PISIP
Developer’s Guide

PJSIP Developer’s Guide

ABOUT PJSIP

PJSIP is small-footprint and high-performance SIP stack written in C.

PJSIP is distributed under dual licensing schemes: GPL and commercial license.

Please visit http://www.pjproject.net for more details.

ABOUT THIS DOCUMENT
Copyright ©2005-2006 Benny Prijono

This is a free document distributed under GNU Free Documentation License
version 1.2. Everyone is permitted to copy and distribute verbatim copies of this
document, but changing it is not allowed.

DOCUMENT REVISION HISTORY

Version Date Author Description
0.5 19 Dec 2005 bennylp Initial revision
0.5 10 Jan 2006 bennylp Updated according to changes in module and

transaction API.

Page 2

http://www.pjproject.net/

PJSIP Developer’s Guide

Table of Contents

TABLE OF CONTENTS 3
TABLE OF FIGURES 6
TABLE OF CODES 6
CHAPTER 1: GENERAL DESIGN 8
1.1 ARCHITECTURE ..uttttiiiitttttteeeeit ettt ettt ettt ettt ettt ettt ettt et eei e eeeee et eeeeeeeeens 8
1.1.1 CommunicQtion DIQ@VAMc.oveeeeeeeeiiieiieeeiieeiieeeeieeeie e 8

L 1.2 ClaSS DIQGUAI .o 8

1.2 IV IODULE. ettt ettt ettt ettt e e 9
1.2.1 Module DeClaralion.....................cooooovvviiieeiiiineiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeiieeeieeee 9
1.2.2 MOAUIC PFIOVIEI@S ..o 10
1.2.3 Incoming Message Processing by MOAUIES.....................ccooovooveeeieeeiiieeiiiiiiiiiiiiieeeeeneee. 10
1.2.4 Qutgoing Message Processing by Modules......................ccoooooovoveviiiieiiiiiiiiieiiiieeeeeneene.. 11
1.2.5 Transaction User and State Callback..................oooovvvooveeiiieoiiiiiiiiiiiiiiiiiiiiiieeiieeennn. . 11
1.2.6 Module SpeCific DALcoooeeeeeeeeniieeiieiiiieeieieeieieeeieeeeeeee e 12
1.2.7 Callback SUMIAT Y. c..ooooooeieeieieiieieiieeeeeeei e, 12
1.2.8 Sample Callback Requirements for APPLICATIONS..........c.ooovviveeiieeiieeiiiiiiiieiiieeieeeenn 13
1.2.9 Sample Callback DiQ@ramsS.................ocoovoovviieeiieiiieiiieiiiiiiiieiiiiiiiiiieieeieieeeeeeeen 14

1.3 MODULE MANAGEMENTeeiiuttteiitte e ettt ettt ettt et e et e et e eeeeeeieeeeeeeeeeeeeans 15
1.3.1 Module Management APIL................c....ccooooovvviiieiiiieiiiiiiiiiieiiiiiieiieeiieeiieeeeeeeeee 15
CHAPTER 2: MESSAGE ELEMENTS 16
2.1 UNiFORM RESOURCE INDICATOR (URI)..oiueiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeee e, 16
2.1.1 URI “ClaSS DIi@@UAIN " coooooooieieioieeiieieieeieeeeeeeeeeeeeeeee e 16
202 URI COMEOXE.uoiiiiiiioiiiiiiieieeieeee e eeeeeene, 16
2.0.3 BASC URIL ..o 17
2.1.4 SIP and SIPS URL......oooooioooiiiiiiiiiioeiiieeeeeieeeeee e 18
205 T@LURI.coooiooiioiiiioiieoioee e 18
2.1.6 Name AAAress.cc..oooovooveviieeeiiiiiiiiiiiiiiiiiiiieieiiiiiiieieeeeieee e, 19
2.1.7 Sample URI Manipulation PrOram.................ccooooovvvooveeiiiieieiieeiiiiiiiiieeeiieeiieeieieeenen. 19

2.2 SIP METHODS cuttttttteiitttee ettt ettt ettt ettt ettt ettt ettt 20
2.2.1 SIP Method Representation (DjSip mMethOd)......c..cvovovveeioiinoieoieiiviieiniiiiiiviiivivenne. 20
2.2.2 SIP MEROA AP 21

2.3 HEADER FIELDS..0eiiiuiiiiitiiiitiiiiiiie ettt ettt et eeee e e 22
2.3.1 Header “Class DiQ@ram ™c..ocovviiiooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiiiiieeieeeeene 22
2.3.2 HeAder StrUCHUF@.oooooooooooiieieiieieiiiiieeeeei e 22
2.3.3 Common Header FUNCHONS.ooooovveoieeiiieeiiiiiiiiiiiiiiiiieieiieeiieieeeeeeeeeee 23
2.3.4 Supported Header Fields.....................ocooooooovviioeeoiiieiiiiiiiiieiiiiiiiiiieiiiiiiieeeieeeeeen 24
2.3.5 Header Array EICIENLS.ccoooooovooiieiiiiiiiiiiiiiiiiiiieieeeeieeeeeeeeeeeeeeeee 24

2.4 MESSAGE BODY (PISIP_ MSG_BODY).ereeeereereeneenneineeiinientiinienteiienieeieneiieeeneiienieeeieneeeeeennees 25
2.5 MESSAGE (PISIP_MSG).uereereeraetinetaineteeaet et ettt e e 26
2.6 STP STATUS CODES...eiiiutiiiiteieitit ettt ettt ettt ettt ettt ettt eeee e et e 27
2.7 NON-STANDARD PARAMETER ELEMENTS . ..0eeeuiiiiiuiiiiiiiiiiiiiiiiiiiiiiiie ettt 28
2.7.1 Data Structure Representation (DiSip PAFAI).............c.ooovoeeeeieeeiiieeiiiieiiiieeiieiiiieeeee. 29
2.7.2 Non-Standard Parameter Manipul@tion....................occooovovvveieveeeeiieeiiiieiiiieieiiieeiieeeieennn. 29

2.8 ESCAPEMENT RULES. .iiiiiuuiiiiiiiiiiiiiiieiiiiiii ettt ettt eeeeeeeeeieeeeeieane 29
CHAPTER 3: PARSER 31
3] P BATURES. ceuttt ittt ettt e et ettt e e e ettt ee e et e ee e e ettt e et e eaaeeas 31
3.2 P UNCTIONS. sttt ettt ettt ettt et ettt ettt e eet e eet e e etteeeetteeeasteeanteeeatieeeaseeeannes 32
3.2.1 MeSSAZE PAVSIAG. ..o 32
32,2 URIPAFSIAG ..ot 32
3.2.3 HeAder PAFSING...........ooooovoooiooeiiiiiiiiiiiiiiiiieieieeieeeeeeeeeeee e 32

3.3 EXTENDING PARSER....vtiiitiiiiitiiiiitii ettt 33
CHAPTER 4: MESSAGE BUFFERS 34

PJSIP Developer’s Guide

4.1 RECEIVE DATA BUFFER....ciiutiiiitiiiiiiiiiiiii ittt ettt eeeeennns 34
4.1.1 Receive Data Buffer STUCIUF@.ocooovovoiieiieiiiiiiieiiiiiiiiieeiieeeeeeeieeeeeeeeen 34
4.2 TRANSMIT DATA BUFFER (PISIP_TX DATA).cviuiuriurinniniiiiiiiiniiniiiiiiiieiiieieieeeeeeeee, 35
CHAPTER 5: TRANSPORT LAYER 36
5.1 TRANSPORT LLAYER DESIGN..eeeiiuutitiiiiiiiiiiiiiiiiiieieiiiii et eeieee ettt ettt eeiee et eeiieeeeeeieeee 36
S 1.1 “Class DiG@UAM " ...ooooooooooooiiiiiiiiiiiiiiiiieiieeieeee e 36
3.1.2 TranSport MOANAZEYcc..ooooueeeeeeeieeeiiieeiiieeiieeeieeeee e 36

3. 1.3 TranSPOrt FACIOUY..oocueeeeeiiieiieeiiieeiie oo 37
S04 TPANSPOFE oo 37
5.2 TUSING TRANSPORTS. ..eeeuutttiitttteittt ettt et e ettt ettt ettt ettt et ettt ettt ettt e et e et e eieeeeeeeens 39
5.2.1 Function RefOrenCe.ccooooovvvoioeeiiiieiiiiiiiiieeiiiiiiiiiiiiieeeeeeeeeeeee e 39
5.3 EXTENDING TRANSPORTS. ..eeeutttiittteitee ittt ettt ettt ettt et eee e et ettt e i eeeeeieeeeieeenns 39
5.4 INITIALIZING TRANSPORTS ceeeuuuttteiiiettteietieit et ettt ettt ettt ettt ettt et et eeieeeeeeiieeeeeaes 39
5.4.1 UDP Transport INGtiQliZAtION.oovoviovooiiinoiiiiiiiiiieieiiiiiiieeieieieeeieeeieeeeeeen 40
5.4.2 TCP Transport INGtQIZATION. c....c.eveeeeeeeeeoeeeieiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeee 40
5.4.3 TLS Transport INitiQliZatiONc.ooeeeeeeeieeeieeiieiieeeeieeeeeieeeeeeeeeeeee e, 40
5.4.4 SCTP Transport INitiQliZAtION.coovvvvoeeiiieiiiiiiiiiiiiiiiiiiieiiiiieeeieeeeeieeeeeee, 40
CHAPTER 6: SENDING MESSAGES 41
6.1 SENDING MESSAGES OVERVIEWuueiiiiusiiiiteieiiee ittt ettt et eeee ettt ee et eeeeeeeeeeiee e 41
6.1.1 Creating MESSAZES..........c.ooooooeeiiieeeiiieiiiiiiiiiieiieeeeeeeeieeeeee e 41
6.1.2 Sending MeSSAZES............cooooovvviiieeiiieiiiiiiiiiiiiiiiiiiiiiieeeeee e 41
6.2 FUNCTION REFERENCE . cuuutiiiiieitiiiiiiiiiiee et ieiee ettt ettt ettt ettt ettt eeeieeeeeeeieeee 42
6.2.1 Sending RESPONSC....c.oooeoeeeeiieieeeiiiieeieieeeeeieeee e 42
6.2.2 SeNAING ROGUEST....c.oooeoeeeieiieeieiieeeieeee et 43
6.2.3 Stateless Proxy FOrWArdiNgG...............ccoovovoviiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeiieeeeeeeeeen 45
0.3 EXAMPLES. c.utiiiitiiiiitiie ittt 46
6.3.1 Sending RESPONSES.ooooveviieeiiiieiiiiiiiiiiiiiiiieieieeeeeeeeee e 46
6.3.2 Sending ROGUESES.............c.ooooovoeiieeiiiieiiiiiiiiiiiiiiiiiiieieeeeeeeeeee e 47
6.3.3 Stateless FOrwarding................occooooovoiiiieiiiiiiiiiiiiiiiiiiiiiiieieeiieeeeeieeeeeeeeee e 48
CHAPTER 7: TRANSACTIONS 49
T] DESIGN.eiiittee ittt e et e et e et e ettt e ettt e eet e eet e eat e eeet et e eaaeeeatteeeetteeeans 49
T dd TR OAUCTIO . oo 49
7.1.2 Timers and RetranSmuiSSIONScc.vvviveeeeiieiiiiiiiiiiiiiiiiieieie e 49
7.1.3 INVITE Final Response and ACK ROQUESE................ccovvvvveviiieeiiiiiiiiiiiiiiiiiiiiiiieiieeeene. 49
7.1.4 Incoming ACK ROGUEST..............ccoovioveeeiieiiiieiiiiiiiiiiiiiiiieieeieeeeeeeieeeeeeeeieeeeeenn 50
7.1.5 Server Resolution and TranSPOTLS..............ccovvveveiiiieeiiiiiiiiiiiiiieiiiieiiieeiieeeeeeeieene 50
746 Via HeAAOE ..o 51
7.2 REFERENCE.eeuuuuttittieittttte ettt ettt ettt ettt ettt et ettt ettt ettt et eei et eeeeieeeeeenns 51
7.2.1 BASC FUNCHOMNS . ..oooouieeeiiiiiieeeiiieeiie e eee e, 51
7.2.2 COMPOSILE FUNCIONS.c.voeeiiieiiieeeiiiieiieeiieeeie e eeeeeenenn 52
7.3 SENDING STATEFULL RESPONSES....0iiiitiiiiitisiitiiiiitiieeeiie ettt ettt ee et e eieeeeieeeens 53
7.3.1 USage EXAMPLOS. ..o 53
7.4 SENDING STATEFULL REQUEST .eeuuiiiiuiiiiitiieiiiie ettt 53
741 USAe EXAMPLOS.......oooooooiooooiioiiiiiiiiiiiiiieeieieeeee e 53
7.5 STATEFULL PROXY FORWARDING..eeituutttiiiiiitiiiieiiiiiiiiiiieiiiiii ettt eeieeeeeeiieeeeeene, 54
7.5 1 USAC EXAMPIOS.......ooooooooiiooiiiiiiiiiiiiiiiieieieeee e 54

CHAPTER 8: AUTHENTICATION FRAMEWORK

8.1 CLIENT AUTHENTICATION FRAMEWORK . ..eeeiuttiiisiiiietiieieieeiiiieeeie et e eieeeeeeeeieeeeieeesieeeeiieeeineeeans
8.1.1 Client Authentication Framework Reference..................cco.oooovevvevviveeviieiieiiieeiieeiieveanenn..
812 EXAMPLOS. ..o

8.2 SERVER AUTHORIZATION FRAMEWORKeioueiiiieiiiiitiieiiiii i
8.2.1 Server Authorization ReferenCe.coovvvvveveiiiieeiiieeiiiiiiiiiiiieiiieeeieeiieieieeeeeee

8.3 EXTENDING AUTHENTICATION FRAMEWORK . ..vvvieiieitueiiiiiiiitiieeeiiiiiieieieiiiieieeeeeiieieeeeiiiieeeeiiiieieeeenns

CHAPTER 9: BASIC USER AGENT LAYER (UA

9.1 BASIC DIALOG CONCEPT . eetiiittttiiiiieiieeeieeieee et ettt ettt eeteeeeeeiee et eeieee et eeeieeeeeeieeeeee 60

911 DiAlOG SCSSTONS. ...oooo oo 60

PJSIP Developer’s Guide

9.1.2 DiGlOG USAGCS.....ooooooooooeoiiiiiiiiieiiiieiiiiiieeieee e 60
9.1.3 Class DIQ@FAM ... 61
904 FOVKIAG. oo 62
9.1.5 CSeq SeqUENCING. ... 63
9. 1.6 AULRCHIICAIION. ..o 64
9.1.7 StatelesS OPEratiONS.............covoovooveviiieeiiiiiiiiiiiiiiiiiiiiieiiiiieieeeeeee e 64
9.2 BASIC UA AP REFERENCE. eeiittiiiitttiisteeietie e ettt ettt eee et ettt eieeeeteeeeieeenteeeeieeeeiseeeeeeseeennnen 64
9.2.1 Dialog Cre@tion APL.............coooooooiooeiiieiiiieiiiiiiiiiiiiieiiieeieeieeee e 64
9.2.2 Dialog Session Management APIL......................coooooovviiieiiiieiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeenn 65
9.2.3 Dialog USAGES APL.......oc.oooooooooiiioiiieiiiiiiiiiiiiieeeeieeeeeeee e 65
9.2.4 Dialog Request and Response APL..................coooooovoiiiioiiiiiiiiieiiiiiiiiiiiiiiieeiiiieieeenne 65
9.2.5 Dialog Auxiliary APIL..........c.o.ooovoioovoiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeieeeeeeee e 66
9.3 B XAMPLES ittt ettt ettt ettt eeeeeeeeeeenn 67
9.3.1 Incoming InvVite Di@lO@..............ccoooooovooiioneiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieee e, 67
9.3.2 Outgoing INVite DIQLOG. ..o 69

CHAPTER 10: SDP OFFER/ANSWER FRAMEWORK

10.1 SDP NEGOTIATOR STRUCTURE....eettiiiuteeiiieiiiteeieetieieiieieeiieeeeeeeeiiieeeeeeeeiteeeeeeeeiieeeeeeeeieeeeeeeeiiaeeee

10.2 SDP NEGOTIATOR SESSION. . uutvtiiiiiitteiiiieiiteeiieeietieeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeeiieeeeeeeeieeeeeeieeeees,

10.3 SDP NEGOTIATION FUNCTION . .uttiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn
CHAPTER 11: DIALOG INVITE USAGE 75
11,1 INTRODUCTION. uttttttttteeeeeteeeeeeeee et ettt e et et eeeee et ettt et e et eeeeeeeeeeeeeeeeeeeeeeeeeeeeieees 75
L1.1.1 Invite SeSSTON STQT.vvveeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn 75
11.1.2 Invite Usage “Class Dia@ram ™cccooooovvvvivviiiiiiiiieiiiiiiiiiiiiiiiiiiieeiieieiieeeeeen 76
CHAPTER 12: DIALOG SUBSCRIBE USAGE.....ccccceceseueeerureeersaneessancessanecssassecsassscssasscssassessasssssnses 77

Page 5

PJSIP Developer’s Guide

Table of Figures

FIGURE 1 COLLABORATION DIAGRAM

8

FIGURE 2 CLASS DIAGRAM

8

FIGURE 3 MODULE STATE DIAGRAM

9

FIGURE 4 CASCADE MODULE CALLBACK

11

FIGURE 5 CALLBACK SUMMARY

13

FIGURE 6 SAMPLE CALLBACK REQUIREMENTS

13

FIGURE 7 PROCESSING OF INCOMING MESSAGE OUTSIDE TRANSACTION/DIALOG

14

FIGURE 8 PROCESSING OF INCOMING MESSAGE INSIDE TRANSACTION.......cccceceeueneee 14
FIGURE 9 PROCESSING OF INCOMING MESSAGE INSIDE DIALOG BUT OUTSIDE

TRANSACTION

15

FIGURE 10 URI “CLASS DIAGRAM”

16

FIGURE 11 HEADER “CLASS DIAGRAM”

22

FIGURE 12 TRANSPORT LAYER "CLASS DIAGRAM"

36

FIGURE 13 AUTHENTICATION FRAMEWORK

56

FIGURE 14 CLIENT AUTHENTICATION DATA STRUCTURE

56

FIGURE 15 BASIC USER AGENT CLASS DIAGRAM

61

FIGURE 16 SDP NEGOTIATOR "CLASS DIAGRAM"

72

FIGURE 17 SDP OFFER/ANSWER SESSION STATE DIAGRAM
FIGURE 18 INVITE SESSION STATE DIAGRAM

73

75

FIGURE 19 INVITE SESSION STATE DESCRIPTION

76

FIGURE 20 DIALOG INVITE USAGE "CLASS DIAGRAM"

76

Table of Codes

CODE 1 MODULE DECLARATION

CODE 2 MODULE PRIORITIES

10

CODE 3 MODULE SPECIFIC DATA

12

CODE 4 ACCESSING MODULE SPECIFIC DATA

12

CODE 5 URI CONTEXT

16

CODE 6 GENERIC URI DECLARATION

17

CODE 7 URI VIRTUAL FUNCTION TABLE

17

CODE 8 SIP URI DECLARATION

18

CODE 9 TEL URI DECLARATION

19

CODE 10 NAME ADDRESS DECLARATION

19

CODE 11 SAMPLE URI MANIPULATION PROGRAM

20

CODE 12 SIP METHOD DECLARATION

21

CODE 13 SIP METHOD ID

21

Page 6

PJSIP Developer’s Guide

CODE 14 GENERIC HEADER DECLARATION 23
CODE 15 GENERIC HEADER DECLARATION 23
CODE 16 HEADER VIRTUAL FUNCTION TABLE 23
CODE 17 MESSAGE BODY DECLARATION 25
CODE 18 SIP MESSAGE DECLARATION 26
CODE 19 SIP STATUS CODE CONSTANTS 28
CODE 20 NON-STANDARD PARAMETER DECLARATION 29
CODE 21 RECEIVE DATA BUFFER DECLARATION 34
CODE 22 TRANSMIT DATA BUFFER DECLARATION 35
CODE 23 TRANSPORT OBJECT DECLARATION 38
CODE 24 SAMPLE: STATELESS RESPONSE 46
CODE 25 SAMPLE: STATELESS RESPONSE 46
CODE 26 STATELESS REDIRECTION 47
CODE 27 SENDING STATELESS REQUEST 47
CODE 28 STATELESS FORWARDING 48
CODE 29 SENDING STATEFULL RESPONSE 53
CODE 30 SENDING STATEFULL RESPONSE 53
CODE 31 SENDING REQUEST STATEFULLY 54
CODE 32 STATEFULL FORWARDING 55
CODE 33 CLIENT ATHORIZATION EXAMPLE 58
CODE 34 CREATING DIALOG FOR INCOMING INVITE 67
CODE 35 ANSWERING DIALOG 68
CODE 36 PROCESSING CANCEL REQUEST 69
CODE 37 PROCESSING ACK REQUEST 69
CODE 38 CREATING OUTGOING DIALOG 70
CODE 39 RECEIVING RESPONSE IN DIALOG 70
CODE 40 SENDING ACK REQUEST 71

Page 7

PJSIP Developer’s Guide

Chapter 1:General Design

1.1 Architecture

1.1.1 Communication Diagram

The following diagram shows how (SIP) messages are passed back and forth
among PJSIP components.

