summaryrefslogtreecommitdiff
path: root/codecs/speex
diff options
context:
space:
mode:
authorSean Bright <sean.bright@gmail.com>2017-12-22 09:14:07 -0500
committerSean Bright <sean.bright@gmail.com>2017-12-22 09:14:07 -0500
commitce3d56920b15facbb64b3caf0d823a3f57c0dded (patch)
tree0ea4a13885afb281237b3747e85eb6315863ae0a /codecs/speex
parent35a2e09c655f26067db0f51837704886d6ffff78 (diff)
Remove as much trailing whitespace as possible.
Change-Id: I873c1c6d00f447269bd841494459efccdd2c19c0
Diffstat (limited to 'codecs/speex')
-rw-r--r--codecs/speex/arch.h12
-rw-r--r--codecs/speex/fixed_generic.h8
-rw-r--r--codecs/speex/resample.c84
-rw-r--r--codecs/speex/resample_sse.h8
-rw-r--r--codecs/speex/speex_resampler.h116
-rw-r--r--codecs/speex/stack_alloc.h10
6 files changed, 119 insertions, 119 deletions
diff --git a/codecs/speex/arch.h b/codecs/speex/arch.h
index af42e645d..435befcef 100644
--- a/codecs/speex/arch.h
+++ b/codecs/speex/arch.h
@@ -7,18 +7,18 @@
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
-
+
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
-
+
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
-
+
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
-
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -219,11 +219,11 @@ typedef float spx_word32_t;
#if defined (CONFIG_TI_C54X) || defined (CONFIG_TI_C55X)
/* 2 on TI C5x DSP */
-#define BYTES_PER_CHAR 2
+#define BYTES_PER_CHAR 2
#define BITS_PER_CHAR 16
#define LOG2_BITS_PER_CHAR 4
-#else
+#else
#define BYTES_PER_CHAR 1
#define BITS_PER_CHAR 8
diff --git a/codecs/speex/fixed_generic.h b/codecs/speex/fixed_generic.h
index 3fb096ed9..0b219188d 100644
--- a/codecs/speex/fixed_generic.h
+++ b/codecs/speex/fixed_generic.h
@@ -7,18 +7,18 @@
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
-
+
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
-
+
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
-
+
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
-
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
diff --git a/codecs/speex/resample.c b/codecs/speex/resample.c
index 2b0395180..0797352ad 100644
--- a/codecs/speex/resample.c
+++ b/codecs/speex/resample.c
@@ -1,6 +1,6 @@
/* Copyright (C) 2007-2008 Jean-Marc Valin
Copyright (C) 2008 Thorvald Natvig
-
+
File: resample.c
Arbitrary resampling code
@@ -38,22 +38,22 @@
- Low memory requirement
- Good *perceptual* quality (and not best SNR)
- Warning: This resampler is relatively new. Although I think I got rid of
+ Warning: This resampler is relatively new. Although I think I got rid of
all the major bugs and I don't expect the API to change anymore, there
may be something I've missed. So use with caution.
This algorithm is based on this original resampling algorithm:
Smith, Julius O. Digital Audio Resampling Home Page
- Center for Computer Research in Music and Acoustics (CCRMA),
+ Center for Computer Research in Music and Acoustics (CCRMA),
Stanford University, 2007.
Web published at http://www-ccrma.stanford.edu/~jos/resample/.
- There is one main difference, though. This resampler uses cubic
+ There is one main difference, though. This resampler uses cubic
interpolation instead of linear interpolation in the above paper. This
makes the table much smaller and makes it possible to compute that table
- on a per-stream basis. In turn, being able to tweak the table for each
- stream makes it possible to both reduce complexity on simple ratios
- (e.g. 2/3), and get rid of the rounding operations in the inner loop.
+ on a per-stream basis. In turn, being able to tweak the table for each
+ stream makes it possible to both reduce complexity on simple ratios
+ (e.g. 2/3), and get rid of the rounding operations in the inner loop.
