_detect_device\n"); if (dev->descriptor.idProduct == 0xb210) { struct wc_keypad_data *d = kmalloc(sizeof(struct wc_keypad_data), GFP_KERNEL); printk("wcusb: Found a WC Keyed Phone\n"); p->devclass = WC_KEYPAD; if (!d) { printk("wcusb: kmalloc failed in init_device_pvt\n"); return NULL; } memset(d, 0, sizeof(struct wc_keypad_data)); p->pvt_data = d; d->count = 0; d->running = 1; d->tone = NULL; return p; } else { p->pvt_data = NULL; p->devclass = WC_PROSLIC; } printk("Second exit\n"); return p; } static int wc_set_zaptel(struct wc_usb_pvt *p) { int x; for (x = 0; x < WC_MAX_IFACES; x++) if (!ifaces[x]) break; if (x >= WC_MAX_IFACES) { printk("wcusb: Too many interfaces\n"); return -1; } sprintf(p->span.name, "WCUSB/%d", x); sprintf(p->span.desc,"%s %d", p->span.name, x); sprintf(p->chan.name, "WCUSB/%d/%d", x, 0); p->chan.sigcap = ZT_SIG_FXOKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS; /* We're capabable of both FXOKS and FXOLS */ p->chan.chanpos = 1; p->span.deflaw = ZT_LAW_MULAW; p->span.chans = &p->chan; p->span.channels = 1; p->span.hooksig = wc_usb_hooksig; p->span.open = wc_usb_open; p->span.close = wc_usb_close; ifaces[x] = p; p->pos = x; p->span.flags = ZT_FLAG_RBS; init_waitqueue_head(&p->span.maintq); p->span.pvt = p; p->chan.pvt = p; /* Set the stream to just pass the data from the device uninhibited */ p->sample = STREAM_NORMAL; if (zt_register(&p->span, 0)) { printk("wcusb: Unable to register span %s\n", p->span.name); return -1; } return 0; } #ifdef LINUX26 static int wc_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) #else static void *wc_usb_probe(struct usb_device *dev, unsigned int ifnum, const struct usb_device_id *id) #endif { struct wc_usb_pvt *p = NULL; struct wc_usb_desc *d = (struct wc_usb_desc *)id->driver_info; #ifdef LINUX26 struct usb_device *dev = interface_to_usbdev(intf); #endif int x; for (x=0;xdead) { if (debug) printk("Device slot %d can be revived\n", x); break; } if (debug) printk("Device slot %d is still in use\n", x); } if (!(p = wc_detect_device(dev, p))) { printk("wcusb: No wcusb devices found\n"); #ifdef LINUX26 return -ENODEV; #else return NULL; #endif } #ifndef LINUX26 if (usb_set_configuration(dev, dev->config[0].bConfigurationValue) < 0) { printk("wcusb: set_configuration failed (ConfigValue 0x%x)\n", dev->config[0].bConfigurationValue); return NULL; } #endif if (init_hardware(p)) { printk("wcusb: Hardware intialization failed.\n"); goto cleanup; } if (prepare_transfer_urbs(p)) { printk("wcusb: problem preparing the urbs for transfer\n"); goto cleanup; } if (d->flags & FLAG_FLIP_RELAYS) { flip_relays(p, 1); } if (!p->dead && wc_set_zaptel(p)) { printk("wcusb: Error in starting the zaptel stuff\n"); goto cleanup; } if (begin_transfer(p)) { printk("wcusb: Something went wrong when starting the transfer\n"); goto cleanup; } if (p->dead) printk("wcusb: Rekindling a %s (%s)\n", d->name, p->span.name); else printk("wcusb: Found a %s (%s)\n", d->name, p->span.name); /* Reset deadness */ p->dead = 0; /* Clear alarms */ p->span.alarms = 0; zt_alarm_notify(&p->span); #ifdef LINUX26 usb_set_intfdata(intf, p); return 0; #else return p; #endif cleanup: printk("cleanup\n"); if (p) { if (p->pvt_data) { kfree(p->pvt_data); } kfree(p); } #ifdef LINUX26 return -ENODEV; #else return NULL; #endif } #ifdef LINUX26 static void wc_usb_disconnect(struct usb_interface *intf) #else static void wc_usb_disconnect(struct usb_device *dev, void *ptr) #endif { /* Doesn't handle removal if we're in use right */ #ifdef LINUX26 struct wc_usb_pvt *p = usb_get_intfdata(intf); #else struct wc_usb_pvt *p = ptr; #endif if (p) { StopTransmit(p); p->dev = NULL; if (!p->usecount) { zt_unregister(&p->span); if (p->pvt_data) kfree(p->pvt_data); ifaces[p->pos] = NULL; kfree(p); } else { /* Generate alarm and note that we're dead */ p->span.alarms = ZT_ALARM_RED; zt_alarm_notify(&p->span); p->dead = 1; } } printk("wcusb: Removed a Wildcard device\n"); #ifdef LINUX26 usb_set_intfdata(intf, NULL); #endif return; } static struct usb_device_id wc_dev_ids[] = { /* This needs to be a USB audio device, and it needs to be made by us and have the right device ID */ { match_flags: (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_DEVICE), bInterfaceClass: USB_CLASS_AUDIO, bInterfaceSubClass: 1, idVendor: 0x06e6, idProduct: 0x831c, /* Product ID / Chip configuration (you can't change this) */ driver_info: (unsigned long)&wcusb, }, { match_flags: (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_DEVICE), bInterfaceClass: USB_CLASS_AUDIO, bInterfaceSubClass: 1, idVendor: 0x06e6, idProduct: 0x831e, driver_info: (unsigned long)&wcusb2, }, { match_flags: (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_DEVICE), bInterfaceClass: USB_CLASS_AUDIO, bInterfaceSubClass: 1, idVendor: 0x06e6, idProduct: 0xb210, driver_info: (unsigned long)&wc_usb_phone, }, { } /* Terminating Entry */ }; static struct usb_driver wc_usb_driver = { #ifdef LINUX26 owner: THIS_MODULE, #else fops: NULL, minor: 0, #endif name: "wcusb", probe: wc_usb_probe, disconnect: wc_usb_disconnect, id_table: wc_dev_ids, }; static int __init wc_init (void) { int res; res = usb_register(&wc_usb_driver); if (res) return res; printk("Wildcard USB FXS Interface driver registered\n"); return 0; } static void __exit wc_cleanup(void) { usb_deregister(&wc_usb_driver); } MODULE_AUTHOR("Matthew Fredrickson "); MODULE_DESCRIPTION("Wildcard USB FXS Interface driver"); #ifdef MODULE_LICENSE MODULE_LICENSE("GPL"); #endif MODULE_DEVICE_TABLE(usb, wc_dev_ids); module_init(wc_init); module_exit(wc_cleanup);