Dialog
Hash Table

MODULE

APPLICATION

MODULE

UA Layer
user_agent, dialog

MODULE

R a——

Transaction

Transaction Layer
sip_transaction.c

Hash Table

g

LEGEND:

(=) Message Flow

@—»

Global Timer

ENDPOINT

sip_endoint.c

R

]

Global
I/0 Queue

PARSER
sip_parser.c

I

TRANSPORT MANAGER
sip_transport.c

L 1

g]

Parser | Parser
Plugin | Plugin

TRANSPORT | | TRANSPORT

(pjsip_transport) (pjsip_transport)
PJILIB I/0 Queue

1.1.2 Class Diagram

Figure 1 Collaboration Diagram

The following diagram shows the “class diagram”.

UA Module
sip_ua.c

Dialog
sip_dialog.c

Dialog
Hash Table TraAnsactlon Module APPLICATION
sip_transaction.c
O T
7777777777777777 Transaction MODULE
sip_transaction.c o
Transaction (g
Hash Table
- ENDPOINT
sip_endoint.c
1 ?1
PARSER TRANSPORT MANAGER
sip_parser.c sip_transport.c

Header
Parser

Parser

ﬁ% {,
n n | TRANSPORT

URI

sip_transport.c

I\

UDP TRANSPORT
sip_transport_udp.c

TCP TRANSPORT
sip_transport_tcp.c

Figure 2 Class Diagram

Page 8

1.2 Module

PJSIP Developer’s Guide

Module framework is the main means for distributing SIP messages among
software components in PJSIP application. All software components in PJSIP,
including the transaction layer and dialog layer, are implemented as module.
Without modules, the core stack (pjsip_endpoint and transport) simply wouldn’t

know how to handle SIP messages.

The module framework is based on a simple but yet powerfull interface
abstraction. For incoming messages, the endpoint (pjsip_endpoint) distributes the
message to all modules starting from module with highest priority, until one of
them says that it has processed the message. For outgoing messages, the
endpoint distributes the outgoing messages before they are transmitted to the
wire, to allow modules to put last modification on the message if they wish.

1.2.1 Module Declaration

Module interface is declared in <pjsip/sip_module.h> as follows.

struct pjsip_module

{

pj_str t name;

int id;

int priority;
void *user_data;
int method_cnt;

const pjsip method *methods[8];

pJj_status_t

pj_status_t start) (void) ;
pJj_status_t stop) (void) ;
pj_status t unload) (void) ;

pj_bool t
pj_bool t
pj_status_t
pJj_status_t
void

on_rx_ response) (pjsip_rx_data
on_tx request) (pjsip_tx data
on_tx response) (pjsip_tx data

(*

(*

(*

(*

(*on_rx_request) (pjsip_rx data
(*

(*

(*

(*on_tsx_state)

(pjsip_endpoint *endpt);

(pjsip_transaction *tsx,
pjsip_event *event);

Module name.

Module ID, set by endpt
Priority

User data.

Nb.of supported methods
Array supported methods

//
//
//
//
//
//
//
//
//
//

Called
Called
Called
Called
Called
Called
Called

to load the mod.
to start.

top stop.

before unload
on
on

*rdata) ;
*rdata) ;
*tdata) ;
*tdata) ;

rx request
rx response
on tx request
Called tx request
Called on transaction

state changed

on

Code 1 Module Declaration

All function pointers are optional; if they’re not specified, they’ll be treated as if

they have returned successfully.

The four function pointers load, start, stop, and unload are called by endpoint to
control the module state. The following diagram shows the module’s state

lifetime.

load()

start ()

NULL STATE

unload ()

LOADED

STARTED

stop ()

Figure 3 Module State Diagram

The on_rx_request() and on_rx_response () function pointers are the primary
means for the module to receive SIP messages from endpoint (pjsip_endpt) or

Page 9

PJSIP Developer’s Guide

from other modules. The return value of these callbacks is important. If a callback
has returned non-zero (i.e. true condition), it semantically means that the module
has taken care the message; in this case, the endpoint will stop distributing the
message to other modules.

The on_tx request() and on_tx_response () function pointers are called by
transport manager before a message is transmitted. This gives an opportunity for
some types of modules (e.g. sigcomp, message signing) chance to make last
modification to the message. All modules MUST return PJ_SUCCESS (i.e. zero
status), or otherwise the transmission will be cancelled.

The on_tsx_state () function pointer is used to receive notification every time a
transaction state has changed. It is different from on_rx request() and
on_rx_response () callback because it's only called when transaction state has
actually changed, which means it’s not called for example when transaction
receives 180/Ringing response after 100/Trying response. It also means that this
callback may be called for other nhon-message-arrival related events (e.g.
message transmissions, timer timeout event, or transport error event). More
information about this callback will be described in next section 1.2.5
“Transaction User and State Callback”.

1.2.2 Module Priorities

Module priority specifies the order of which modules are called first to process the
callback. Module with higher priority (i.e. lower priority number) will have their
on_rx_request() and on_rx_response() called first, and on_tx_request() and
on_tx_response() called last.

The values below are the standard to set module priority.

enum pjsip_module_priority

{
PJSIP_MOD_PRIORITY TRANSPORT LAYER
PJSIP_MOD_PRIORITY TSX LAYER
PJSIP_MOD_PRIORITY UA PROXY LAYER
PJSIP_MOD_ PRIORITY APPLICATION

8, // Transport
16, // Transaction layer.
32, // UA or proxy layer

64, // Application has lowest priority.

Code 2 Module Priorities

%} Note: remember that lower priority number means higher priority!

The priority PJSIP_MOD_PRIORITY_TRANSPORT_LAYER is the priority used by
transport manager. This priority currently is only used to control message
transmission, please see 1.2.40utgoing Message Processing by Modules for more
information.

PJSIP_MOD_PRIORITY_TSX_LAYER is the priority used by transaction layer
module. PJSIP_MOD_PRIORITY_UA_PROXY_LAYER is the priority used by UA
layer (i.e. dialog framework) or proxy layer. PJSIP_MOD_PRIORITY_APPLICATION
is the suggested value for typical application modules, when they want to utilize
transactions and dialogs.

1.2.3 Incoming Message Processing by Modules

When incoming message arrives, it is represented as receive message buffer
(struct pjsip_rx_data, see section 4.1 “Receive Data Buffer”). Transport
manager parses the message, put the parsed data structures in the receive
message buffer, and passes the message to the endpoint.

Page 10

PJSIP Developer’s Guide

The endpoint distributes the receive message buffer to each registered module by
calling on_rx_request() Or on_rx_response () callback, starting from module with
highest priority (i.e. lowest priority number) until one of them returns non-zero.
When one of the module has returned non-zero, endpoint stops distributing the
message to the remaining of the modules, because it assumes that the module
has taken care about the processing of the message.

The module which returns non-zero on the callback itself may further distribute
the message to other modules. For example, the transaction module, upon
receiving matching message, will process the message then distributes the
message to its transaction user, which in itself must be a module too. The
transaction passes the message to the transaction user (i.e. a module) by calling
on_rx_request() OF on_rx_response () Callback of that module, after setting the
transaction field in the receive message buffer so that the transaction user
module can distinguish between messages that are outside transactions and
messages that are inside a transaction.

The following diagram shows an example of how modules may cascadely call
other modules.

MODULE MODULE MODULE MODULE

ENDPOINT

Event Subscriptn.

(SIMPLE) rdata APPLICATION

["rdata | TRANSACTION | rdata DIALOG rdata

Figure 4 Cascade Module Callback

1.2.4 Outgoing Message Processing by Modules

When pjsip_transport_send() is called to send a message, transport manager
calls on_tx_request() Or on_tx_response () for all modules, starting with modules
with lowest priority (i.e. highest priority number). When these callbacks are
called, the message may have or have not been printed to contigous buffer.
Modules with priority higher than PJSIP_MOD_PRIORITY_TRANSPORT_LAYER (i.e.
has lower priority number) will receive the message after it has been printed to
contigous buffer, while modules with lower priority receive the message before it
has been printed to contigous buffer.

If modules want to modify the message structure before it is printed to buffer,
then it must set its priority number higher than transport layer priority. If
modules want to see the actual packet bytes as they are transmitted to the wire
(e.g. for logging purpose), then it should set its priority number to lower than
transport layer.

In all cases, modules MUST return PJ_SUCCESS for the return value of these
callbacks. If modules return other error codes, the transmission will be cancelled
and the error code is returned back to pjsip_transport_send() caller.

1.2.5 Transaction User and State Callback

A special callback in the module definition (on_tsx state) is used to receive
notification from a particular transaction when transaction state has changed.
This callback is unique because transaction state may change because of non-
message related events (e.g. timer timeout and transport error), and this
callback is called for any changes in the transaction’s state (e.g. because of
transmission or receipt of messages, timeout, transport error, etc).

This callback will only be called after the module has been registered as
transaction user for a particular transaction. Only one transaction user is allowed

Page 11

PJSIP Developer’s Guide

per transaction. Transaction user can be set to transaction on per transaction
basis.

Normally when a transaction is created within a dialog, then the transaction user
will be the UA layer on behalf of a particular dialog. But when applications work
on top of the transaction layer directly, they may set themselves as the
transaction user.

1.2.6 Module Specific Data

Some PJISIP components have a container where modules can put module specific
data in that component. This container is named as mod_data by convention, and
is an array of pointer to void, which is indexed by the module ID.

For example, an incoming packet buffer (pjsip_rx_data) has the following
declaration for module specific data container:

struct pjsip_rx data
{
struct {
void *mod_data [PJSIP_MAX_MODULE] ;
} endpt info;

Code 3 Module Specific Data

When an incoming packet buffer (pjsip_rx data) is passed around to modules, a
module can put module specific data in the appropriate index in mod data, so that
the value can be picked up later by the module or by application. For example,
the transaction layer will put the matching transaction instance in the mod_data,
and user agent layer will put the matching dialog instance in the mod_data too.
Application can retrieve the value calling pjsip_rdata get tsx() or
pjsip_rdata_get dlg(), which is a simple array lookup function as follows:

// This code can be found in sip transaction.c
static pjsip_module mod_ tsx layer;

pJjsip_transaction *pjsip rdata get_tsx(pjsip_rx_data *rdata)
{

return rdata->endpt info.mod data[mod tsx layer.id];

}

Code 4 Accessing Module Specific Data

1.2.7 Callback Summary

The following table summarizes the occurrence of an event and the triggering of
particular callbacks. The on_tsx_state() callback will of course only be called
when application has chosen to process a request statefully.

Page 12

PJSIP Developer’s Guide

on_rx request() OF

query failure, transport failure)

Event on_rx_response () on_tsx_state()

Receipt of new requests or responses Called Called
Receipt retransmissions of requests or Called ONLY when

priority number is lower Not Called
responses. : 1

than transaction layer
Transmission of new requests or responses. Not Called Called
Retransmissions of requests or responses. Not Called Not Called
Transaction timeout Not Called Called
Other transaction failure events (e.g. DNS Not Called Called

Figure 5 Callback Summary

1.2.8 Sample Callback Requirements for Applications

The following table summarizes the requirements for the callbacks for each logical
type of applications. Note that any of these logical applications may co-exist in a
single physical/executable program, and practically it’s application’s decision to
invoke the appropriate logical functionalities or whether to work statefull or
statelessly. This decision is made on per request basis.

Application Requirements
Stateless proxies need to receive:
Stateless 0 alli) ¢
Proxies) a .|ncom.|ng requests.
2) al incoming responses.
Statefull proxies need to receive:
Statefull 1) new incoming requests (i.e. that are not attached to any transactions).
Proxies 2) all responses received by a transaction, and

3) any other transaction events (e.g. DNS failure, timeout, transport error).

Server

Statefull/les Registrar servers need to receive:
s Registrar 1) all incoming REGISTER requests.

Typical UA applications need to receive:

1) incoming requests that are not attached to any transactions.
UA 2) all requests that belong to the dialog.

3) all incoming responses associated with the dialog and any other transaction
events (e.g. timeout, transport error).

Figure 6 Sample Callback Requirements

! This is because the matching transaction prevents the message from being distributed further (by
returning PJ_TRUE) and it also does NOT call TU callback upon receiving retransmissions.

Page 13

PJSIP Developer’s Guide

1.2.9 Sample Callback Diagrams

Incoming Message Outside Transaction and Outside Dialog

The processing is as follows:

1) Transport manager (pjsip_tpmgr) passes
APPLICATION all received messages to endpoint (after
on_rx xxx() parsing the message).
. A 2) Endpoint (pjsip_endpt) distributes the
Dialog DIALOG message to all registered callbacks. First
Hash Table in the callback list is transaction layer.

Endpoint lookup the message in
(4) lookup /y USER AGENT transaction table, and couldn't find a

not found G) matching transaction.

(5) rdata 3) Endpoint distributes the message to next
callback in the list, which is user agent.

RANSACTION 4) User agent lookup the message in

Transaction (3) rdata dialog’_s has_h table and couldn't find

Hash Table | matching dialog.

5) Endpoint continues distributing the

(2) lookup /) ENDPOINT message to next registered callbacks

not found ~ | &ndpt_transport_callback() until it reaches application. Application
*(1) rdata processes the message (e.g. create UAS

transaction, or proxy the request, or
TRANSPORT MANAGER create dia|og, etcl)

Figure 7 Processing of Incoming Message
Outside Transaction/Dialog

Incoming Message Inside Transaction

The processing is as follows:

1) Transport manager (pjsip_tpmgr) passes

A
(5) rdata +tsx +dlg T all received messages to endpoint (after
| (7) notify dialog state parsing the message).
DIALOG/APPLICATION 2) Endpoint (pjsip_endpt) distributes the
message to all registered callbacks. First
Dialog on_nxx() on_tsx_state() in the callback list is transaction layer.
Hash Table Endpoint lookup the message in
transaction table, and found a matching
USER AGENT transaction.
(6) notify state 3) Endpoint distributes the message to the
(4) rdata +tsx | transaction. Because transaction’s
1 callback returns non-zero, endpoint does
TRANSACTION not distribute the message to the rest of
. on_rx_xxx() the registered callbacks.
-:aa:ﬁ?r(:::l): f(3) rdata 4) The transaction processes the response
(e.g. updates the FSM). If the message is
a retransmission, the processing stops
(-2%3?;%“{) -/-> endpt_tranfp':d'_)czga{ﬂ;r here. Otherwise transaction then passes
’ the message to it’s transaction user (TU),
f(1) rdata which can be a dialog or application.
TRANSPORT MANAGER 5) If the TU is a dialog, the dialog processes
the response then pass the response to
it's dialog user (DU, e.g. application).
- - - 6) If the arrival of the message has changed
Figure 8 Processing of Incoming Message transaction’s state, transaction will notify
Inside Transaction it’s TU about the new state.

7) If TUis a dialog, it may further notify
application about dialog’s state changed.

Page 14

PJSIP Developer’s Guide

Incoming Message Inside Dialog but Outside Transaction

The processing is as follows:

APPLICATION 1) Transport manager (pjsip_tpmgr) passes
on_rx_xxx() all received messages to endpoint (after
—— parsing the message).
$(6) msg 2) Endpoint (pjsip_endpt) distributes the
message to all registered callbacks. First
. DIALOG in the callback list is transaction layer.
Dialog Endpoint lookup the message in
Hash Table f (5) msg transaction table, and couldn’t find a
matching transaction.
@(_4) 1o_o_kyp_/_> ::serz‘x(l)'\GENT 3) Endpoint distributes the message to next
found ! - modules in the list, until it reaches user

agent module.
4) The user agent module looks-up the

RANSACTION owning of the message in dialog’s hash
Transaction (3) msg table and found a matching dialog.
Hash Table | 5) The user agent module passes the
message to the appropriate dialog.
2) lookup / ENDPOINT .
(.).t.f- L % AT 6) The dialog processes the message,
notoun updates it's state etc, and notify the

A1) msg
TRANSPORT MANAGER

application.

Figure 9 Processing of Incoming Message
Inside Dialog but Outside Transaction

1.3 Module Management

&

Modules are managed by PJSIP’s endpoint (pjsip_endpoint). Application MUST
register each module manually to endpoint so that it can be recognized by the
stack. Application can register or unregister module at any time during
application’s life-time, although it is recommended to register module only during
startup and to unregister module only during application exit.

All PJSIP modules can be registered/unregistered dynamically at anytime during application’s
lifetime. However by doing so, it may severely change the handling of messages. For example, when
transaction module is unregistered, application may receive strayed responses that are no longer
associated with any transactions.

1.3.1 Module Management API

M‘.

R‘N"

The module management API are declared in <pjsip/sip_endpt.h>.

pj_status_t pjsip_endpt register_ module(pPjsip_endpoint *endpt,

pPjsip_module *module);
Register a module to the endpoint. The endpoint will then call the load and
start function in the module to properly initialize the module, and assign a
unique module ID for the module.

pj_status_t pjsip _endpt unregister module(pJjsip_endpoint *endpt,

pjsip_module *module) ;

Unregister a module from the endpoint. The endpoint will then call the
stop and unload function in the module to properly shutdown the module.

Page 15

PJSIP Developer’s Guide

Chapter 2:Message Elements

2.1 Uniform Resource Indicator (URI)

The Uniform Resource Indicator (URI) in PJSIP is modeled pretty much in object
oriented manner (or some may argue it's object based, not object oriented).
Because of this, URI can be treated uniformly by the stack, and new types URI
can be introduced quite easily.

2.1.1 URI “Class Diagram”

The following diagram shows show the URI objects are designed.

pjsip_uri

Attributes:

Operations:
const pj_str_t pjsip_uri_get_scheme(uri);
pjsip_uri* pjsip_uri_get_uri(uri);
pj_status_t pjsip_uri_cmp(uril, uri2);
int pjsip_uri_print(context, uri, buf, maxlen);
pjsip_uri *pjsip_uri_clone(uri);

New types of URI can be defined
pjsip_sip_uri pjsip_tel_uri pjsip_name_addr

Attributes: Attributes: Attributes: >

user, passwd, host, port, user_param, number, context, ext_param, isub_param, uri, display

method_param, transport_param, ttl_param, other_param

Ir_param, maddr_param, other_param, Operations:

header_param Operations: pjsip_name_addr *

pjsip_tel_uri *pjsip_tel_uri_create(pool); pjsip_name_addr_create(pool);

Operations:

pjsip_sip_uri *pjsip_sip_uri_create(pool,secure);

void pjsip_sip_uri_init(uri, secure);

void pjsip_sip_uri_assign(pool, dst_uri, src_uri);

Figure 10 URI “Class Diagram”

More information on each objects will be described in next sections.

2.1.2 URI Context

URI context specifies where the URI is being used (e.g. in request ling, in
From/To header, etc.). The context specifies what URI elements are allowed to
appear in that context. For example, transport parameter is not allowed to appear
in From/To header, etc.

In PJSIP, the context must be specified when printing the URI to a buffer and

when comparing two URIs. In this case, the parts of URI that is not allowed to
appear in the specified context will be ignored during printing and comparison
process.

enum pjsip_uri_context e
{
PJSIP_URI_IN REQ URI, // The URI is in Request URI.
PJSIP_URI_IN FROMTO_ HDR, // The URI is in From/To header.
PJSIP_URI_IN CONTACT HDR, // The URI is in Contact header.
PJSIP_URI_IN ROUTING HDR, // The URI is in Route/Record-Route header.
PJSIP_URI_IN OTHER, // Other context (web page, business card, etc.)

Code 5 URI Context

Page 16

PJSIP Developer’s Guide

2.1.3 Base URI

The pjsip_uri structure contains property that is shared by all types of URI.
Because of this, all types of URI can be type-casted to pjsip uri and manipulated
uniformly.

struct pjsip_uri
{

pjsip uri vptr *vptr;
bi

Code 6 Generic URI Declaration

The pjsip_uri_vptr specifies “virtual” function table, which members will be
defined by each type of URI. Application is discouraged from calling these
function pointers directly; instead it is recommended to use the URI API because
they are more readable (and it saves some typings too).

struct pjsip_uri_vptr
{
const pj_str_t* (*p_get_scheme) (const pjsip_uri *uri);
pjsip urix (*p_get_uri) pjsip uri *uri);
int (*p_print) (pjsip uri context e context,
const pjsip_uri *uri,
char *buf, pj size t size);
pj_status t (*p_compare) (pjsip uri context e context,

const pjsip uri *uril, const pjsip uri *uri2);
pjsip uri * (*p_clone) (pj_pool t *pool, const pjsip uri *uri);

Code 7 URI Virtual Function Table

The URI functions below can be applied for all types of URI objects. These
functions normally are implemented as inline functions which call the
corresponding function pointer in virtual function table of the URI.

const pj_str t* pjsip uri get scheme(const pjsip_uri *uri);
” o\

Get the URI scheme string (e.g. “sip”, “sips”, “tel”, etc.).

pPjsip_uri* pjsip uri_get uri(pjsip_uri *uri);
Get the URI object. Normally all URI objects will return itself except name
address which will return the URI inside the name address object.

pj_status_t pjsip uri_cmp(pjsip_uri_ context_e context,
const pjsip_uri *uril,
const pjsip_uri *uri2);
Compare uril and uri2 according to the specified context. Parameters
which are not allowed to appear in the specified context will be ignored in
the comparison. It will return PJ_SUCCESS is both URIs are equal.

int pjsip_uri print(pPjsip_uri_context e context,
const pjsip_uri *uri,
char *buffer,
pPj_size_t max_size);
Print uri to the specified buffer according to the specified context.
Parameters which are not allowed to appear in the specified context will
not be included in the printing.

Page 17

pPjsip_uri* pjsip_uri_clone(pj_pool_t *pool, const pjsip _uri *uri);

PJSIP Developer’s Guide

Create a deep clone of uri using the specified pool.

2.1.4 SIP and SIPS URI

The structure pjsip_sip_uri represents SIP and SIPS URI scheme. It is declared
in <pjsip/sip_uri.h>.

{

pj_str t
pj_str t
pj_str t
int
pj_str t
pj_str t
pj_str t
int

int
pj_str t
pjsip param
pjsip_param

struct pjsip_sip uri

pisip uri vptr *vptr;

user;
passwd;

host;

port;
user_param;
method param;
transport_param;
ttl param;

1r param;
maddr_param;
other param;
header_ param;

Pointer to virtual function table.

Optional
Optional

user part.
password part.

Host part, always exists.

Optional
Optional
Optional
Optional
Optional
Optional
Optional

port number, or zero.
user parameter

method parameter.
transport parameter.

TTL param, or -1.

loose routing param, or O
maddr param

Other parameters as list.

Optional

header parameters as list.

Code 8 SIP URI Declaration

The following functions are specific to SIP/SIPS URI objects. In addition to these
functions, application can also use the base URI functions described in previous
section to manipulate SIP and SIPS URI too.

Pjsip_sip uri* pjsip sip uri_create(pj_pool_t *pool, pj bool t secure);
Create a new SIP URL using the specified pool. If the secure flag is set to

non-zero, then SIPS URL will be created. This function will set vptr

member of the URL to SIP or SIPS vptr and set all other members to blank

value.

void pjsip_sip uri_init(pjsip_sip uri *url, pj_bool_t secure);

Initialize a SIP URL structure.

void pjsip_sip_ uri_assign(pj_pool_t *pool,
pjsip_sip_uri *url,

const pjsip_sip uri *rhs);
Perform deep copy of rhs to url.

2.1.5 Tel URI

The structure pjsip_tel uri represents tel: URL. It is declared in
<pjsip/sip_tel_uri.h>.

{

pj_str t

struct pjsip_tel uri

pjsip uri vptr *vptr;

number;

// Pointer to virtual function table.
// Global or local phone number

Page 18

PJSIP Developer’s Guide

pj _str t context; // Phone context (for local number).
pj_str t ext_param; // Extension param.
pj _str t isub_param; // ISDN sub-address param.
pjsip param other_param; // Other parameters.
bi

Code 9 TEL URI Declaration

The functions below are specific to TEL URI. In addition to these functions,
application can also use the base URI functions described in previous section for
TEL URI too.

pjsip_tel uri* pjsip tel uri_ create(pj_pool_t *pool);
Create a new tel: URL.

int pjsip_tel nb cmp(const pj_str_t *nbl, const pj_str t *nb2);
This utility function compares two telephone numbers for equality,
according to rules specified in RFC 3966 (about tel: URI). It recognizes
global and local numbers, and it ignores visual separators during the
comparison.

2.1.6 Name Address

A name address (pjsip_name_addr) does not really define a new type of URI, but
rather encapsulates existing URI (e.g. SIP URI) and adds display name.

struct pjsip_name_ addr

{

pjsip uri vptr *vptr; // Pointer to virtual function table.
pj_str_t display; // Display name.
pisip uri *uri; // The URI.

}i

Code 10 Name Address Declaration

The following functions are specific to name address URI object. In addition to
these functions, application can also use the base URI functions described before
for name address object too.

pPjsip_name_addr* pjsip name addr_create(pj_pool_t *pool);
Create a new name address. This will set initialize the virtual function table
pointer, set blank display name and set the uri member to NULL.
void pjsip_name_addr_assign(pj_pool_t *pool,
pPjsip_name_addr *name_addr,
const pjsip_name_addr *rhs);

Copy rhs to name_addr.

2.1.7 Sample URI Manipulation Program

#include <pjlib.h>
#include <pjsip core.h>
#include <stdlib.h> // exit ()

static pj caching pool cp;

Page 19

PJSIP Developer’s Guide

static void my error_exit(const char *title, pj_status_t errcode)

{
char errbuf[80];

pjsip_strerror (errcode, errbuf, sizeof (errbuf));

PJ_LOG (3, (“main”, “%s: %s”, title, errbuf));
exit(1l);

static void my init_pjlib(void)
{

pj_status t status;

// Init PJLIB

status = pj_init();

if (status != PJ _SUCCESS) my_ error exit(“pj init() error”, status);

// Init caching pool factory.

pj_caching pool init(&cp, &pj_pool factory default policy, 0);

static void my print_uri(const char *title, pjsip_uri *uri)

{
char buf[80];
int len;

len = pjsip uri_print(PJSIP URI_IN OTHER, uri, buf, sizeof (buf)-1);

if (len < 0)

my error_ exit (“Not enough buffer to print URI”, -1);

buf[len] = *\0’;
PJ_LOG (3, (“main”, “%s: %s”, title, buf));

int main()

{
pj_pool t *pool;
pjsip name addr *name addr;
pjsip_sip uri *sip uri;

// Init PJLIB
my_init_pjlib();

// Create pool to allocate memory

pool = pj_pool create (&cp.factory, “mypool”, 4000,

4000, NULL);

if (!pool) my_ error_exit(“Unable to create pool”, PJ ENOMEM) ;

// Create and initialize a SIP URI instance
sip uri = pjsip_sip_uri_create(pool, PJ FALSE);
sip uri->user = pj_str(“alice”);

sip uri->host = pj str(“sip.example.com”);

my print uri(“The SIP URI is”, (pjsip_uri*)sip_uri);

// Create a name address to put the SIP URI
name_addr = pJjsip_name_addr_ create (pool);
name addr->uri (pjsip uri*) sip uri;

name addr->display = “Alice Cooper”;

my print uri(“The name address is”, (pjsip_uri*)name_addr);

// Done

Code 11 Sample URI Manipulation Program

2.2 SIP Methods
2.2.1 SIP Method Representation (pjsip_method)

The SIP method representation in PJSIP is also extensible; it can support new

methods without needing to recompile the library.

Page 20

PJSIP Developer’s Guide

struct pjsip method
{
pjsip method e id; // Method ID, from pjsip method e.
pj_str t name; // Method name, which will always contain the method string.

}i

Code 12 SIP Method Declaration

PJSIP core library declares only methods that are specified in core SIP standard
(RFC 3261). For these core methods, the id field of pjsip_method will contain the
appropriate value from the following enumeration:

enum pjsip_method e

{
PJSIP_ INVITE METHOD,
PJSIP_CANCEL_METHOD,
PJSIP_ACK METHOD,
PJSIP_BYE METHOD,
PJSIP_REGISTER METHOD,
PJSIP_OPTIONS_ METHOD,

PJSIP OTHER METHOD,

Code 13 SIP Method ID

For methods not specified in the enumeration, the id field of pjsip method will
contain pysIP OTHER METHOD Value. In this case, application must inspect the name
field of pjsip_method to know the actual method.

2.2.2 SIP Method API

The following functions can be used to manipulate PJSIP’s SIP method objects.

void pjsip_method_init(pjsip_method *method, p]j_pool_t *pool,
const pj_str_t *method_name);
Initialize method from string. This will initialize the id of the method field
to the correct value.
void pjsip method init np(pjsip_method *method,
pj_str_t *method name);
Initialize method from method _name string without duplicating the string
(np stands for no pool). The id field will be initialize accordingly.
void pjsip method set(pjsip_method *method,
pjsip_method id_e method_id);
Initialize method from the method ID enumeration. The name field will be
initialized accordingly.
void pjsip method copy (pPj_pool_t *pool,
pjsip_method *method,
const pjsip _method *rhs);

Copy rhs to method.
int pjsip_method cmp(const pjsip_method *methodl,
const pjsip_method *method2);
Compare methodl1 to method?2 for equality. This function returns zero if
both methods are equal, and (-1) or (+1) if method1 is less or greater
than method2 respectively.
Page 21

PJSIP Developer’s Guide

2.3 Header Fields

All header fields in PJSIP share common header properties such as header type,
name, short name, and virtual function table. Because of this, all header fields
can be treated uniformly by the stack.

2.3.1 Header “Class Diagram”

The following diagram shows the snippet of PJSIP header “class diagram”. There
are more headers than the ones shown in the diagram; PJSIP library implements
ALL headers that are specified in the core SIP specification (RFC 3261). Other
headers will be implemented in the corresponding PJSIP extension module.

pjsip_hdr

Attributes:
pjsip_hdr *next, *prev,
pjsip_hdr_e type;
pj_str_t name, sname

Operations:
pjsip_hdr *pjsip_hdr_clone(pool, hdr);
pjsip_hdr *pjsip_hdr_shallow_clone(pool, hdr);
int pjsip_hdr_print_on(hdr, buf, maxlen);

—

pjsip_via_hdr pjsip_fromto_hdr pjsip_generic_int_hdr
Attributes: Attributes: Attributes:
transport, sent_by, ttl_param, uri, tag, other_param ivalue
rport_param, maddr_param, N N
recvd_param, branch_param, Operations: Operations:
other_param, comment

P

Operations: ‘

pjsip_via_hdr * — —
pisip_via_hdr_create(pool); pjsip_from_hdr pisip_max_forwards_hdr
pjsip_generic_string_hdr Attributes: Attributes:
i . Operations: Operations:
Aft‘tvr::;es' pjsip_from_hdr * pjsip_max_fowards_hdr *
pisip_from_hdr_create(pool); pjsip_max_forwards_hdr_create(pool);
Operations:

pisip_to_hdr

pjsip_expires_hdr -
jsi eneric_array_hdr i .
Pisip_9 = LS Attributes: Attributes:
Attributes: Operations: Operations:
hvalue jsip_to_hdr * P iy
Pisip_to_ h N pjsip_expires_hdr *
Operations: pjsip_to_hdr_create(pool); pjsip_expires_hdr_create(pool);
pjsip_accept_encoding_hdr,
pjsip_accept_lang_hdr, pjsip_min_expires_hdr,
pjsip_alert_info_hdr, pjsip_retry_after_hdr, ——
pjsip_accept_hdr, pjsip_allow_hdr, pjsip_auth_info_hdr,
pjsip_require_hdr, pjsip_call_info_hdr,
pjsip_supported_hdr, pjsip_content_disposition_hdr,
pjsip_unsupported_hdr, ... pjsip_content_encoding_hdr, ...

Figure 11 Header “Class Diagram”

As seen in the “class diagram”, each of the specific header normaly only provide
one function that is specific for that particular header, i.e. function to create the
instance of the header.

2.3.2 Header Structure

To make sure that header fields contain common header properties and those
properties are in the correct and same memory layout, the header declaration
must call psgsIP_DECL_HDR MEMBER macro as the first member field of the header,
specifying the header name as argument to the macro.

#define PJSIP_DECL_HDR_ MEMBER (hdr) \
/** List members. */ \
PJ_DECL_LIST MEMBER (hdr) ; \

Page 22

PJSIP Developer’s Guide

/** Header type */

pjsip_hdr e type;

/** Header name. */

pPJj_str_t name;

/** Header short name version. */
pj_str_t sname;

/** Virtual function table. */
pjsip_hdr vptr *vptr

P 'Y

Code 14 Generic Header Declaration

PJSIP defines pjsip_hdr structure, which contains common properties shared by
all header fields. Because of this, all header fields can be typecasted to pjsip_hdr
so that they can be manipulated uniformly.

struct pjsip_hdr
{

PJSIP_DECL_HDR MEMBER (struct pjsip hdr);
i

Code 15 Generic Header Declaration

2.3.3 Common Header Functions

The pjsip_hdr_vptr specifies “virtual” function table, which implementation is
provided by each header types. The table contains pointer to functions as follows:

struct pjsip_hdr vptr
{

pjsip hdr *(*clone) (pj_pool t *pool, const pjsip hdr *hdr);
pjsip_hdr *(*shallow_clone) (pj_pool t *pool, const pjsip_hdr *hdr);
int (*print_on) (pjsip_hdr *hdr, char *buf, pj size t len);

}i

Code 16 Header Virtual Function Table

Although application can freely call the function pointers in the pjsip_hdr_vptr
directly, it is recommended that it uses the following header APIs instead,
because they will make the program more readable.

pjsip_hdr *pjsip hdr_ clone(pPj_pool_t *pool,
const pjsip_hdr *hdr);
Perform deep clone of hdr header.
pjsip_hdr *pjsip hdr shallow_clone(pJj_pool_t *pool,
const pjsip _hdr *hdr);
Perform shallow clone of hdr header. A shallow cloning creates a new
exact copy of the specified header field, however most of its value will still
point to the values in the original header. Normally shallow clone is just a
simple memcpy () from the original header to a new header, therefore it's
expected that this operation is faster than deep cloning.

However, care must be taken when shallow cloning headers. It must be
understood that the new header still shares common pointers to the
values in the old header. Therefore, when the pool containing the original
header is destroyed, the new header will be rendered invalid too although
the new header was shallow-cloned using different memory pool. Or if
some values in the original header was modified, then the corresponding
values in the shallow-cloned header will be modified too.

Despite of this, shallow cloning is used widely in the library. For example,
a dialog has some headers which values are more or less persistent during
Page 23

PJSIP Developer’s Guide

the session (e.g. From, To, Call-Id, Route, and Contact). When creating a
request, the dialog can just shallow-clone these headers (instead of
performing full cloning) and put them in the request message.
int pjsip_hdr_ print on(pjsip_hdr *hdr,

char *buf,

PJj_size_t max size);
Print the specified header to a buffer (e.g. before transmission). This
function returns the number of bytes printed to the buffer, or -1 when the
buffer is overflow.

2.3.4 Supported Header Fields

The “standard” PJSIP header fields are declared in <pjsip/sip_msg.h>. Other
header fields may be declared in header files that implement specific
functionalities or SIP extensions (e.g. headers used by SIMPLE extension, etc.).

Each header field normally only defines one specific API for manipulating them,
i.e. the function to create that specific header field. Other APIs are exported
through the virtual function table.

The APIs to create individual header fields are by convention named after the
header field name and followed by _create () suffix. For example, call function
pjsip_via_hdr_create() to create an instance of pjsip_via_hdr header.

Please refer to <pjsip/sip_msg.h> for complete list of header fields defined by
PJSIP core.

2.3.5 Header Array Elements

A lot of SIP headers (e.g. Require, Contact, Via, etc.) can be grouped together as
a single header field and separated by comma. Example:

Contact: <sip:alice@sip.example.com>;gq=1.0, <tel:+442081234567>;9=0.5
Via: SIP/2.0/UDP proxyl.example.com;branch=z9hG4bK87asdks7, SIP/2.0/UDP
proxy2.example.com;branch=z9hG4bK77asjd

(e.g. Contact, Via, Route, Record-Route). Simple string array however is supported (e.g. Require,

NOTE: PJSIP does not support representing array elements in a header for complex header types
%} Supported, etc.).

When the parser encounters such arrays in headers, it will split the array into
individual headers while maintaining their order of appearance. So for the
example above, the parser will modify the message to:

Contact: <sip:alice@sip.example.com>;g=1.0

Contact: <tel:+442081234567>;9=0.5

Via: SIP/2.0/UDP proxyl.example.com;branch=z9hG4bK87asdks7
Via: SIP/2.0/UDP proxy2.example.com;branch=z9hG4bK77asjd

The SIP standard specifies that there should NOT be any difference in the
processing of message containing either kind of header representations. So we
believe that the removal of header array support will not limit the functionality of
PJSIP at all.

The reason why we impose this limitation is because based on our experience,
the removal of header array support greatly simplifies processing of headers. If
header array were supported, then application not only must inspect all headers,
it also has to inspect some headers to see if they contain arrays. With the

Page 24

PJSIP Developer’s Guide

removal of array support, application only has to inspect the main header list in
the message.

2.4 Message Body (pjsip_msg_body)

SIP message body is represented with pjsip_msg body structure in PJSIP. This
structure is declared in <pjsip/sip_msg.h>.

struct pjsip_msg_body

{
/** MIME content type.
* For incoming messages, the parser will fill in this member with the
* content type found in Content-Type header.

* For outgoing messages, application must fill in this member with
* appropriate value, because the stack will generate Content-Type header
* Dbased on the value specified here.
*/
pjsip_media_ type content_ type;

/** Pointer to buffer which holds the message body data.
* For incoming messages, the parser will fill in this member with the
* pointer to the body string.

When sending outgoing message, this member doesn't need to point to the
actual message body string. It can be assigned with arbitrary pointer,
because the value will only need to be understood by the print body ()
function. The stack itself will not try to interpret this wvalue, but
instead will always call the print body() whenever it needs to get the
* actual body string.

*/

void *data;

R

/** The length of the data.
* For incoming messages, the parser will fill in this member with the
* actual length of message body.

* When sending outgoing message, again just like the "data" member, the
* "len" member doesn't need to point to the actual length of the body
* string.
*/
unsigned len;

/** Pointer to function to print this message body.
* Application must set a proper function here when sending outgoing
* message.

*

* (@param msg_body This structure itself.
* Q@param buf The buffer.
* @param size The buffer size.
*
* (@return The length of the string printed, or -1 if there is
* not enough space in the buffer to print the whole
* message body.
*/
int (*print_body) (struct pjsip msg body *msg body,

char *buf, pj_size t size);

/** Pointer to function to clone the data in this message body.
*/

gvt
Y void* (*clone_data) (pj_pool_t *pool, const void *data, unsigned len);

ueo

}i

Code 17 Message Body Declaration

The following are APIs that are provided for manipulating SIP message objects.

Page 25

PJSIP Developer’s Guide

pJj_status_t pjsip_msg_body clone(pj_pool_t *pool,
pPjsip_msg body *dst_body,
const pjsip_msg body *src_body) ;
Clone the message body in src_body to the dst_body. This will duplicate
the contents of the message body using the clone_data member of the
source message body.

2.5 Message (pjsip_msg)

Both request and response message in PJSIP are represented with pjsip_msg
structure in <pjsip/sip_msg.h>. The following code snippet shows the declaration
of pjsip_mg along with other supporting structures.

enum pjsip_msg_type e
{
PJSIP_REQUEST MSG, // Indicates request message.
PJSIP_RESPONSE_MSG, // Indicates response message.
bi

struct pjsip_request_line

{
pjsip method method; // Method for this request line.
pjsip uri *uri; // URI for this request line.

bi

struct pjsip_status_line
{
int code; // Status code.
pj str t reason; // Reason string.
}i

struct pjsip_msg

{
/** Message type (ie request or response). */
pjsip_msg_type_e type;

/** The first line of the message can be either request line for request
* messages, or status line for response messages. It is represented here
* as a union.
*/
union
{
/** Request Line. */
struct pjsip_request_line req;

/** Status Line. */
struct pjsip_status_line status;

} line;

/** List of message headers. */
pjsip_hdr hdr;

/** Pointer to message body, or NULL if no message body is attached to
* this mesage.
*/

pjsip_msg_body *body;

Code 18 SIP Message Declaration

The following are APIs that are provided for manipulating SIP message objects.

pPjsip_msg* pjsip _msg_create(pJj_pool_t *pool,
Page 26

PJSIP Developer’s Guide

pjsip_msg_type_e type);
Create a request or response message according to the type.
pjsip_hdr* pjsip msg find hdr(pPjsip_msg *msg,
pjsip_hdr e hdr_type,
pjsip_hdr *start);
Find header in the msg which has the specified type, searching from (and
including) the specified start position in the header list. If start is NULL,
then the function searches from the first header in the message. Returns
NULL when no more header at and after the specified position can be
found.
pjsip_hdr* pjsip msg_find hdr by name(pjsip_msg *msg,
const pj_str_t *name,
pjsip_hdr *start);
Find header in the msg which has the specified name, searching both long
and short name version of the header from the specified start position in
the header list. If start is NULL, then the function searches from the first
header in the message. Returns NULL when no more headers at and after
the specified position can be found.
void pjsip msg_add_hdr(pPjsip_msg *msg,
pjsip_hdr *hdr);
Add hdr as the last header in the msg.
void pjsip_msg_insert first hdr(pjsip_msg *msg,
pjsip_hdr *hdr);
Add hdr as the first header in the msg.
PJj_ssize_t pjsip_msg_print(pPjsip_msg *msg,
char *buf,
pj_size_t size);
Print the whole contents of msg to the specified buffer. The function
returns the number of bytes written, or -1 if buffer is overflow.

2.6 SIP Status Codes

SIP status codes that are defined by the core SIP specification (RFC 3261) is
represented by pjsip_status_code enumeration in <pjsip/sip_msg.h>. In
addition, the default reason text can be obtained by calling

pjsip_get status_text() function.

The following snippet shows the declaration of the status code in PJSIP.

enum pjsip_status_code

{
PJSIP_SC_TRYING = 100,
PJSIP_SC_RINGING = 180,
PJSIP SC_CALL BEING FORWARDED = 181,
PJSIP_SC_QUEUED = 182,
PJSIP_SC_PROGRESS = 183,

PJSIP _SC OK = 200,

PJSIP SC MULTIPLE CHOICES = 300,
PJSIP _SC_MOVED PERMANENTLY = 301,
PJSIP SC_MOVED TEMPORARILY = 302,
PJSIP SC USE PROXY = 305,
PJSIP_SC_ALTERNATIVE SERVICE = 380,

PJSIP_SC_BAD REQUEST = 400,

PJSIP SC UNAUTHORIZED = 401,

PJSIP SC_PAYMENT REQUIRED = 402,
PJSIP SC_FORBIDDEN = 403,

PJSIP SC_NOT FOUND = 404,
PJSIP_SC_METHOD NOT ALLOWED = 405,

Page 27

PJSIP Developer’s Guide

PJSIP SC_NOT ACCEPTABLE = 406,

PJSIP SC_ PROXY AUTHENTICATION REQUIRED = 407,
PJSIP_SC_REQUEST TIMEOUT = 408,
PJSIP SC _GONE = 410,

PJSIP SC _REQUEST ENTITY TOO LARGE = 413,
PJSIP SC_REQUEST URI TOO LONG = 414,
PJSIP SC_UNSUPPORTED MEDIA TYPE = 415,
PJSIP SC_UNSUPPORTED URI SCHEME = 416,
PJSIP_SC_BAD EXTENSION = 420,

PJSIP SC EXTENSION REQUIRED = 421,
PJSIP SC INTERVAL TOO BRIEF = 423,
PJSIP SC_TEMPORARILY UNAVAILABLE = 480,
PJSIP SC CALL TSX DOES NOT EXIST = 481,
PJSIP_SC_LOOP DETECTED = 482,

PJSIP SC_TOO MANY HOPS = 483,

PJSIP SC ADDRESS INCOMPLETE = 484,
PJSIP _AC AMBIGUOUS = 485,
PJSIP SC BUSY HERE = 486,

PJSIP SC REQUEST TERMINATED = 487,
PJSIP SC NOT ACCEPTABLE HERE = 488,
PJSIP SC REQUEST PENDING = 491,
PJSIP_SC_UNDECIPHERABLE = 493,

PJSIP SC_INTERNAL SERVER ERROR = 500,
PJSIP SC_NOT IMPLEMENTED = 501,

PJSIP SC BAD GATEWAY = 502,

PJSIP SC_SERVICE UNAVAILABLE = 503,
PJSIP SC_SERVER TIMEOUT = 504,

PJSIP SC VERSION NOT SUPPORTED = 505,
PJSIP SC_MESSAGE TOO LARGE = 513,

PJSIP SC_BUSY EVERYWHERE = 600,

PJSIP SC_DECLINE = 603,

PJSIP SC DOES NOT EXIST ANYWHERE = 604,
PJSIP SC_NOT ACCEPTABLE ANYWHERE = 606,

PJSIP_SC_TSX TIMEOUT = 701,

PJSIP_SC_TSX RESOLVE ERROR = 702,

PJSIP_SC_TSX TRANSPORT ERROR = 703,
}i

/**

* Get the default status text for the status code.

* @param status_code SIP Status Code

* @return textual message for the status code.
*/

PJ_DECL(const pj_str t*) pjsip get status_text(int status_code);

Code 19 SIP Status Code Constants

PJSIP also defines new status class (i.e. 7xx) for additional error status during
message processing (e.g. transport error, DNS error, etc). This class however is
only used internally; it will not go out on the wire.

2.7 Non-Standard Parameter Elements

In PJSIP, known or “standard” parameters (e.g. URI parameters, header field
parameters) will normally be represented as individual attributes/fields of the
corresponding structure. Parameters that are not “standard” will be put in a list of
parameters, with each parameter is represented as pjsip_param structure. Non-
standard parameter normally is declared as other_param field in the owning
structure.

Page 28

PJSIP Developer’s Guide

2.7.1 Data Structure Representation (pjsip_param)

This structure describes each individual parameter in a list.

struct pjsip param

{

PJ DECL LIST MEMBER (struct pjsip param); // Generic list member.
pj_str t name; // Param/header name.
pj_str t value; // Param/header value.

}i

Code 20 Non-Standard Parameter Declaration

For example of its usage, please see other_param and header_param fields in the
declaration of pjsip_sip uri (See previous section 2.1.4 “SIP and SIPS URI") or
other param field in the declaration of pjsip_tel uri (see previous section 2.1.5
“Tel URI").

2.7.2 Non-Standard Parameter Manipulation

ue

paTED

Some functions are provided to assist manipulation of non-standard parameters
in parameter list.
pPjsip_param* pjsip param find(const pjsip_param *param list,
const pj_str_t *name);
This function will perform case-insensitive search for the specified
parameter name.
void pjsip param clone(pj_pool_ t *pool,
pjsip_param *dst_list,
const pjsip _param *src_list);
Perform full/deep clone of parameter list.

void pjsip param shallow_clone(pJj_pool_t *pool,
pjsip_param *dst_ list,
const pjsip param *src_list);
Perform shallow clone of parameter list.

PJj_ssize_t pjsip_param print on(const pjsip_param *param list,

char *buf,

Pj_size_t max size,

const pj_cis_t *pname_unres,

const pj_cis_t *pvalue_ unres,

int sep);
Print the parameter list to the specified buffer. The pname_unres and
pvalue_unres is the specification of which characters are allowed to appear
unescaped in pname and pvalue respectively; any characters outside these
specifications will be escaped by the function. The argument sep specifies
separator character to be used between parameters (normally it is
semicolon (*;") character for normal parameter or comma (',’) when the
parameter list is a header parameter).

2.8 Escapement Rules

PJSIP provides automatic un-escapement during parsing and escapement during
printing ONLY for the following message elements:

Page 29

PJSIP Developer’s Guide
o all types of URI and their elements are automatically escaped and un-

escaped according to their individual escapement rule.

o parameters appearing in all message elements (e.g. in URL, in header
fields, etc.) are automatically escaped and un-escaped.

Other message elements will be passed un-interpreted by the stack.

Page 30

PJSIP Developer’s Guide

Chapter 3:Parser

3.1 Features

Some features of the PJSIP parser:

o

o

It's a top-down, handwritten parser. It uses PJLIB’s scanner, which is
pretty fast and reduces the complexity of the parser, which make the
parser readable.

As said above, it's pretty fast. On a single P4/2.6GHz machine, it's able to
parse more than 68K of typical 800 bytes SIP message or 860K of 80
bytes URLs in one second. Note that your mileage may vary, and different
PJSIP versions may have different performance.

It's reentrant, which will make it scalable on machine with multi-
processors.

It's extensible. Modules can plug-in new types of header or URI to the
parser.

The parser features almost a lot of tricks thinkable to achieve the highest
performance, such as:

o

it uses zero-copy for all message elements; i.e., when an element, e.g. a
pvalue, is parsed, the parser does not copy the pvalue contents to the
appropriate field in the message; instead it will just put the pointer and
length to the appropriate field in the message. This is only possible
because PJSIP uses pj_str_t all the way throughout the library, which does
not require strings to be NULL terminated.

it uses PILIB’s memory pool (pj_pool_t) for memory allocation for the
message structures, which provides multiple times speed-up over
traditional malloc() function.

it uses zero synchronization. The parser is completely reentrant so that no
synchronization function is required.

it uses PILIB's try/catch exception framework, which not only greatly
simplifies the parser and make it readable, but also saves tedious error
checking in the parsers. With an exception framework, only one exception
handler needs to be installed at the top-most function of the parser.

One feature that PJSIP parser doesn’t implement is lazy parsing, which a lot of
people probably brag about its usability. In early stage of the design, we decided
not to implement lazy parsing, because of the following reasons:

o

it complicates things, especially error handling. With lazy parsing, basically
all parts of the program must be prepared to handle error condition when
parsing failed at later stage when application needs to access a particular
message element.

at the end of the day, we believe that PJSIP parser is very fast anyway
that it doesn’t need lazy parsing. Although having said that, there will be
some switches that can be turned-on in PJSIP parser to ignore parsing of
some headers for some type of applications (e.g. proxies, which only
needs to inspect few header types).

Page 31

PJSIP Developer’s Guide

3.2 Functions

The main PJISIP parser is declared in <pjsip/sip_parser.h> and defined in
<pjsip/sip_parser.c>. Other parts of the library may provide other parsing
functionalities and extend the parser (e.g. <pjsip/sip_tel_uri.c> provides function
to parse TEL URI and registers this function to the main parser).

3.2.1 Message Parsing

pJj_status_t pjsip_find_msg(const char *buf,
pPj_size_t size,
pj_bool t is_datagram,
Pj_size_t *msg_size);
Checks that an incoming packet in buf contains a valid SIP message. When
a valid SIP message is detected, the size of the message will be indicated
in msg_size. If is_datagram is specified, this function will always return
PJ_SUCCESS.
Note that the function expects the buffer in buf to be NULL terminated.
pPjsip_msg* pjsip_parse_msg(Pj_pool_t *pool,
char *buf, pj_size_t size,
pPjsip_parser_err_ report *err_ list);
Parse a buffer in buf into SIP message. The parser will return the message
if at least SIP request/status line has been successfully parsed. Any error
encountered during parsing will be reported in err_list if this parameter is
not NULL.

Note that the function expects the buffer in buf to be NULL terminated.
pPjsip_msg* pjsip_parse_rdata(char *buf, pj_size t size,
pjsip_rx data *rdata);
Parse a buffer in buf into SIP message. The parser will return the message
if at least SIP request/status line has been successfully parsed. In
addition, this function updates various pointer to headers in msg_info
portion of the rdata.

Note that the function expects the buffer in buf to be NULL terminated.

3.2.2 URI Parsing

Pjsip_uri* pjsip parse_uri (pPj_pool_t *pool,

char *buf, pj_size_t size,

unsigned option) ;
Parse a buffer in buf into SIP URI. If PJSIP_PARSE_URI_AS_NAMEADDR is
specified in the option, the function will always “wrap” the URI as name
address. If PJSIP_PARSE_URI_IN_FROM_TO_HDR is specified in the
option, the function will not parse the parameters after the URI if the URI
is not enclosed in brackets (because they will be treated as header
parameters, not URI parameters).

This function is able to parse any types of URI that are recognized by the
library, and return the correct instance of the URI depending on the
scheme.

Note that the function expects the buffer in buf to be NULL terminated.

3.2.3 Header Parsing

void* pjsip_parse hdr(pj_pool_t *pool, const pj_str_ t *hname,
char *line, pj_size t size,
int *parsed len);

Page 32

PJSIP Developer’s Guide

Parse the content of a header in line (i.e. part of header after the colon
character) according to the header type hname. It returns the appropriate
instance of the header.

Note that the function expects the buffer in buf to be NULL terminated.

pj_status_t pjsip parse_headers(pj_pool_t *pool,
char *input, pj_size_t size,
pj_list *hdr_ list);
Parse multiple headers found in input buffer and put the results in hdr_list.
The function expects the header to be separated either by a newline (as in
SIP message) or ampersand character (as in URI). The separator is
optional for the last header.

Note that the function expects the buffer in buf to be NULL terminated.

3.3 Extending Parser

The parser can be extended by registering function pointers to parse new types of
headers or new types of URI.

typedef pjsip hdr* (pjsip_parse_hdr_ func) (pjsip_parse_ctx *context) ;
pj_status_t pjsip register hdr parser(const char *hname,
const char *hshortname,
pPjsip_parse_hdr func *fptr);
Register new function to parse new type of SIP message header.
typedef void* (pjsip_parse_uri_func) (pj_scanner *scanner, pj_pool_t *pool,
pj_bool t parse_params) ;

pJj_status_t pjsip_register_ uri parser(char *scheme,
pjsip_parse_uri_ func *func);

Register new function to parse new type of SIP URI scheme.

Page 33

PJSIP Developer’s Guide

Chapter 4:Message Buffers

4.1 Receive Data Buffer

A SIP message received by PJSIP will be passed around to different PJSIP
software components as pjsip_rx data instead of a plain message. This structure
contains all information describing the received message.

Receive and transmit data buffers are declared in <pjsip/sip_transport.h>.

4.1.1 Receive Data Buffer Structure

struct pjsip_rx data

{

// This part contains static info about the buffer.

struct

{
pj _pool t *pool; // Pool owned by this buffer
pjsip transport *transport; // The transport that received the msg.
pjsip rx data op key op_key; // Ioqueue’s operation key

} tp_info;

// This part contains information about the packet

struct

{
pj_time val timestamp; // Packet arrival time
char packet [PJSIP_MAX PKT_LEN]; // The packet buffer
pj uint32 t zero; // Zero padding.
int len; // Packet length
pj sockaddr addr; // Source address
int addr len; // Address length.

} pkt_info;

// This part describes the message and message elements after parsing.

struct

{
char *msg_buf; // Pointer to start of msg in the buf.
int len; // Message length.
pjsip_msg *msg; // The parsed message.

// Shortcut to important headers:

pj_str t call_id; // Call-ID string.

pjsip from hdr *from; // From header.

pisip to hdr *to; // To header.

pjsip_via hdr *via; // First Via header.
pjsip_cseq hdr *cseq; // CSeq header.

pjsip_max_ forwards_hdr *max_ fwd; // Max-Forwards header.
pjsip route hdr *route; // First Route header.

pjsip rr hdr *record route; // First Record-Route header.
pjsip_ctype hdr *ctype; // Content-Type header.
pjsip clen hdr *clen; // Content-Length header.
pjsip require hdr *require; // The first Require header.
pjsip parser err report parse_err; // List of parser errors.

} msg_info;

// This part is updated after the rx data reaches endpoint.

struct
{
pj str t key; // Transaction key.
n‘;ﬁﬂ void *mod_data[PJSIP_MAX MODULE]; // Module specific data.

o
e } endpt_info;

Code 21 Receive Data Buffer Declaration

Page 34

PJSIP Developer’s Guide

4.2 Transmit Data Buffer (pjsip_tx_data)

When PJSIP application wants to send outgoing message, it must create a

transmit data buffer. The transmit data buffer provides memory pool from which
all message fields pertaining for the message must be allocated from, a reference
counter, lock protection, and other information that are needed by the transport

layer to process the message.

struct pjsip_tx data
{

/** This is for transmission queue; it's managed by transports. */
PJ_DECL LIST MEMBER (struct pjsip_tx data);

/** Memory pool for this buffer. */
pj_pool t *pool;

/** A name to identify this buffer. */

char obj_name [PJ MAX OBJ NAME];
/** Time of the rx request; set by pjsip_endpt create response(). */
pj_time val rx_timestamp;

/** The transport manager for this buffer. */
pisip tpmgr *mgr;

/** Ioqueue asynchronous operation key. */
pisip tx data op key op_key;

/** Lock object. */
pj_lock t *lock;

/** The message in this buffer. */
pjsip_msg *msg;

/** Contigous buffer containing the packet. */
pjsip buffer buf;

/** Reference counter. */
pj_atomic t *ref cnt;

/** Being processed by transport? */
int is_pending;
/** Transport manager internal. */
void *token;

void (*cb) (void*, pjsip tx data*, pj ssize t);

/** Transport info, only valid during on_tx request () and on_ tx response ()

struct {
pjsip_transport *transport; /**< Transport being used. */
pJj_sockaddr dst_addr; /**< Destination address. */
int dst_addr_len; /**< Length of address. */
char dst name[16]; /**< Destination address. */
int dst_port; /**< Destination port. */
} tp_info;

}i

*/

Code 22 Transmit Data Buffer Declaration

Page 35

PJSIP Developer’s Guide

Chapter 5:Transport Layer

Transports are used to send/receive messages across the network. PJSIP
transport framework is extensible, which means application can register its own

means to transport messages.

5.1 Transport Layer Design
5.1.1 “Class Diagram”

The following diagram shows the relationship between instances in the transport

pjsip_endpoint

pj_status_t pjsip_endpt_acquire_transport(...);

[

pjsip_tpmgr

pj_status_t pjsip_tpmgr_create(...);
pj_status_t pjsip_tpmgr_destroy(...);
pj_status_t pjsip_tpmgr_register_tpfactory(...);
pj_status_t pjsip_tpmgr_unregister_tpfactory(...);
pj_status_t pjsip_transport_register(...);
pj_status_t pjsip_transport_unregister(...);
pj_status_t pjsip_tpmgr_receive_packet(...)
pj_status_t pjsip_tpmgr_acquire_transport(

¥

layer.
Attributes:
Operations:
Attributes:
Operations:
pjsip_transport
Attributes:

pool, ref_cnt, lock, type,
local_addr, remote_addr,
public_addr

Operations:
pj_status_t pjsip_transport_send(...);
pj_status_t pjsip_transport_add_ref(...);
pj_status_t pjsip_transport_dec_ref(...);

pjsip_tpfactory

Attributes:

Operations:
pj_status_t create_transport(...);

Figure 12 Transport Layer "Class Diagram"

5.1.2 Transport Manager

The transport manager (pjsip_tpmgr) manages all transport objects and factories.
It provides the following functionalities:

« Manages transports life-time by using transport’s reference counter and

idle timer.

« Manages transport factories.

» Receives packet from transport, parse the packet, and deliver the SIP

message to endpoint.

Page 36

PJSIP Developer’s Guide

» Find matching transport to send SIP message to particular destination
based on the transport type and remote address.

« Create new transports dynamically when no existing transport is available
to send SIP message to a new destination.

There is only one transport manager per endpoint. Transport manager is normally
not visible to applications; applications should use the functions provided by
endpoint.

5.1.3 Transport Factory

The transport factory (pjsip_tpfactory) is used to create dynamic connection to
remote endpoint. An example of this type of connection is TCP transport, where
one TCP transport needs to be created for each destination.

When transport manager detects that it need to create new transport to the new
destination, it finds the transport factory with matching specification (i.e.
transport type) and ask the factory to create the connection.

A transport factory object is declared as follows.

5.1.4 Transport

Transport object is represented with pjsip_transport structure. Each instance of
this structure normally represents one socket handle (e.g. UDP, TCP), although
the transport layer supports non-socket transport as well.

General Transport Operations

From the framework’s point of view, transport object is an active object. The
framework doesn’t have mechanism to poll the transport objects; instead, the
transport objects must find their own way to receive packets from network and
deliver the packets to transport manager for further processing.

The recommended way to achieve this is to register the transport’s socket handle
to endpoint’s I/O queue (pj_ioqueue_t), so that when the endpoint polls the I/O
queue, packets from the network will be received by the transport object.

Once a packet has been received by the transport object, it must deliver the
packet to transport manager by calling pjsip_tpmgr_receive_packet () function, so
that it can be parsed and distributed to the rest of the stack. The transport object
must initialize both tp_info and pkt_info member of receive data buffer
(pjsip_rx_data).

Each transport object has a pointer to function to send messages to the network
(i.e. send msg() attribute of the transport object). Application (or the stack) sends
messages to the network by calling pjsip_transport send() function, which
eventually will reach the transport object, and send_msg() will be called. The
sending of packet may complete asynchronously; if so, transport must return
PJ_EPENDING status in send_msg() and call the callback that is specified in
argument when the message has been sent to destination.

Transport Object Declaration

The following code shows the declaration of a transport object.

Page 37

PJSIP Developer’s Guide

struct pjsip_transport

{

char obj_name[PJ MAX OBJ NAME] ; // Name.

pj pool t *pool; // Pool used by transport.
pj_atomic t *ref cnt; // Reference counter.

pj_lock t *lock; // Lock object.

int tracing; // Tracing enabled?

pjsip transport type e type; // Transport type.

char type_name([8]; // Type name.

unsigned flag; // See #pjsip transport flags e
pj_sockaddr local_addr; // Bound address.

pjsip host port addr_name; // Published name (e.g. STUN address).
pJj_sockaddr rem_addr; // Remote addr (zero for UDP)
pjsip_endpoint *endpt; // Endpoint instance.

pisip tpmgr *tpmgr; // Transport manager.

pj_timer entry idle timer; // Timer when ref cnt is zero.

/* Function to be called by transport manager to send SIP messages. */
pJj_status_t (*send_msg) (pjsip_transport *transport,
pjsip tx data *tdata,
const pj_sockaddr_in *rem addr,
void *token,
void (*callback) (pjsip_ transport¥*,
void *token,
pj_ssize t sent));

/* Called to destroy this transport. */
pj_status t (*destroy) (pjsip transport *transport);

/* Application may extend this structure. */

Code 23 Transport Object Declaration

Transport Management

Transports are registered to transport manager by pjsip_transport_register().
Before this function is called, all members of the transport structure must be
initialized.

Transport’s life-time is managed automatically by transport manager. Each time
reference counter of the transport reaches zero, an idle timer will start. When the
idle timer expires and the reference counter is still zero, transport manager will
destroy the transport by calling pjsip_transport_unregister (). This function

unregisters the transport from transport manager’s hash table and eventually
destroy the transport.

Some transports need to exist forever even when nobody is using the transport
(for example, UDP transport, which is a singleton instance). To prevent that
transport from being deleted, it must set the reference counter to one initially, so
that reference counter will never reach zero.

Transport Error Handling

Any errors in the transport (such as failure to send packet or connection reset)
are handled by transport user. Transport object doesn’t need to handle such
errors, other than reporting the error in the function’s return value. In particular,
it must not try to reconnect a failed/closed connection.

Page 38

PJSIP Developer’s Guide

5.2 Using Transports

5.2.1 Function Reference

pj_status_t

Pjsip_endpt_acquire_transport(pPjsip_endpoint *endpt,
pjsip_transport type e t_ type,
const pj_sockaddr_t *remote_ addr,
int addrlen,
pjsip_transport **p_ transport);

Acquire transport of type t_type to be used to send message to
destination remote_addr. Note that if transport is successfully acquired,
the transport’s reference counter will be incremented.

LpOATED

pJj_status_t pjsip_transport add ref(pjsip_transport *transport);
Add reference counter of the transport. This function will prevent the
transport from being destoyed, and it also cancels idle timer if such timer
is active.

pJj_status_t pjsip_transport dec_ref(pjsip_transport *transport);
Decrement reference counter of the transport. When transport’s reference
counter reaches zero, an idle timer will be started and transport will be
destroyed by transport manager when the timer has elapsed and
reference counter is still zero.
pJj_status_t pjsip_transport send(pjsip_transport *transport,
o pjsip_tx_data *tdata,
u\’““ia const pj_sockaddr_t *remote_ addr,
int addrlen,
void *token,
void (*cb) (void *token,
pjsip_tx data *tdata,
pJj_ssize_t bytes_sent));
Send the message in tdata to remote_addr using transport transport. If
the function completes immediately and data has been sent, the function
returns PJ_SUCCESS. If the function completes immediately with error, a
non-zero error code will be returned. In both cases, the callback will not
be called.

If the function can not complete immediately (e.g. when the underlying
socket buffer is full), the function will return PJ_EPENDING, and caller will
be notified about the completion via the callback cb. If the pending send
operation completes with error, the error code will be indicated as
negative value of the error code, in the bytes sent argument of the
callback (to get the error code, use “pj status t status = -bytes sent”).

This function sends the message as is.

5.3 Extending Transports

PJSIP transport can be extended to use custom defined transports. Theoretically
any types of transport, not limited to TCP/IP, can be plugged into the transport
manager’s framework. Please see the header file <pjsip/sip_transport.h> and
also sip_transport_udp.[hc] for more details.

5.4 Initializing Transports

PJSIP doesn’t start any transports by default (not even the built-in transports); it
is the responsibility of the application to initialize and start any transports that it
wishes to use.

Below are the initialization functions for the built-in UDP and TCP transports.

Page 39

PJSIP Developer’s Guide

5.4.1 UDP Transport Initialization

PJSIP provides two choices to initialize and start UDP transports. These functions
are declared in <pjsip/sip_transport_udp.h>.

pj_status_t pjsip udp_transport start(pJjsip_endpoint *endpt,

const pj_sockaddr_in *local_addr,
const pj_sockaddr_in *pub_addr,
unsigned async_cnt,
pjsip_transport **p transport);

Create, initialize, register, and start a new UDP transport. The UDP socket
will be bound to /local_addr. If the endpoint is located behind firewall/NAT
or other port-forwarding devices, then pub_addr can be used as the
address that is advertised for this transport; otherwise pub_addr should
be the same as local_addr. The argument async_cnt specifies how many
simultaneous operations are allowed for this transport, and for maximum
performance, the value should be equal to the number of processors in the
node.

If transport is successfully started, the function returns PJ_SUCCESS and
the transport is returned in p_transport argument, should the application
want to use the transport immediately. Application doesn’t need to
register the transport to transport manager; this function has done that
when the function returns successfully.

Upon error, the function returns a non-zero error code.

pj_status_t pjsip udp_transport attach(pjsip_endpoint *endpt,

pJj_sock_t sock,

const pj_sockaddr_in *pub_addr,
unsigned async_cnt,
pjsip_transport **p transport);

Use this function to create, initialize, register, and start a new UDP
transport when the UDP socket is already available. This is useful for
example when application has just resolved the public address of the
socket with STUN, and instead of closing the socket and re-create it, the
application can just reuse the same socket for the SIP transport.

5.4.2 TCP Transport Initialization

TODO.

5.4.3 TLS Transport Initialization

TODO.

5.4.4 SCTP Transport Initialization

TODO.

Page 40

PJSIP Developer’s Guide

Chapter 6:Sending Messages

The core operations in SIP applications are of course sending and receiving
message. Receiving incoming message is handled in on_rx request() and
on_rx_response () callback of each module, as described in 1 General Design.

This chapter will describe about the basic way to send outgoing messages, i.e.
without using transaction or dialog.

The next chapter Transactions describes about how to handle request statefully
(both incoming and outgoing requests).

6.1 Sending Messages Overview
6.1.1 Creating Messages

PJSIP provides rich API to create request or response messages. There are
various ways to create messages:

« for response messages, the easiest way is to use
pjsip_endpt create_response() function.

- for request messages, you can use pjsip_endpt create request(),
PJjsip_endpt_create_request_from hdr(), pjsip_endpt create_ack(), OF
Pjsip_endpt_create_cancel().

e proxies can create request or response messages based on incoming
message to be forwarded by calling pjsip_endpt_create_request fwd() and
PJjsip_endpt_create_response fwd().

« alternatively you may create request or response messages manually by
creating the transmit buffer with pjsip_endpt_create_tdata(), creating the
message with pjsip msg_create(), adding header fields to the message
wWith pjsip_msg_add hdr() Or pjsip_msg_insert_first hdr(), set the
message body, etc.

e higher layer module may provide more specific way to create message
(e.g. dialog layer). This will be described in the individual module’s
documentation.

All message creating API (except the low-level pjsip_endpt_create_tdata()) sets
the reference counter of the transmit buffer (pjsip_tx_data) to one, which means

that at some point application (or stack) must decrement the reference counter to
destroy the transmit buffer.

All message sending API will decrement transmit buffer’s reference counter.
Which means that as long as application doesn’t do anything with the transmit
buffer’s reference counter, the buffer will be destroyed after it is sent.

6.1.2 Sending Messages

The most basic way to send message is to call pjsip_endpt_acquire transport ()
and pjsip_transport send() functions. For this to work, however, you must know
the destination address (i.e. sockaddr, not just hostname) to send the message.
Since there can be several steps from having the message and getting the exact
socket address (e.g. determining which address to use, performing RFC 3263
lookup, etc.), practically this function is too low-level to be used directly.

Page 41

PJSIP Developer’s Guide

The core API to send messages are pjsip_endpt_send_request_stateless() and
pjsip_endpt_send_response () functions. These two are very powerfull functions in
the sense that it handles transport layer automatically, and are the basic
building-blocks used by upper layer modules (e.g. transactions).

The pjsip_endpt_send_request stateless() function are for sending request
messages, and it performs the following procedures:

« Determine which destination to contact based on the Request-URI and
parameters in Route headers,

» Resolve the destination server using procedures in RFC 3263 (Locating SIP
Servers),

e Select and establish transport to be used to contact the server,
« Modify sent-by in Via header to reflect current transport being used,
¢ Send the message using current transport,

e Fail-over to next server/transport if server can not be contacted using
current transport

The pjsip_endpt_send_response () function are for sending response messages,
and it performs the following procedures:

« Follow the procedures in Section 18.2.2 of RFC 3261 to select which
transport to use and which address to send response to,

e Additionally conform to RFC 3581 about rport parameter,
« Send the response using the selected transport,

» Fail-over to next address when response failed to be sent using the
selected transport, resolving the server according to RFC 3263 when
necessary.

Since messages may be sent asynchronously (e.g. after TCP has been
connected), both functions provides callback to notify application about the status
of the transmission. This callback also inform the application that fail-over will
happen (or not), and application has the chance to override the behavior.

6.2 Function Reference
6.2.1 Sending Response

Base Functions
pj_status_t pjsip_endpt create_response(pPjsip_endpoint *endpt,
pPjsip_rx_data *rdata,
int st_code,
const char *st_text,
pjsip_tx data **tdata);
Create a standard response message for the request in rdata with status
code st_code and status text st_text. If st_text is NULL, default status text
will be used.

WPOATED

. pJj_status_t pjsip_get response_addr(pj_pool_t *pool,
u‘,gfﬂ‘-"’ pjsip_rx data *rdata,

pPJjsip_response_addr *res_addr);

Determine which address (and transport) to use to send response

message based on the received request in rdata. This function follows the

specification in section 18.2.2 of RFC 3261 and RFC 3581 for calculating

the destination address and transport. The address and transport

information about destination to send the response will be returned in

res_addr argument.

Page 42

PJSIP Developer’s Guide

pJj_status_t pjsip_endpt_send response(pJjsip_endpoint *endpt,
giﬂ‘ pPJjsip_response_addr *res_addr,
pjsip_tx_data *response,
void *token,
void (*cb) (pjsip_send_state¥*,
pPj_ssize_t sent,
pj_bool_t *cont));
Send response in response statelessly, using the destination address and
transport in res_addr. The response address information (res_addr) is

normally initialized by calling pjsip_get_response addr ()

The definite status of the transmission will be reported when callback cb is
called, along with other information (including the original token) which
will be stored in pjsip_send_state. If message was successfully sent, the
sent argument of the callback will be a non-zero positive number. If there
is failure, the sent argument will be negative value, and the error code is
the positive part of the value (i.e. status=-sent). If cont argument value is
non-zero, it means the function will try other addresses to send the
message (i.e. fail-over). Application can choose not to try other addresses
by setting this argument to zero upon exiting the callback.

If application doesn’t specify callback cb, then the function will not fail-
over to next address in case the selected transport fails to deliver the
message.

The function returns PJ_SUCCESS if the message is valid, or a non-zero
error code. However, even when it returns PJ_SUCCESS, there is no
guarantee that the response has been successfully sent.

Note that callback MAY be called before the function returns.

Composite Functions

.- PJj_status_t pjsip_endpt respond_stateless(pjsip_endpoint *endpt,
o pjsip_rx_data *rdata,
int st_code,
const char *st_text,
const pjsip_hdr *hdr_ list,
const pjsip_msg_body *body) ;
This function creates and sends a response to an incoming request. In
addition, caller may specify message body and additional headers to be
put in the response message in the hdr_list and body argument. If there is
no additional header or body, to be sent, the arguments should be NULL.

The function returns PJ_SUCCESS if response has been successfully
created and send to transport layer, or a non-zero error code. However,
even when it returns PJ_SUCCESS, there is no guarantee that the
response has been successfully sent.

6.2.2 Sending Request

pj_status_t pjsip _endpt create_tdata(pPjsip_endpoint *endpt,
pjsip_tx data **tdata);

Create a new, blank transmit data.

pj_status_t pjsip _endpt create_request(pjsip_endpoint *endpt,
const pjsip_method *method,
const pj_str_t *target,
const pj_str t *from,
const pj_str_t *to,
const pj_str_t *contact,
const pj_str_t *call_id,
int cseq,
const pj_str_t *text,

Page 43

PJSIP Developer’s Guide

pjsip_tx_data **p_tdata);
Create a new request message of the specified method for the specified
target URI, from, to, and contact. The call_id and cseq are optional. If text
is specified, then a “text/plain” body is added. The request message has
initial reference counter set to 1, and is then returned to sender in
p_tdata.
pJj_status_t pjsip_endpt_create_request_from hdr (pjsip_endpoint *endpt,
const pjsip_method *method,
const pjsip_uri *target,
const pjsip_from hdr *from,
const pjsip_to_hdr *to,
const pjsip_contact_hdr *ch,
const pjsip_cid hdr *call_id,
int csegq,
const pj_str_t *text,
pjsip_tx_data **p_ tdata);
Create a new request header by shallow-cloning the headers from the
specified arguments.
pj_status_t pjsip _endpt create_ack(pJjsip_endpoint *endpt,
const pjsip_tx data *tdata,
const pjsip_rx data *rdata,
pjsip_tx data **ack);
Create ACK request message from the original request in tdata based on
the received response in rdata. This function is normally used by
transaction when it receives non-successful response to INVITE. An ACK
request for successful INVITE response is normally generated by dialog’s
create request function.
pJj_status_t pjsip_endpt_create_cancel(pjsip_endpoint *endpt,
const pjsip_tx data *tdata,
pjsip_tx_data **p_tdata);
Create CANCEL request based on the previously sent request in tdata. This
will create a new transmit data buffer in p_tdata.
pJj_status_t pjsip_endpt_send request_stateless(pjsip_endpoint *endpt,
pjsip_tx_data *tdata,
void *token,
void (*cb) (pjsip_send_state*,
pj_ssize_t sent,
pj_bool_t *cont));

Send request in tdata statelessly. The function will take care of which
destination and transport to use based on the information in the message,
taking care of URI in the request line and Route header. There are several
steps will be performed by this function:

- determine which host to contact based on Request-URI and Route
headers (pjsip_get_request_addr()),

- resolve the destination host (pjsip_endpt_resolve()),

- acquire transport to be used (pjsip_endpt_acquire_transport()).
- send the message (pjsip_transport_send()).

- fail-over to next address/transport if necessary.

The definite status of the transmission will be reported when callback cb is
called, along with other information (including the original token) which
will be stored in pjsip_send_state. If message was successfully sent, the
sent argument of the callback will be a non-zero positive number. If there
is failure, the sent argument will be negative value, and the error code is
the positive part of the value (i.e. status=-sent). If cont argument value is
non-zero, it means the function will try other addresses to send the
message (i.e. fail-over). Application can choose not to try other addresses
by setting this argument to zero upon exiting the callback.

Page 44

PJSIP Developer’s Guide

If application doesn’t specify callback cb, then the function will not fail-
over to next address in case the selected transport fails to deliver the
message.

The function returns PJ_SUCCESS if the message is valid, or a non-zero
error code. However, even when it returns PJ_SUCCESS, there is no
guarantee that the request has been successfully sent.

Note that callback MAY be called before the function returns.

6.2.3 Stateless Proxy Forwarding

Rk

Rk

M‘.

Proxy may choose to forward a request statelessly. When doing so however, it
must strictly follow guidelines in section 16.11 Stateless Proxy of RFC 3261.

pJj_status_t pjsip_endpt_create_request_fwd(pjsip_endpoint *endpt,

pjsip_rx data *rdata,

const pjsip_uri *uri,

const pj_str_t *branch,

unsigned options,

pjsip_tx data **tdata);
Create new request message to be forwarded upstream to new destination
URI uri. The new request is a full/deep clone of the request received in
rdata, unless if other copy mechanism is specified in the options. The
branch parameter, if not NULL, will be used as the branch-param in the
Via header. If it is NULL, then a unique branch parameter will be used.

pJj_status_t pjsip_endpt_create_response_fwd(pPjsip_endpoint *endpt,

pjsip_rx data *rdata,

unsigned options,

pjsip_tx data **tdata);
Create new response message to be forwarded downstream by the proxy
from the response message found in rdata. Note that this function
practically will clone the response as is, i.e. without checking the validity
of the response or removing top most Via header. This function will
perform full/deep clone of the response, unless other copy mechanism is
used in the options.

Pj_str_t pjsip _calculate branch id(pjsip_rx data *rdata);

Create a globally unique branch parameter based on the information in the
incoming request message. This function guarantees that subsequent
retransmissions of the same request will generate the same branch id.

This function can also be used in the loop detection process. If the same
request arrives back in the proxy with the same URL, it will calculate into
the same branch id.

Note that the returned string was allocated from rdata’s pool.

Page 45

PJSIP Developer’s Guide

6.3 Examples
6.3.1 Sending Responses

Sending Account Not Found Response Statelessly

static pj_bool t on_rx request(pjsip_rx data *rdata)
{

pJjsip_account *acc;

pJj_status_t status;

// Find account referred to in the request.
acc =

// Respond statelessly if account can not be found.
if (lacc) {
status = pjsip_endpt_respond stateless(endpt, rdata, 404, NULL /*Not Found*/,
NULL, NULL, NULL);
return PJ_TRUE;

// Process the account

return PJ_TRUE;

Code 24 Sample: Stateless Response

Handling Authentication Failures Statelessly

Another (longer) way to send stateless response:

static pj_bool t on_rx request(pjsip_rx data *rdata)
{

pjsip_account *acc;

// Lookup acc.
acc = ...;

// Check authorization and handle failure statelessly
if (!pjsip_auth_authorize(acc, rdata->msg)) {
pjsip proxy authenticate hdr *auth hdr;

status = pjsip_endpt_create_response(endpt, rdata,
407, NULL /* Proxy Auth Required */,
&tdata) ;

// Add Proxy-Authenticate header.

status = pjsip_auth_create_challenge(tdata->pool, ..., &auth hdr);
pjsip_msg_add_hdr(&tdata->msg, auth_hdr);

// Send response statelessly

status = pjsip_endpt_send_response(endpt, tdata, NULL);

return PJ_TRUE;

// Authorization success. Proceed to next stage..

return PJ_TRUE;

Code 25 Sample: Stateless Response

Page 46

PJSIP Developer’s Guide

Stateless Redirection

static pj_bool t on_rx request(pjsip_rx data *rdata)
{

pjsip_account *acc;

pj_status t status;

// Find the account referred to in the request.
acc =
if (lacc) {
status = pjsip_endpt_ respond stateless(endpt, rdata, 404, NULL /*Not Found*/,
NULL, NULL, NULL);
return PJ_TRUE;

//

// Send 301/Redirect message, specifying the Contact details in the response
//

status = pjsip_endpt_respond stateless (endpt, rdata,

301, NULL /*Moved Temporarily*/,
&acc->contact list, NULL, NULL);
return PJ_TRUE;

Code 26 Stateless Redirection

6.3.2 Sending Requests
Sending Request Statelessly

void my send request ()

{
pj_status t status;
pjsip tx data *tdata;

// Create the request.
// Actually the function takes pj str t* argument instead of char*.

status = pjsip_endpt_create_request(endpt, // endpoint
method, // method
“sip:bobRexample.com”, // target URI
“sip:alice@thishost.com”, // From:
“sip:bobRexample.com”, // To:
“sip:alice@thishost.com”, // Contact:
NULL, // Call-Id
0, // CSeq#
NULL, // body
stdata); // output

// You may modify the message before sending it.

// Send the request statelessly (for whatever reason...)
status = pjsip_endpt_send_request_stateless(endpt, tdata, NULL);

Code 27 Sending Stateless Request

Page 47

PJSIP Developer’s Guide

6.3.3 Stateless Forwarding

Stateless Forwarding

static pj_bool t on_rx request(pjsip_rx_data *rdata)
{

pJjsip_account *acc;

pjsip tx data *tdata;

pj_str t branch id;

pj_status_t status;

// Find the account specified in the request.
acc =

// Generate unique branch ID for the request.
branch_id = pjsip_calculate_branch_id(rdata);

// Create new request to be forwarded to new destination.
status = pjsip_endpt_create_request fwd(endpt, rdata, dest, &branch_id, O,
&tdata);

// The new request is good to send, but you may modify it if necessary
// (e.g. adding/replacing/removing headers, etc.)

// Send the request downstream
status = pjsip_endpt_send_request_ stateless(endpt, tdata, NULL);

return PJ_TRUE;

//
// Forward response upstream
//
static pj_bool t on_rx response (pjsip_rx data *rdata)
{
pjsip_tx data *tdata;
pj_status_t status;

// Check that topmost Via is ours, strip top-most Via, etc.
// Create new tdata for the response.
status = pjsip_endpt_create_response_fwd(endpt, rdata, 0, &tdata);

// Send the response upstream
status = pjsip_endpt_send_response(endpt, tdata, NULL);

return PJ_TRUE;

Code 28 Stateless Forwarding

Page 48

PJSIP Developer’s Guide

Chapter 7:Transactions

7.1 Design
7.1.1 Introduction

Transaction in PJSIP is represented with pjsip_transaction structure in header
file <pjsip/sip_transaction.h>. Transaction’s lifetime normally follows these steps:

o Created by pPJjsip_tsx_endpt_create_uac() /pjsip_tsx_create_uas ().

o When application wants to send a message using the transaction, it will
call pjsip_tsx_send msg().

o Transaction state automatically changes as messages are passed to it
(either by endpoint for incoming message or by transaction user for
outgoing message) or timer elapses, and transaction user is notified via
on_tsx_state() callback.

o Transaction will be automatically destroyed once it the state has reached
PJSIP_TSX_STATE_TERMINATED. Application can also forcely terminate
the transaction by calling pjsip_tsx_terminate().

7.1.2 Timers and Retransmissions

Transaction only has two types of timers: retransmission timer and timeout timer.
The value of both timer types are automatically set by the transaction according
to the transaction type (UAS or UAC), transport (reliable or non-reliable), and
method (INVITE or non-INVITE).

Application can change the interval value of timers only on a global basis
(perhaps even only during compilation).

A transaction handles both incoming and outgoing retransmissions. Incoming
retransmissions are silently absorbed and ignored by transaction; there is no
notification about incoming retransmissions emitted by transaction. Outgoing
messages are automatically retransmitted by transactions where necessary;
again there will be no notification emitted by transaction on outgoing
retransmissions.

7.1.3 INVITE Final Response and ACK Request

&

Failed INVITE Request

The transaction behaves exactly according to RFC 3261 for failed INVITE request.

Client transaction: when a client INVITE transaction receives 300-699 final
response to INVITE, it will automatically emit ACK request to the response. The
transaction then wait for timer D interval before it is terminated, during which
any incoming 300-699 response retransmissions will be automatically answered
with ACK request.

Server transaction: when a server INVITE transaction is asked to transmit 300-
699 final response, it will transmit the response and keep retransmitting the
response until an ACK request is received or timer H interval has elapsed. During
this interval, when ACK request is received, transaction will move to Confirmed

Page 49

PJSIP Developer’s Guide

state and will be destroyed after timer I interval has elapsed. When timer H
elapsed without receving a valid ACK request, transaction will be destroyed.

Successfull INVITE Request

Client transaction: when a client INVITE transaction receives 2xx final response
to INVITE, it will destroy itself automatically after it passes the response to its
transaction user (can be a dialog or application). Subsequent incoming 2xx
response retransmission will be passed directly to dialog or application.

In any case, application MUST send ACK request manually upon receiving 2xx
final response to INVITE.

Server transaction: when a server INVITE transaction is asked to transmit 2xx
final response, it will transmit the response and keep retransmitting the
response until ACK is received or transaction is terminated by application with
pjsip_tsx_ terminate().

For simplicity in the implementation, a typical UAS dialog normally will let the
transaction handle the retransmission of the 2xx INVITE response. But proxy
application MUST destroy the UAS transaction as soon as it receives and sends
the 2xx response, to allow the 2xx retransmission to be handled by end-to-end
user agents.

This behavior of INVITE server transaction is different than RFC 3261 for successfull INVITE

request, which says that INVITE server transaction MUST be destroyed once 2xx response is sent.
The PISIP transaction behavior allows more simplicity in the dialog implementation, while
maintaining the flexibility to be compliant with RFC 3261 for proxy applications.

The default behavior of the INVITE server transaction can be overridden by
setting transaction->handle_200resp to zero (default is non-zero) after
transaction is created. In this case, UAS INVITE transaction will be destroyed as
soon as 2xx response to INVITE is sent.

7.1.4 Incoming ACK Request

When the server INVITE transaction was completed with non-successful final
response, the ACK request will be absorbed by transaction; transaction user
WILL NOT be notified about the incoming ACK request.

When the server INVITE transaction was completed with 2xx final response, the
first ACK request will be notified to transaction user. Subsequent receipt of ACK
retransmission WILL NOT be notified to transaction user.

7.1.5 Server Resolution and Transports

Transaction uses the core API pjsip_endpt_send_request_ stateless() and
pjsip_endpt_send response() t0 send outgoing messages. These functions provide
server resolution and transport establishment to send the message, and fail over
to alternate transport when a failure is detected. The transaction uses the
callbacks provided by these functions to monitor the progress of the transmission
and track the transport being used.

The transaction adds reference counter to the transport it currently uses.

Page 50

PJSIP Developer’s Guide

TCP Connection Closure

A TCP connection closure will not automatically cause the transaction to fail. In
fact, the transaction will not even detect the failure until it tries to send a
message. When it does, it follows the normal procedure to send the message
using alternative transport.

7.1.6 Via Header

Branch Parameter

UAC transaction automatically generates a unique branch parameter in the Via
header when one is not present. If branch parameter is already present, the
transaction will used it as its key, complying to rules set by both RFC 3261 and
RFC 2543.

Via Sent-By

Via sent-by is always put by pjsip_endpt send request stateless() and
pjsip_endpt_send_response ().

7.2 Reference
7.2.1 Base Functions

wew

wew

pj_status_t pjsip tsx layer init(pjsip_endpoint *endpt);
Initialize and register the transaction layer module to the specified
endpoint.

pjsip_module *pjsip_tsx layer instance(void);
Get the instance of transaction layer module.

pj_status_t pjsip tsx layer destroy(void);
Shutdown the transaction layer module and unregister it from the
endpoint where it currently registered.

pj_status_t pjsip tsx create uac (pJjsip_module *tsx_ user,

pjsip_tx_data *tdata,

pjsip_transaction **p tsx);
Create a new UAC transaction for the outgoing request in tdata with the
transaction user set to tsx_user. The transaction is automatically initialized
and registered to the transaction table. Note that after calling this
function, applications normally would call pjsip_tsx_send msg() to actually
send the request.

pj_status_t pjsip tsx create uas (pJjsip_module *tsx_user,
pjsip_rx_data *rdata,
pjsip_transaction **p tsx);
Create a new UAS transaction for the incoming request in rdata with the
transaction user set to tsx_user. The transaction is automatically initialized
and registered to endpoint’s transaction table.
pJj_status_t pjsip_tsx_send msg(pJsip_transaction *tsx,
pjsip_tx data *tdata);
Send message through the transaction. If tdata is NULL, the last message
or the message that was specified during creation will be retransmitted.
When the function returns PJ_SUCCESS, the tdata reference counter will
be decremented.

pJj_status_t pjsip_tsx create_key(pj_pool_t *pool,
Pj_str_t *out key,

Page 51

WPORTED

wew

PJSIP Developer’s Guide

pPjsip_role_e role,

const pjsip_method *method,

const pjsip_rx data *rdata);
Create a transaction key from an incoming request or response message,
taking into consideration whether the message is compliant with RFC 3261
or RFC 2543. The key can be used to find the transaction in endpoint’s
transaction table.

The function returns the key in out_key parameter. The role parameter is
used to find either UAC or UAS transaction, and the method parameter
contains the method of the message.

pPjsip_transaction* pjsip tsx layer find tsx(const pj_str_t *key,

pj_bool t lock);
Find transaction with the specified key in transaction table. If Jock
parameter is non-zero, this function will also lock the transaction before
returning the transaction, so that other threads are not able to delete the
transaction. Caller then is responsible to unlock the transaction when it’s
finished using the transaction, using pj_mutex_unlock().

pj_status_t pjsip_tsx_terminate(pJjsip_transaction *tsx,

int st_code);
Forcefully terminate the transaction tsx with the specified status code
st_code. Normally application doesn’t need to call this function, since
transactions will terminate and destroy themselves according to their state
machine.

This function is used for example when 200/0K response to INVITE is
sent/received and the UA layer wants to handle retransmission of 200/0K
response manually.

The transaction will emit transaction state changed event (state changed
to PJSIP_TSX_STATE_TERMINATED), then it will be unregistered and
destroyed immediately by this function.

pPjsip_transaction* pjsip rdata get tsx (pPjsip_rx data *rdata);

Get the transaction object in an incoming message.

7.2.2 Composite Functions

wew

pj_status_t pjsip_endpt_respond(pjsip_endpoint *endpt,

pjsip_module *tsx user,
pPjsip_rx_data *rdata,

int st_code,

const char *st_text,

const pjsip_hdr *hdr_ list,
const pjsip_msg body *body,
pjsip_transaction **p tsx)

Send respond by creating a new UAS transaction for the incoming request.

pPJj_status_t pjsip_endpt_ send request(pjsip_endpoint *endpt,

pjsip_tx data *tdata,

int timeout,

void *token,

void (*cb) (void*, pjsip_event¥))
Send the request by using an UAC transaction, and optionally request
callback to be called when the transaction completes.

Page 52

PJSIP Developer’s Guide

7.3 Sending Statefull Responses

7.3.1 Usage Examples
Sending Response Statefully (The Hard Way)

static pj_bool t on_rx request(pjsip_rx data *rdata)
{

pj_status_ t status;

pjsip transaction *tsx;

pjsip tx data *tdata;

// Create and initialize transaction.
status = pjsip_endpt_create_uas_tsx(endpt, NULL, rdata, é&tsx);

// Create response
status = pjsip_endpt_create_response(endpt, rdata, 200, NULL /*OK*/, &tdata);

// The response message is good to send, but you may modify it before
// sending the response.
// Send response with the specified transaction.

pjsip_tsx send msg(tsx, tdata);

return PJ TRUE;

Code 29 Sending Statefull Response

Sending Response Statefully (The Easy Way)

static pj bool t on rx request(pjsip rx data *rdata)
{
pj_status_ t status;

// Respond to the request statefully
status = pjsip_endpt_ respond(endpt, NULL, rdata,
200, NULL /* OK */, NULL, NULL, NULL);

return PJ TRUE;

Code 30 Sending Statefull Response

7.4 Sending Statefull Request
Two ways to send statefull request:
e use pjsip_endpt_send_request()

» using transaction manually.

7.4.1 Usage Examples

Sending Request with Transaction

extern pjsip module app_module;

voild my send request()

{
pj_status_ t status;
pjsip_tx data *tdata;

Page 53

PJSIP Developer’s Guide

pjsip transaction *tsx;

// Create the request.
status = pjsip_endpt_create_request(endpt, ..., &tdata);

// You may modify the message before sending it.

// Create transaction.
status = pjsip_endpt create_uac_tsx(endpt, &app _module, tdata, &tsx);

// Send the request.
status = pjsip_tsx_send msg(tsx, tdata /*or NULL*/);
}

static void on tsx state(pjsip transaction *tsx, pjsip event *event)
{
pJ_assert (event->type == PJSIP EVENT TSX STATE);
PJ LOG (3, (“app”, “Transaction %s: state changed to %s”,
tsx->obj_name, pjsip_tsx_state_str (tsx->state)));

Code 31 Sending Request Statefully

7.5 Statefull Proxy Forwarding
7.5.1 Usage Examples

Statefull Forwarding

The following code shows a sample statefull forwarding proxy. The code creates
UAS and UAC transaction (one for each side), forward the request to the UAC
side, and forward all responses from the UAC side to UAS side. It also handles
transaction timeout or other error in the UAC side and sends response to the UAS
side.

One that it doesn’t handle is receiving CANCEL request in the UAC side.

// This is our proxy module.
extern pjsip module proxy module;

static pj_bool t on_rx request(pjsip_rx data *rdata)
{

pjsip_account *acc;

pisip uri *dest;

pjsip_transaction *uas_tsx, *uac_tsx;

pjsip_tx data *tdata;

pj_status_t status;

// Find the account specified in the request.
acc =

// Respond statelessly with 404/Not Found if account can not be found.
if (lacc) {

return PJ TRUE;
}
// Set destination URI from account’s contact list that has highest priority.
dest =

// Create UAS transaction
status = pjsip_endpt_create_uas_tsx(endpt, &proxy module, rdata, &uas_tsx);

// Copy request to new tdata with new target URI.
status = pjsip_endpt_create_request fwd(endpt, rdata, dest, NULL, 0, &tdata);

// Create new UAC transaction.

Page 54

PJSIP Developer’s Guide

status = pJjsip_endpt_create_uac_tsx(endpt, &proxy module, tdata, &uac_tsx);

// “Associate” UAS and UAC transaction
uac_tsx->mod data[proxy module.id] = (void*)uas_ tsx;
uas_tsx->mod data[proxy module.id] = (void*)uac_ tsx;

// Forward message to UAC side
status = pjsip_tsx_send msg(uac_tsx, tdata);
return PJ TRUE;

static pj_bool t on_rx response(pjsip_rx_data *rdata)

{

pjsip_transaction *tsx;
pjsip_tx data *tdata;
pj_status t status;

// Get transaction object in rdata.
tsx = pjsip rdata get tsx(rdata);

// Check that this transaction was created by the proxy
if (tsx->tsx_user == &proxy module) {
// Get the peer UAC transaction.
pjsip transaction *uas tsx;
uas_tsx = (pjsip transaction*) tsx->mod data[proxy module.id];

// Check top-most Via is ours

// Strip top-most Via

// Note that after this code, rdata->msg _info.via is invalid.
pJj_list_erase (rdata->msg_info.via);

// Code above is equal to:

// pjsip hdr *via = pjsip msg find hdr(rdata->msg, PJSIP H VIA);
// pj_list erase(via);

// Copy the response msg.
status = pjsip_endpt_create_response fwd(endpt, rdata, 0, &tdata);

// Forward the response upstream.
pjsip_tsx send msg(uas_tsx, tdata);

return PJ_TRUE;

Code 32 Statefull Forwarding

Page 55

PJSIP Developer’s Guide

Chapter 8:Authentication Framework

PJSIP provides framework for performing both client and server authentication.
The authentication framework supports HTTP digest authentication by default, but
other authentication schemes may be added to the framework.

The following diagram illustrates the framework’s “class diagram”.

pjsip_auth_srv

pjsip_auth_srv_sess pjsip_auth_clt_sess

Attributes:

Attributes: Attributes:

Operations:
int pjsip_auth_srv_.init(ser,..);
int pjsip_auth_srv_verify(ser,..);

int pjsip_auth_srv_challenge(ser,..);

Operations:
Operations: int pjsip_auth_clt_init_sess(sess);
int pjsip_auth_srv_init_sess(ser,..); int pjsip_auth_clt_set_credentials();
int pjsip_auth_clt_init_req(...);

int pjsip_auth_clt_reinit_req(,...);

T

i i i

pjsip_acc_lookup

pjsip_cred_info pjsip_cached_auth

Attributes:

Attributes:
realm, scheme, username,

Attributes:
realm, is_proxy, qop_value,

Callbacks:

pj_status_t lookup_cred(realm, acc, &cred);

data_type, data nc, cnonce, last_chal, cached_hdr

Operations: Operations:

Figure 13 Authentication Framework

8.1 Client Authentication Framework

The client authentication framework manages authentication process by client to
all downstream servers. It automatically responds to server’s challenge with the
correct credential (when such credential is supplied), cache the authorization info,
and initialize subsequent requests with the cached authorization info.

8.1.1 Client Authentication Framework Reference

1]

ponT o

Data Structure Reference

Structure

Description

pPJsip_cred info

This structure describes the credential to be used to
authenticate against a specific realm. A client can
have multiple credentials to use for the duration of a
dialog or registration; each one of the credential
contains information needed to authenticate against
a particular downstream proxy or server.

For example, client need one credential to
authenticate against its outbound proxy, and another
credential to authenticate against the end server.

pPjsip_cached auth

This structure keeps the last challenge received from
a particular server. It is needed so that client can
initialize next request with the last challenge.

pjsip_auth _client session

This structure describes the client authentication
session. Client would normally keep this structure for
the duration of a dialog or client registration.

Figure 14 Client Authentication Data Structure

Page 56

PJSIP Developer’s Guide

Function Reference

gﬁﬁ‘ pJj_status_t pjsip_auth_client_init(pjsip_auth_client_session *sess,
Pj_pool_t *pool, unsigned options);
Initialize client authentication session data structure, and set the session
to use pool for its subsequent memory allocation. The argument options
should be set to zero for this PJSIP version.

pj_status_t pjsip _auth_client_set credentials(pjsip_auth client_session *s,
v int cred_cnt,
const pjsip_cred info cred[]);

Set the credentials to be used during the session.

PORTED

pJj_status_t pjsip_auth_client_init req(pjsip_auth_client session *sess,
pATED: pjsip_tx data *tdata);

This function add all relevant authorization headers to a new outgoing
request tdata according to the cached information in the session. The
request line in the request message must be valid before calling this
function.

ue

. PJ_status_t pjsip_auth client reinit req(pJjsip_auth_client_session *sess,
uvnh‘iﬁ' pjsip_endpoint *endpt,

const pjsip_rx data *rdata,

pPjsip_tx_data *old_request,

pjsip_tx_data **new_request);
Call this function to re-initialize a request upon receiving failed
authentication status (401/407 response). This function will recreate
new_request according to old_request, and add appropriate Authorization
and Proxy-Authorization headers according to the challenges found in
rdata response. In addition, this function also put the relevant information
in the session.

This function will return failure if there is a missing credential for the
challenge. Note that this function may reuse the old request instead of
creating a fresh one.

8.1.2 Examples
Client Transaction Authentication

The following example illustrates how to initialize outgoing request with
authorization information and how to handle challenge received from the server.
For brevity, error handling is not shown in the example. A real application should
be prepared to handle error situation in all stages.

pjsip auth client session auth sess;

// Initialize client authentication session with some credentials.
void init auth(pj_pool t *session pool)
{

pjsip_cred info cred;

pj_status_t status;

cred.realm = pj str(“sip.example.com”);
cred.scheme = pj str(“digest”);

cred.username = pj str(“alice”);
cred.data_type = PJSIP CRED DATA PLAIN PASSWD;

cred.data = pj str(“secretpassword”);

status = pjsip_auth_client_init(&auth_sess, session_pool, 0);
status = pJjsip_auth_set credentials(&auth sess, 1, &cred);

}

// Initialize outgoing request with authorization information and
// send the request statefully.

Page 57

PJSIP Developer’s Guide

vold send request(pjsip tx data *tdata)
{
pj_status t status;

status = pjsip_auth_client_init req(&auth_sess, tdata);
status = pjsip_endpt_send request(endpt, tdata, -1, NULL, &on_complete);
}

// Callback when the transaction completes.
static void on complete(void *token, pjsip event *event)

{

int code;

pJj_assert (event->type == PJSIP EVENT TSX STATE);
code = event->body.tsx state.tsx->status code;
if (code == 401 || code == 407) {

pj_status_t status;
pjsip tx data *new request;

status = pjsip_auth_client_reinit_req(&auth_sess, endpt,
event->body.tsx state.src.rdata,
tsx->last_tx,
&new_request) ;
if (status == PJ SUCCESS)
status = pjsip_endpt_send_request(endpt, new request, -1, NULL,
&on_complete) ;
else
PJ LOG (3, (“app”,”“Authentication failed!!!”));

Code 33 Client Athorization Example

8.2 Server Authorization Framework

The server authorization framework provides two types of server authorization
mechanisms:

o session-less server authorization, which provides general API for
authenticating clients. This API provides global server authorization
mechanism on request-per-request basis, and is normally used for proxy
application where it doesn’t have the notion of dialog.

o server authorization session, which provides API for authenticating
requests inside a particular dialog or registration session. One server
authorization session instance needs to be created for each server side
dialog or registration session. A server auth session will have exactly one
credential which is setup initially, and this credential must be used by
client throughout the duration of the dialog/registration session.

The server authorization session currently is not implemented. Only global,
session-less server authorization framework is available.

8.2.1 Server Authorization Reference

Data Types Reference

WE:““ typedef pj_status_t pjsip_auth lookup_ cred(pj_pool_t *pool,
const pj_str_t *realm,
const pj_str_t *acc_name,
pjsip_cred_info *cred_info);
Type of function to be registered to authorization server to lookup for credential
information for the specified acc_name in the specified realm. When credential
information is successfully retrieved, the function must fill in the cred _info with

Page 58

PJSIP Developer’s Guide

the credentials and return PJ_SUCCESS. Otherwise it should return one of the
following error code:

o PJISIP_EAUTHACCNOTFOUND: account not found for the specified realm,
o PJSIP_EAUTHACCDISABLED: account was found but disabled,

Functions Reference
' pj_status_t pjsip_auth_srv_init(pj_pool_t *pool,
A pjsip_auth_srv *auth_srv,
const pj_str_t *realm,
pjsip_auth_lookup_cred *lookup_func,
unsigned options) ;

Initialize server authorization session data structure to serve the specified
realm and to use lookup_func function to look for the credential info. The
argument options is bitmask combination of the following values:

o PJISIP_AUTH_SRV_IS_PROXY: to specify that the server will
authorize clients as a proxy server (instead of as UAS), which
means that Proxy-Authenticate will be used instead of WWW-
Authenticate.

gﬁﬂ\ pj_status_t pjsip_auth_srv_verify(pjsip_auth_srv *auth_srv,
pPjsip_rx data *rdata);
Request the authorization server framework to verify the authorization
information in the specified request in rdata. This function will return
PJ_SUCCESS if the authorization information found in the request can be
accepted, or the following error when authorization failed:

o PISIP_EAUTHACCNOTFOUND or PJSIP_EAUTHACCDISABLED are
the error codes returned by the lookup function.

o PJSIP_EAUTHINVALIDREALM: invalid realm,
o PJSIP_EAUTHINVALIDDIGEST: invalid digest,

o other non-zero values may be returned to indicate system error.

" pj_status_t pjsip _auth_srv_challenge (pjsip_auth_srv *auth srv,

const pj_str_t *nonce,

const pj_str_t *opaque,

pj_bool_ t stale,

pjsip_tx _data *tdata);
Add authentication challenge headers to the outgoing request in tdata.
Application may specify its customized nonce and opaque for the
challenge, or can leave the value to NULL to make the function fills them
in with random characters.

8.3 Extending Authentication Framework

The authentication framework can be extended to support authentication
framework other than HTTP digest (e.g. PGP, etc.).

TODO.

Page 59

PJSIP Developer’s Guide

Chapter 9:Basic User Agent Layer (UA)

9.1 Basic Dialog Concept

The basic UA dialog provides basic facilities for managing SIP dialogs, such as
basic dialog state, session counter, common Call-ID, From, To, and Contact
headers, sequencing of CSeq in transactions, and common route-set.

The basic UA dialog is agnostic/skeptical of what kind of sessions it is being used
to (e.g. INVITE session, SUBSCRIBE/NOTIFY sessions, REFER/NOTIFY sessions,
etc.), and it can be used to establish multiple and different types of sessions
simultaneously in a single dialog.

A P]SIP dialog can be considered just as a passive data structure to hold common
dialog attributes. You must not confuse dialog with an INVITE session. An INVITE
session is a session (also commonly known as dialog usage) “inside” a dialog.
There can be other sessions/usages in the same dialog; all of them share
common dialog properties (although there can only be one INVITE session per
dialog).

dialogusage-01.txt. The document identifies two dialog-usages, i.e. invite usage and subscribe

@ For more information about dialog-usage concept, please refer to draft-sparks-sipping-
usage.

PJSIP dialog does not know the state of its sessions. It doesn’t know whether the
INVITE session has been established or disconnected. In fact, PJSIP dialog does
not even know what kind of sessions are there in the dialog. All it cares is how
many active sessions are there in the dialog. The dialog is started with one active
session, and when the session counter reaches zero and the last transaction is
terminated, the dialog will be destroyed.

It will be the responsibility of each dialog usages to increment and decrement the
dialog’s session counter.

9.1.1 Dialog Sessions

Dialog sessions in PJSIP dialog framework is just represented with a reference
counter. This reference counter is incremented and decremented by dialog usage
module everytime it creates/destroys a session in that particular dialog.

Dialog’s sessions are created by dialog usages. In one particular dialog, one
dialog usage can create more than one sessions (except invite usage, which can
only create one invite session in a single dialog).

9.1.2 Dialog Usages

Dialog usages are PJSIP modules that are registered to the dialog to receive
dialog’s events. Multiple modules can be registered to one dialog, hence the
dialog can have multiple usages. Each dialog usage module is responsible to
handle a specific session. For example, the subscribe usage module will create a
new subscribe session each time it receives new SUBSCRIBE request (and
increment dialog’s session counter), and decrement the session counter when the
subscribe session has terminated.

The processing of dialog usages by a dialog is similar to the processing of
modules by endpoint; for each on_rx request(), on_rx response(), and
on_tsx_state() events, the dialog passes the event to each dialog usages starting

Page 60

PJSIP Developer’s Guide

from the higher priority module (i.e. the one with lower priority number) until one
of the module returns true (i.e. non-zero), which in this case the dialog will stop
the distribution of the event further.

In its most basic (i.e. low-level) use, the application manages the dialog directly,
and it is the only “usage” (or user) of the dialog. In this case, the application is
responsible for managing the sessions inside the dialog, which means handling
ALL requests and responses and establishing/tearing down sessions manually.

In later chapters, we will learn about high-level APIs that can be used to manage
sessions. These high-level APIs are PJSIP modules that are registered to the
dialog as dialog usages, and they will handle/react to different types of SIP
messages that are specific to each type of sessions (e.g. an invite usage module
will handle INVITE, PRACK, CANCEL, ACK, BYE, UPDATE and INFO, a subscribe
usage module will handle REFER, SUBSCRIBE, and NOTIFY, etc.). These high
level APIs provide high-level callbacks according to the session’s specification.

In this chapter however, we'll only lean about basic, low-level dialog usage.

9.1.3 Class Diagram

The basic dialog class diagram is as follows.

pjsip_dig

pjsip_auth_client_: ion

Attributes:
state, session_counter, initial_cseq, local_cseq, remote_cseq, route_set,
local_info+tag, local_contact, remote_info+tag, remote_contact, next_set

Attributes:

Operations: Operations:

pj_status_t pjsip_ua_create_dlg(ua, usages, &dlg);
pj_status_t pjsip_dlg_init(dlg,local,remote);

pj_status_t pjsip_dlg_init_from_request(dig,rdata,local);
pj_status_t pjsip_dlg_set_route_set(dlg, route_set);
pj_status_t pjsip_ua_dlg_register(ua, dig);

< pj_status_t pjsip_dlg_create_request(dig,method,cseq,&tdata); next set
pj_status_t pjsip_dlg_recreate_request(dig,method,cseq,rdata,&tdata); -
pj_status_t pjsip_dlg_create_response(dlg,rdata,code,txt,&tdata);
pj_status_t pjsip_dlg_send_msg(dlg,tdata);
pjsip_dlg* pjsip_rdata_get_dlg(rdata);
<Tdia/og usages
pjsip_user_agent > pjsip_module <} a simple application
Attributes: Attributes: name, id, priority, ... Attributes:
local_info+tag, local_contact,
call_id Callbacks: Callbacks:
pj_bool_t on_rx_request(rdata);
Operations: pj_bool_t on_rx_response(rdata);
pjsip_module* pjsip_ua_instance(void); void on_tsx_state(tsx,event);
pj_status_t pjsip_ua_set_callback(ua,cb); ?
T pjsip_invite_usage pjsip_subscribe_usage
pjsip_ua_callback
Attributes: Attributes:
Attributes:
Callbacks: Callbacks:
Callbacks:
pjsip_dlg* on_dlg_forked(ua,orig_dlg,rdata);

Figure 15 Basic User Agent Class Diagram

The diagram shows the relationship between dialog and its usages. In the most
basic/low-level scenario, the application module is the only usage of the dialog. In
more high-level scenario, some high-level modules (e.g. pjsip_invite_usage and
pjsip_subscribe_usage) can be registered to a dialog as dialog’s usages, and the

Page 61

PJSIP Developer’s Guide

application will receive events from these usages instead instead of directly from
the dialog.

The next_set relationship is the relationship between a dialog and other dialogs in
the same dialog set, which was created when the dialog forked.

The diagram also shows PJSIP user agent module (pjsip_user_agent). The user
agent module is the “owner” of all dialogs; it’s the module that distributes events
from transaction layer to the corresponding dialog. Although user agent module is
derived from pjsip_module, note that the user agent module is NOT a dialog
usage.

The diagram also shows the relationship between a dialog and client authorization
session (pjsip_auth_client_session). Each dialog has exactly one client
authorization session to handle all authorization challenges for all outgoing
requests.

9.1.4 Forking
Handling Forking Condition

The user agent module provides a callback that can be registered by application
when it detects forked response from the downstream proxy. A forked response
in defined as a response (can be provisional or 2xx response) within a dialog that
has To tag that is different from any of existing dialogs. When such responses are
received, the user agent will call on_d1g_forked() callback, passing the received
response and the original dialog (the dialog that application created originally) as
the arguments.

@ It is the complete responsibility of the application to handle forking condition!

Upon receiving a forked provisional response, application can:

o ignore the provisional response (perhaps waiting until a final, forked 2xx
response is received); or

o create a new dialog (by calling pjsip_dlg_fork()). In this case, subsequent
responses received from this particular call leg will go to this new dialog.

Upon receiving a forked 2xx response, application can:

o decide to terminate this particular call leg. In this case, the application
would construct ACK request from the response, send the ACK, then
construct a BYE transaction and send it to the call-leg. Application MUST
construct Route headers manually for both ACK and BYE requests
according to the Record-Route headers found in the response before
sending them to the transaction/transport layer.

o create a dialog for this particular call leg (by calling pjsip_dlg_fork()).
Application then constructs and sends ACK request to the call leg to
establish the dialog. After dialog is established, application may terminate
the dialog by sending BYE request.

Application MUST NOT ignore a forked 2xx responses.

Creating Forked Dialog

Application creates a forked dialog by calling pjsip_dlg_fork() function. This
function creates a dialog and performs the following:

Page 62

PJSIP Developer’s Guide

o Copy all attributes of the original dialog (including authorization client
session) to the new dialog.

o Assign different remote tag value.
o Register the new dialog to user agent’s dialog set.

o If the original dialog has an application timer, it will copy the timer and
update the timer of the new dialog.

Note that the function WILL NOT copy the dialog usages (i.e. modules) from the
original dialog.

The reason why the function pjsip_dlg_fork() doesn’t copy the dialog usages from the
original dialog is because each usage will normally have dialog specific data that can not be
copied without knowing the semantic of the data.

After the new dialog has been created, the application then MUST re-register
each dialog usages with the new dialog, by calling pjsip_dlg add usage().

The new dialog then MUST be returned as return value of the callback function.
This will cause the user agent to dispatch the message to the new dialog, causing
dialog usages (e.g. application) to receive on_rx_response () notification on the
behalf of the new dialog.

Using Timer to Handle Failed Forked Dialog

Application can schedule application specific timer with the dialog by calling
pjsip dlg start app timer () function. For timer associated with a dialog, this
timer is preferable than general purpose timer because this timer will be
automatically deleted when the dialog is destroyed.

Timer is important to handle failed forked dialog. A forked early dialog may not
complete with a final response at all, because forking proxy will not forward 300-
699 if it receives 2xx response. So the only way to terminate these dangling early
dialogs is by setting a timer on these dialogs.

The best way to use dialog’s application timer to handle failed forked early dialog,
is to start the timer on the other forked dialogs the first time when it receives 2xx
response on one of the dialog in the dialog set. When the timer expires and no
2XxX response is received, the dialog should be terminated.

9.1.5 CSeq Sequencing

The local cseq of the dialog is updated when the request is sent (as opposed to
when the request is created). When CSeq header is present in the request, the
value may be updated as the request is sent within the dialog.

The remote cseq of the dialog is updated when a request is received. When
dialog’s remote cseq is empty, the first request received will set the dialog’s
remote cseq. For subsequent requests, when dialog receives request with cseq
lower than dialog’s recorded cseq, this request would be automatically
answered statelessly by the dialog with a 500 response (Internal Server Error).
When the request’s cseq is greater than dialog’s recorded cseq, the dialog would
update the remote’s cseq automatically (including when the request’s cseq is
greater by more than one).

@ This behavior is compliant with SIP specification RFC 3261 Section 12.2.2.

Page 63

PJSIP Developer’s Guide

9.1.6 Authentication

The basic dialog framework provides automatic handling for authentication
challenges by servers. The dialog initializes the proper authorization headers for
all outgoing requests (except ACK and CANCEL), and will automatically resend the
request (i.e. statefull requests) using updated authorization headers using a new
transaction when it receives 401/407 response.

9.1.7 Stateless Operations

The dialog itself will NOT automatically create any transactions for either
incoming or outgoing requests. The dialog also does NOT mandate applications to
always process requests statefully, although statefull processing is strongly
recommended for most requests.

Should the application decide to respond to incoming request statelessly, it must
understand that future retransmissions of the same request may be answered
automatically by the dialog with 500 (Internal Server Error) if another request
with higher sequence number has been received by the dialog.

9.2 Basic UA API Reference
9.2.1 Dialog Creation API

W

W

W

A dialog can be created by calling one of the following functions.

pj_status_t pjsip ua create uac_dlg(pjsip_user_agent *ua,
const pj_str_t *local_info,
const pj_str_t *local_contact,
const pj_str_t *remote_ info,
const pj_str_t *target,
pjsip_dialog **p_dlg);
Create a new dialog and return the instance in p_dlg parameter. After
creating the dialog, application can add modules as dialog usages by
calling pjsip_dlg_add _usage (). Note that initially, the session count in the
dialog will be initialized to one.
pj_status_t pjsip ua create uas_dlg(pjsip_user_agent *ua,
pjsip_rx _data *rdata,
const pj_str_t *contact,
pjsip_dialog **p_dlg);
Initialize UAS dialog from the information found in the incoming request
that creates a dialog (such as INVITE, REFER, or SUBSCRIBE), and set the
local Contact to contact. If contact is not specified, the local contact is
initialized from the URI in the To header in the request. Note that initially,
the session count in the dialog will be initialized to one.
pj_status_t pjsip_dlg_fork(pjsip_dialog *original_dlg,
pPjsip_rx_data *rdata,
pjsip_dialog **new_dlg);
Create a new (forked) dialog on receipt on forked request in rdata. The
new dialog will be created from original_dlg, except that it will have new
remote tag as copied from the To header in the response. Upon return,
the new_dlg will have been registered to the user agent. Applications just
need to add modules as dialog’s usages. Note that initially, the session
count in the dialog will be initialized to one.

Page 64

PJSIP Developer’s Guide

9.2.2 Dialog Session Management API

The following functions are used to manage dialog’s session counter.

gﬂﬂ‘ pj_status_t pjsip_dlg_inc_session(pjsip_dialog *dlg);
Increment the number of sessions in the dialog. Note that initially (after
created) the dialog already has the session counter set to one.

pj_status_t pjsip dlg _dec_session(pJjsip_dialog *dlg);
wew: Decrement the number of sessions in the dialog. Once the session counter
reach zero and there is no pending transaction, the dialog will be
destroyed. Note that this function may destroy the dialog immediately if
there is no pending transaction when this function is called.

9.2.3 Dialog Usages API

The following functions are used to manage dialog usages in a dialog.

ﬁﬂw‘ pj_status_t pjsip dlg_add_usage(pjsip_dialog *dlg,
pjsip_module *module,
void *mod data);
Add a module as dialog usage, and optionally set the module specific data.
pj_status_t pjsip dlg_set mod data(pjsip_dialog *dlg,
int module_id,
void *data);
Attach module specific data to the dialog.
v void* pjsip_dlg_get_mod_data(pjsip_dialog *dlg,
gﬂﬂ int module_id);
Get module specific data previously attached to the dialog.

9.2.4 Dialog Request and Response API

pj_status_t pjsip dlg _create_request(pjsip_dialog *dlg,

const pjsip_method *method,

int cseq,

pjsip_tx_data **tdata);
Create a basic/generic request with the specified method and optionally
specify the cseq. Use value -1 for cseq to have the dialog automatically
put next cseq number for the request. Otherwise for some requests, e.q.
CANCEL and ACK, application must put the CSeq in the original INVITE
request as the parameter. This function will also put Contact header where
appropriate.

yepoRTED

. PJj _status t pjsip dlg send request (pjsip dialog *dlg,
e - - - - pjsip_tx_data *tdata,
pjsip_transaction **p tsx);

Send request message to remote peer. If the request is not an ACK
request, the dialog will send the request statefully, by creating an UAC
transaction and send the request with the transaction. Also when the
request is not ACK or CANCEL, the dialog will increment its local cseq
number and update the cseq in the request according to dialog’s cseq.

If p_tsx is not null, this argument will be set with the transaction instance
that was used to send the request.

. Ppj_status_t pjsip_dlg_send request stateless(pjsip_dialog *dlg,
W pjsip_tx_data *tdata);

Page 65

PJSIP Developer’s Guide

Send request message statelessly. The use of this function is not
encouraged unless application is prepared to handle retransmissions of the
message itself. However, even if the request is sent statelessly, the dialog
would still update the cseq where appropriate.
ﬁ@“‘ pj_status_t pjsip dlg create_ response(pjsip_dialog *dlg,
pPjsip_rx _data *rdata,
int st_code,
const pj_str_t *st_text,
pjsip_tx data **tdata);
Create a response message for the incoming request in rdata with status
code st_code and optional status text st_text. This function is different
than endpoint’s API pjsip_endpt create_ response() in that the dialog
function adds Contact header in the response where appropriate.
. PJj_status_t pjsip_dlg modify response(pJjsip_dialog *dlg,
- pjsip_tx_data *tdata,
int st_code,
const pj_str_t *st_ text);
Modify previously sent response with other status code. Contact header
will be added when appropriate.
. PpJj_status_t pjsip_dlg_send response(pjsip_dialog *dlg,
Wl pjsip_tx_data *tdata,
pjsip_transaction *tsx,
pjsip_transaction **new_tsx);

Send response message tdata to remote statefully using a transaction.

If tsx argument is not NULL, the response will be sent using the
transaction. If tsx argument is NULL, a new transaction will be created to
send the response, the the transaction will be returned to caller in
new_tsx argument if this argument is not NULL.

“gﬂt pj_status_t pjsip _dlg_send response_ stateless(pjsip_dialog *dlg,

pjsip_tx data *tdata);

Send response message statelessly. Generally application doesn’t want to
use this function.

9.2.5 Dialog Auxiliary API

pj_status_t pjsip_dlg_set_route_set(pjsip_dialog *dlg,
const pjsip_route_hdr *route_set);
Set dialog’s (initial) route set to route_set list.
pj status t pjsip dlg start app timer(pjsip dialog *dlg,
wew - - - - int app_id,
const pj_time_val *interval,
void (*cb) (pjsip_dialog*,int));
Start application timer with this dialog with application specific id in app_id
and callback to be called in cb. Application can only set one application
timer per dialog. This timer is more usefull for dialog specific timer,
because it will be automatically destroyed once the dialog is destroyed.
Note that timer will also be copied to the forked dialog.

‘ pJj_status_t pjsip_dlg_stop_app_timer(pjsip_dialog *dlg);
W Stop application specific timer if exists.

pjsip_dialog* pjsip_rdata get_dlg(pJjsip_rx data *rdata);

o Get the dialog instance in the incoming rdata. If an incoming message
matches an existing dialog, the user agent must have put the matching
dialog instance in the rdata, or otherwise this function will return NULL if
the message didn’t match any existing dialog.

Page 66

PJSIP Developer’s Guide

9.3 Examples
9.3.1 Incoming Invite Dialog

The following examples uses basic/low-level dialog API to process an incoming
dialog. The examples show how to:

o create and initialize incoming dialog,

o create UAS transaction to process the incoming INVITE request and
transmit 1xx responses,

o transmit 2xx response to INVITE reliably,
o process the incoming ACK.

As usual, most error handlings are omited for brevity. Real-world application
should be prepare to handle error conditions in all stages of the processing.

Creating Initial Invite Dialog

In this example we'll learn how to create a dialog for an incoming INVITE request
and respond the dialog with 180/Ringing provisional response.

struct app dialog
{
pjsip transaction *pending invite;

}i

pj_bool t on_rx request(pjsip rx data *rdata)
{
if (rdata->msg->line.request.method.id == PJSIP INVITE METHOD &&
pjsip_rdata get dlg(rdata) == NULL)

// Process incoming INVITE!
pjsip dialog *dlg;
pjsip_transaction *tsx;
pjsip_tx data *tdata;
struct app dialog *app dlg;

// Create, initialize, and register new dialog for incoming INVITE
status = pjsip_ua create uas_dlg(ua, rdata, NULL, &dlg);

// Register application as the only dialog usage
status = pjsip_dlg_add usage(dlg, &app module, NULL);

// Create 180/Ringing response
status = pjsip_dlg create_response(dlg, rdata, 180, NULL /*Ringing*/, &tdata);

// Send 180 response statefully. A transaction will be created in &tsx.
status = pjsip_dlg_send_response(dlg, tdata, NULL, &tsx);

// As in real application, normally we will send 200/0K later,

// when the user press the “Answer” button. In this example, we’ll send

// 200/0K in answer dlg() function which will be explained later. In order
// to do so, we must “save” the INVITE transaction.

app_dlg = pj_pool_alloc(dlg->pool, sizeof(struct app_dialog));
app_dlg->pending invite = &tsx;

pjsip_dlg_set_mod_data(dlg, app.mod_id, app_dlg);

// Done processing INVITE request
return PJ_TRUE;
}

// Process other requests

Code 34 Creating Dialog for Incoming Invite

Page 67

PJSIP Developer’s Guide

Answering Dialog

In this example we will learn how to send 200/0K response to establish the
dialog.

static void answer dlg(pjsip dlg *dlg)
{
struct app dialog *app dlg;
pjsip_tx data *tdata;

app_dlg = (struct app_dlg*) pjsip_dlg get mod data(dlg, app.mod_ id);

// Modify previously sent (provisional) response to 200/0K response.
// The previously sent message is found in tsx->last tx.

tdata = app_dlg->invite tsx->last tx;

status = pjsip_dlg modify response(dlg, tdata, 200, NULL /*OK*/);

// You may modify the response before it’s sent
// (e.g. add msg body etc).

// Send the 200 response using previous transaction.
// Transaction will take care of the retransmission.
status = pjsip_dlg_send response(dlg, tdata, app_dlg->invite tsx, NULL);
if (status == PJ_SUCCESS) {
// We don’t need to keep pending invite tsx anymore.
app dlg->invite tsx = NULL;

Code 35 Answering Dialog

Processing CANCEL Request

In this example we will learn how to handle incoming CANCEL request.

pj_bool t on_rx request(pjsip rx data *rdata)
{

if (rdata->msg->line.request.method.id == PJSIP CANCEL METHOD)
{

// See if we have pending INVITE transaction.

pjsip dialog *dlg;

struct app dialog *app dlg;

dlg = pjsip_rdata get dlg(rdata);
if (!dlg) {
// Not associated with any dialog. Respond statelessly with 481.
status = pjsip_endpt_respond_stateless(endpt, rdata, 481, NULL, NULL,
NULL, NULL);
return PJ_TRUE;

app_dlg = (struct app_dlg*) pjsip_dlg get mod data(dlg, app.mod_id);

if (app_dlg->pending invite) {
pjsip_tx data *tdata;

// Transaction found. Respond CANCEL (statefully) with 200 regardless
// whether the INVITE transaction has completed or not.
status = pjsip_endpt_respond(endpt, NULL, rdata, 200, NULL /*OK*/,
NULL, NULL, NULL);
// Create 200/0K response for CANCEL request
status = pjsip_dlg_create_response(dlg, rdata, 200, NULL /*OK*/, &tdata);

// Send 200/0K response to CANCEL statefully.
status = pjsip_dlg_send response(dlg, tdata, NULL, NULL);

Page 68

PJSIP Developer’s Guide

// Respond the INVITE transaction with 487/Request Terminated
tdata = app_dlg->invite tsx->last tx;
status = pjsip_dlg modify response(dlg, tdata, 487, NULL /*”Req Term”*/);

// Send the 487 response using previous transaction.
status = pjsip_dlg_send response(dlg, tdata, app_dlg->invite tsx, NULL);

if (status == PJ SUCCESS) {
// We don’t need to keep pending invite tsx anymore.
app_dlg->invite tsx = NULL;

} else {

// Transaction not found. Respond statelessly with 481
status = pjsip_endpt_respond stateless(endpt, rdata, 481, NULL, NULL,
NULL, NULL);

// Done processing CANCEL request
return PJ_TRUE;

// Process other requests

Code 36 Processing CANCEL Request

Processing ACK Request

In this example we will learn how to handle incoming ACK request.

{

pj_bool t on_rx request(pjsip rx_data *rdata)
(rdata->msg->line.request.method.id == PJSIP_ACK METHOD &&
pjsip_rdata get dlg(rdata) != NULL)

// Process the ACK request

return PJ_TRUE;

Code 37 Processing ACK Request

9.3.2 Outgoing Invite Dialog

The following sets of example demonstrate how to work with outgoing INVITE

dialog.

Creating Initial Dialog

{

static pj status t make call(const pj str t *local info, const pj str t *remote info)

pjsip dialog *dlg;
pjsip method invite method;
pjsip_tx data *tdata;

// Create and initialize dialog.
status = pjsip_ua_ create uac dlg(user_agent, local info, local_info,

Page 69

PJSIP Developer’s Guide

remote info, remote info, &dlg);

// Register application as the only dialog usage.
status = pjsip_dlg_add_usage(dlg, &app_module, NULL);

// Send initial INVITE.
pjsip_method_set(&invite method, &PJSIP_INVITE_METHOD) ;
status = pjsip_dlg create_request(dlg, &invite method, -1, &tdata);

// Modify the INVITE (e.g. add message body etc..)
// Send the INVITE request.

status = pjsip_dlg_send request(dlg, tdata, NULL);
// Done.

// Further responses will be received in on rx response.
return status;

Code 38 Creating Outgoing Dialog

Receiving Response

static pj _bool t on_rx response(pjsip rx data *rdata)
{

pjsip dialog *dlg;

dlg = pjsip_rdata_get dlg(rdata);

if (dlg != NULL) {
pjsip_transaction *tsx = pjsip rdata get tsx(rdata);
if (tsx != NULL && tsx->method.id == PJSIP_INVITE_METHOD) {
if (tsx->status_code < 200)
PJ LOG (3, (“app”, “Received provisional response %d”, tsx->status code));
else if (tsx->status code >= 300)
PJ _LOG (3, (“app”, “Dialog failed with status %d”, tsx->status _code));
else {
PJ LOG (3, (“app”, “Received OK response %d!”, tsx->status code));
send_ack (dlg, rdata);

}
else if (tsx == NULL && rdata->msg_info.cseg->method.id == PJSIP_ INVITE METHOD

&& rdata->msg_info.msg->line.status.code/100 == 2)

// Process 200/0K response retransmission.
send_ack (dlg, rdata);
}
return PJ_TRUE;
}
else
// Process other responses not belonging to any dialog

Code 39 Receiving Response in Dialog

Sending ACK

static void send ack(pjsip dialog *dlg, pjsip rx data *rdata)
{

pjsip tx data *tdata;

pjsip method ack method;

// Create ACK request

pjsip method set(&ack method, PJSIP ACK METHOD) ;

status = pjsip_dlg_create_request(dlg, ack method, rdata->msg_info.cseg->cseq,
&tdata);

Page 70

PJSIP Developer’s Guide

// BAdd message body

// Send the request.
status = pjsip_dlg_send request_stateless(dlg, tdata, NULL);

Code 40 Sending ACK Request

Page 71

PJSIP Developer’s Guide

Chapter 10:SDP Offer/Answer Framework

The SDP offer/answer framework in PJSIP is based on RFC 3264 “An Offer/Answer
Model with the Session Descriptor Protocol (SDP)”. The main function of the
framework is to facilitate the negotiating of media capabilities between local and
remote parties, and to get agreement on which set of media to be used in one
invite session.

Note that although it is mainly used by invite session, the framework itself is
based on a generic SDP negotiation framework (pjmedia_sdp negotiator), SO it
should be able to be used by other types of applications. The dialog invite session
provides integration of SDP offer/answer framework with SIP protocol; it correctly
interpret the message bodies in relevant messages (e.g. INVITE, ACK, PRACK,
UPDATE) and translates them to SDP offer/answer negotiation.

This chapter describes the low level SDP negotiator framework, which is declared
in <pjmedia/sdp_neg.h> header file.

10.1 SDP Negotiator Structure

The pjmedia_sdp negotiator Structure represents generic SDP offer/answer
session, and is used to negotiate local’s and remote’s SDP.

pimedia_sdp_session_desc pimedia_sdp_negotiator
Attributes: Attributes:
origin, name, time, conn, attr, media - state
initial_sdp,
Operations: E.lCtIVei|0Ca|7Sdp, Operations:
pj_status_t pjmedia_sdp_parse(...); active_remote_sdp, status pjmedia_sdp_neg_init_w_local_offer(pool,neg,local);
int pjmedia_sdp_print(...); neg_local_sdp, status pjmedia_sdp_neg_init_w_remote_offer(neg,loc,rmt);
neg_remote_sdp | gtarys pjmedia_sdp_neg_modify_local_offer(neg,local);
status pjmedia_sdp_neg_reinit_local_offer(neg,local);
status pjmedia_sdp_neg_negotiate(neg);
sdp* pjmedia_sdp_neg_tx_local_offer(neg);
pimedia_sdp_media_desc sdp* pjmedia_sdp_neg_rx_remote_offer(neg,remote);
sdp* pjmedia_sdp_neg_rx_remote_answer(neg,remote);
Attributes: sdp* pjmedia_sdp_neg_get_local(neg);
net_type, addr_type, addr sdp* pjmedia_sdp_neg_get_remote(neg);
Operations:

pjmedia_sdp_conn_info

Attributes:
net_type, addr_type, addr

Operations:

Figure 16 SDP Negotiator "Class Diagram"

The pjmedia_sdp negotiator structure keeps three SDP structures:

o initial sdp: Which is the initial capability of local endpoint. This SDP is
passed to the negotiator during creation, and the contents generally will
not be changed throughout the session (even after negotiation). The
negotiator uses this SDP in the negotiation when it receives new offer from
remote (as opposed to receiving updated SDP from remote).

o active local_sdp: contains local SDP after it has been negotiated with

remote. The dialog MUST use this to start its local media instead of the
initial SDP.

o active_remote_sdp: contains the SDP currently used by peer/remote.

Page 72

PJSIP Developer’s Guide

The negotiator also has two other SDP variables which are only used internally
during negotiation process, namely neg_local_sdp and neg_remote sdp. These are
temporary SDP description, and application MUST NOT refer to these variables.

10.2 SDP Negotiator Session

The general state transition of SDP offer/answer session is shown in the following
diagram.

create_w_local_offer() tx_local_offer(), modify_local_offer(), reinit_local_offer()
LOCAL OFFER)«

rx_remote_answer()

Y

create_w_remote_offer() negotiate() done
NULL WAIT NEGO NEGOTIATING DONE

rx_remote_offer()

Figure 17 SDP Offer/Answer Session State Diagram

The negotiation session starts with pavEDIA spp NEG sTaATE NuLL. If the dialog has
a local media description ready and want to offer the media to remote (normally
this is the case when the dialog is acting as UAC), it creates the SDP negotiator
by passing the local SDP to the function pjmedia_sdp neg create w_local offer().
This function will set the initial capability of local endpoint, and set the
negotiation session state to PJMEDIA sSDP NEG STATE LOCAL_OFFER. The initial SDP
then can be sent to remote party in the outgoing INVITE request. Once dialog has
received remote’s SDP, it must call pjmedia_sdp_neg rx remote_ answer () With
providing the remote’s SDP. The negotiation function can then be called.

If the dialog already has remote media description in hand (normally this is the
case when dialog is acting as UAS), it can create the SDP negotiator session by
passing both local and remote SDP to pjmedia_sdp neg create w_remote offer().
After this, the negotiation function can be called.

After the session has been established, both local and remote party may modify
the session. The negotiator can handle one of these two situations:

o The dialog has received SDP from remote. In this case, the dialog will call
pjmedia_sdp_neg rx_remote offer () and passing the remote’s SDP to this
function. After this the negotiation function can be called. The negotiation
function’s return value determines whether there is modification needed in
the local media.

o The local party wants to send SDP to remote. Dialog can further choose
one of the following actions:

« If it just wants to send currently active local SDP without
modification, it should call pjmedia_sdp neg tx local_ offer() to
get the active local SDP, send the SDP, then wait for the
remote’s answer.

« If it wants to modify currently active local media (e.g. changing
stream direction, change active codec, etc), it should get the
active local media with pjmedia_sdp neg get local(), modify it,
call pjmedia_sdp neg modify local offer () to update the offer,
send the local SDP, then wait for the remote’s answer.

Page 73

PJSIP Developer’s Guide

 The dialog may want to completely change the local media (e.qg.
changing IP address, changing codec set, adding new media
line). This is different than updating current media described
above because it will change initial_sdp, so that future
negotiation will be based on this new SDP. If the dialog wants
to do this, it calls pjmedia sdp neg reinit local offer() With
the new local SDP, send the SDP, then wait for remote’s
answer.

After the dialog has sent offer to remote party, it should receive answer back
from the remote party. The dialog must provide the remote’s SDP to the
negotiator so that the negotiation function can be called. The dialog provides the
remote’s answer by calling pjsip_sdp_neg_rx_remote_answer().

If remote has rejected local’s offer (e.g. returning 488/”"Not Acceptable Here”
response), dialog MUST still call pPjsip_sdp _neg rx remote_answer () with providing
NULL in remote’s SDP argument, and call the negotiation function so that the
negotiator session can revert back to previously active session descriptions, if
any.

10.3 SDP Negotiation Function

The dialog calls pjmedia_sdp_neg_negotiate() to negotiate the offer and the
answer, after it has provided both local’s and remote’s SDP to be used for the
negotiation (i.e. negotiator state is PJMEDIA SDP NEG STATE WAIT NEGO). This
function may return one of the following result:

o PJ_SUCCESS, (i.e. zero) if it has successfully established an agreement
between local and remote SDP. In this case, both local’s and remote’s
active SDP will be stored in the session for future reference, and
application can query these active SDPs to start the local media.

o PJMEDIA ESDPNOCHANGE, if it found out that there is no modification needed
in currently used SDPs (both local and remote). In this case, the
previously agreed SDP sessions will not be modified either.

o PJMEDIA ESDPFAIL, if it couldn’t find agreement on local and remote
capabilities. In this case, if the session is keeping a previously agreed SDP,
these SDP (local and remote) will not be modified. If dialog is acting as
UAS for this session, it should respond the request with 488/Not
Acceptable Here response to the offer.

o PJMEDIA ESDPNOOFFER, if negotiator has not sent/received any offer yet.
o PJMEDIA ESDPNOANSKER, if negotiator has not received remote’s answer yet.
o or other non-zero value to indicate other errors.

In all cases, the negotiation function will set the negotiator’s state to
PJMEDIA SDP NEG STATE DONE.

Page 74

PJSIP Developer’s Guide

Chapter 11:Dialog Invite Usage

(DRAFT, TO BE DONE)
11.1 Introduction

The dialog invite usage is a module which can be registered to dialog to provide
higher level invite session processing. This module provides the following
functionalities to application:

o Session progress reporting (e.g. call progressing, connected, confirmed,
disconnected)

o SDP offer and answer framework,

o Session/call transfer,

o High-level forking handler,

o Session offer timeout (i.e. Expires header),

o Session extensions, such as session timer, and reliable provisional
response.

11.1.1 Invite Session State

The dialog invite usage provides callback to notify application about session
progress. This is particularly usefull for telephony applications, where the
session’s state is normally associated with telephony call state.

The progress of an invite session is defined with the following state:

CALLING Rx 300-699, erro

Tx/Rx

BYE
CONFIRMED)—»(DISCONNECTED)

v Timer
Tx 300-699, errors (TERMINATED)

Figure 18 Invite Session State Diagram

ACK

INCOMING

The description of each state is as follows:

PJSIP_INV_STATE NULL This is the state of the session when it was first
created. No messages have been sent/received
at this point.

PJSIP_INV_STATE CALLING The session state after the first INVITE

message is sent, but before any provisional
response is received.

PJSIP_INV_STATE_INCOMING The session state after the first INVITE
message is received, but before any provisional
response is sent.

PJSIP_INV_STATE PROCEEDING The session state after dialog has sent or
received provisional response messages for the
INVITE request, including 100/Trying response.

PJSIP INV STATE CONNECTING The session state after a final 2xx response has

Page 75

PJSIP Developer’s Guide

been sent or received.

PJSIP_INV_STATE CONFIRMED

The session state after ACK request has been
sent or received.

PJSIP_INV_STATE DISCONNECTED | The session state when the session has been
disconnected, either because of non-successful
final response to INVITE or BYE request.

PJSIP_INV_STATE TERMINATED

The session state when the session will be
destroyed. All resources will be freed when this
state is reached.

Figure 19 Invite Session State Description

11.1.2 Invite Usage “Class Diagram”

The following figure shows the invite usage class diagram.

pjsip_module

Attributes:

Operations:

pjsip_invite_usage

Attributes:

Operations:

status pjsip_inv_create_uac(mod,dlg,&inv);
status pjsip_inv_create_uas(mod,dlg,rdata,&inv);

pjsip_invite_usage* pjsip_inv_usage_create(endpt,cb);
pjsip_invite_usage* pjsip_inv_usage_get_module(void);

create

pjsip_invite_session

usages

pjsip_dialog

Attributes:
state, dlig

Operations:

Signaling Operations:
status pjsip_inv_send_invite(inv);
status pjsip_inv_answer(inv,status,text);
status pjsip_inv_disconnect(inv,status,text);

Media Operations:
sdp* pjsip_inv_get_local_sdp(inv);
sdp* pjsip_inv_get_remote_sdp(inv);
status pjsip_inv_modify_local_sdp(inv,sdp);
status pjsip_inv_reinit_local_sdp(inv,sdp);

Call Transfer Operation:
status pjsip_inv_send_refer(inv,uri,replace);

?

pimedia_sdp_negotiator

Attributes:

Operations:

Attributes:

Operations:

pisip_invite_usage_callback

Signaling Callbacks:
void on_inv_incoming(inv, rdata);
void on_inv_calling(inv, tdata);
void on_inv_proceeding(inv, event);
void on_inv_connecting(inv,event);
void on_inv_confirmed(int,event);
void on_inv_disconnected(inv,event);
void on_inv_terminated(inv);

Low-Level Message Callbacks:
void on_inv_tx_msg(inv,tdata);
void on_inv_rx_msg(inv,rdata);

Media Callbacks:
void on_inv_media_changed(inv,which);

Call Transfer Callback:
void on_inv_refer(inv,rdata);
void on_inv_refer_status(inv,event);

Operations:

Figure 20 Dialog Invite Usage "Class Diagram"

Page 76

PJSIP Developer’s Guide

Chapter 12:Dialog Subscribe Usage

(TO BE DONE)

Page 77

	Table of Contents
	Table of Figures
	Table of Codes
	Chapter 1:General Design
	1.1 Architecture
	1.1.1 Communication Diagram
	1.1.2 Class Diagram

	1.2 Module
	1.2.1 Module Declaration
	1.2.2 Module Priorities
	1.2.3 Incoming Message Processing by Modules
	1.2.4 Outgoing Message Processing by Modules
	1.2.5 Transaction User and State Callback
	1.2.6 Module Specific Data
	1.2.7 Callback Summary
	1.2.8 Sample Callback Requirements for Applications
	1.2.9 Sample Callback Diagrams

	1.3 Module Management
	1.3.1 Module Management API

	Chapter 2:Message Elements
	2.1 Uniform Resource Indicator (URI)
	2.1.1 URI “Class Diagram”
	2.1.2 URI Context
	2.1.3 Base URI
	2.1.4 SIP and SIPS URI
	2.1.5 Tel URI
	2.1.6 Name Address
	2.1.7 Sample URI Manipulation Program

	2.2 SIP Methods
	2.2.1 SIP Method Representation (pjsip_method)
	2.2.2 SIP Method API

	2.3 Header Fields
	2.3.1 Header “Class Diagram”
	2.3.2 Header Structure
	2.3.3 Common Header Functions
	2.3.4 Supported Header Fields
	2.3.5 Header Array Elements

	2.4 Message Body (pjsip_msg_body)
	2.5 Message (pjsip_msg)
	2.6 SIP Status Codes
	2.7 Non-Standard Parameter Elements
	2.7.1 Data Structure Representation (pjsip_param)
	2.7.2 Non-Standard Parameter Manipulation

	2.8 Escapement Rules

	Chapter 3:Parser
	3.1 Features
	3.2 Functions
	3.2.1 Message Parsing
	3.2.2 URI Parsing
	3.2.3 Header Parsing

	3.3 Extending Parser

	Chapter 4:Message Buffers
	4.1 Receive Data Buffer
	4.1.1 Receive Data Buffer Structure

	4.2 Transmit Data Buffer (pjsip_tx_data)

	Chapter 5:Transport Layer
	5.1 Transport Layer Design
	5.1.1 “Class Diagram”
	5.1.2 Transport Manager
	5.1.3 Transport Factory
	5.1.4 Transport

	5.2 Using Transports
	5.2.1 Function Reference

	5.3 Extending Transports
	5.4 Initializing Transports
	5.4.1 UDP Transport Initialization
	5.4.2 TCP Transport Initialization
	5.4.3 TLS Transport Initialization
	5.4.4 SCTP Transport Initialization

	Chapter 6:Sending Messages
	6.1 Sending Messages Overview
	6.1.1 Creating Messages
	6.1.2 Sending Messages

	6.2 Function Reference
	6.2.1 Sending Response
	6.2.2 Sending Request
	6.2.3 Stateless Proxy Forwarding

	6.3 Examples
	6.3.1 Sending Responses
	6.3.2 Sending Requests
	6.3.3 Stateless Forwarding

	Chapter 7:Transactions
	7.1 Design
	7.1.1 Introduction
	7.1.2 Timers and Retransmissions
	7.1.3 INVITE Final Response and ACK Request
	7.1.4 Incoming ACK Request
	7.1.5 Server Resolution and Transports
	7.1.6 Via Header

	7.2 Reference
	7.2.1 Base Functions
	7.2.2 Composite Functions

	7.3 Sending Statefull Responses
	7.3.1 Usage Examples

	7.4 Sending Statefull Request
	7.4.1 Usage Examples

	7.5 Statefull Proxy Forwarding
	7.5.1 Usage Examples

	Chapter 8:Authentication Framework
	8.1 Client Authentication Framework
	8.1.1 Client Authentication Framework Reference
	8.1.2 Examples

	8.2 Server Authorization Framework
	8.2.1 Server Authorization Reference

	8.3 Extending Authentication Framework

	Chapter 9:Basic User Agent Layer (UA)
	9.1 Basic Dialog Concept
	9.1.1 Dialog Sessions
	9.1.2 Dialog Usages
	9.1.3 Class Diagram
	9.1.4 Forking
	9.1.5 CSeq Sequencing
	9.1.6 Authentication
	9.1.7 Stateless Operations

	9.2 Basic UA API Reference
	9.2.1 Dialog Creation API
	9.2.2 Dialog Session Management API
	9.2.3 Dialog Usages API
	9.2.4 Dialog Request and Response API
	9.2.5 Dialog Auxiliary API

	9.3 Examples
	9.3.1 Incoming Invite Dialog
	9.3.2 Outgoing Invite Dialog

	Chapter 10:SDP Offer/Answer Framework
	10.1 SDP Negotiator Structure
	10.2 SDP Negotiator Session
	10.3 SDP Negotiation Function

	Chapter 11:Dialog Invite Usage
	11.1 Introduction
	11.1.1 Invite Session State
	11.1.2 Invite Usage “Class Diagram”

	Chapter 12:Dialog Subscribe Usage