The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
*/
@@ -106,7 +106,7 @@ struct SpeexResamplerState_ {
spx_uint32_t out_rate;
spx_uint32_t num_rate;
spx_uint32_t den_rate;
-
+
int quality;
spx_uint32_t nb_channels;
spx_uint32_t filt_len;
@@ -118,17 +118,17 @@ struct SpeexResamplerState_ {
spx_uint32_t oversample;
int initialised;
int started;
-
+
/* These are per-channel */
spx_int32_t *last_sample;
spx_uint32_t *samp_frac_num;
spx_uint32_t *magic_samples;
-
+
spx_word16_t *mem;
spx_word16_t *sinc_table;
spx_uint32_t sinc_table_length;
resampler_basic_func resampler_ptr;
-
+
int in_stride;
int out_stride;
} ;
@@ -170,7 +170,7 @@ static double kaiser8_table[36] = {
0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
-
+
static double kaiser6_table[36] = {
0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
@@ -183,7 +183,7 @@ struct FuncDef {
double *table;
int oversample;
};
-
+
static struct FuncDef _KAISER12 = {kaiser12_table, 64};
#define KAISER12 (&_KAISER12)
/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
@@ -205,7 +205,7 @@ struct QualityMapping {
/* This table maps conversion quality to internal parameters. There are two
- reasons that explain why the up-sampling bandwidth is larger than the
+ reasons that explain why the up-sampling bandwidth is larger than the
down-sampling bandwidth:
1) When up-sampling, we can assume that the spectrum is already attenuated
close to the Nyquist rate (from an A/D or a previous resampling filter)
@@ -231,7 +231,7 @@ static double compute_func(float x, struct FuncDef *func)
{
float y, frac;
double interp[4];
- int ind;
+ int ind;
y = x*func->oversample;
ind = (int)floor(y);
frac = (y-ind);
@@ -242,7 +242,7 @@ static double compute_func(float x, struct FuncDef *func)
interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac);
/* Just to make sure we don't have rounding problems */
interp[1] = 1.f-interp[3]-interp[2]-interp[0];
-
+
/*sum = frac*accum[1] + (1-frac)*accum[2];*/
return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3];
}
@@ -461,7 +461,7 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
cubic_coef(frac, interp);
sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
#endif
-
+
out[out_stride * out_sample++] = PSHR32(sum,15);
last_sample += int_advance;
samp_frac_num += frac_advance;
@@ -523,7 +523,7 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
cubic_coef(frac, interp);
sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
#endif
-
+
out[out_stride * out_sample++] = PSHR32(sum,15);
last_sample += int_advance;
samp_frac_num += frac_advance;
@@ -543,11 +543,11 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
static void update_filter(SpeexResamplerState *st)
{
spx_uint32_t old_length;
-
+
old_length = st->filt_len;
st->oversample = quality_map[st->quality].oversample;
st->filt_len = quality_map[st->quality].base_length;
-
+
if (st->num_rate > st->den_rate)
{
/* down-sampling */
@@ -570,7 +570,7 @@ static void update_filter(SpeexResamplerState *st)
/* up-sampling */
st->cutoff = quality_map[st->quality].upsample_bandwidth;
}
-
+
/* Choose the resampling type that requires the least amount of memory */
if (st->den_rate <= st->oversample)
{
@@ -623,7 +623,7 @@ static void update_filter(SpeexResamplerState *st)
st->int_advance = st->num_rate/st->den_rate;
st->frac_advance = st->num_rate%st->den_rate;
-
+
/* Here's the place where we update the filter memory to take into account
the change in filter length. It's probably the messiest part of the code
due to handling of lots of corner cases. */
@@ -661,7 +661,7 @@ static void update_filter(SpeexResamplerState *st)
/*if (st->magic_samples[i])*/
{
/* Try and remove the magic samples as if nothing had happened */
-
+
/* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
olen = old_length + 2*st->magic_samples[i];
for (j=old_length-2+st->magic_samples[i];j>=0;j--)
@@ -736,18 +736,18 @@ static void update_filter(SpeexResamplerState *st)
st->filt_len = 0;
st->mem = 0;
st->resampler_ptr = 0;
-
+
st->cutoff = 1.f;
st->nb_channels = nb_channels;
st->in_stride = 1;
st->out_stride = 1;
-
+
#ifdef FIXED_POINT
st->buffer_size = 160;
#else
st->buffer_size = 160;
#endif
-
+
/* Per channel data */
st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(int));
st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
@@ -762,9 +762,9 @@ static void update_filter(SpeexResamplerState *st)
speex_resampler_set_quality(st, quality);
speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate);
-
+
update_filter(st);
-
+
st->initialised = 1;
if (err)
*err = RESAMPLER_ERR_SUCCESS;
@@ -789,17 +789,17 @@ static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t
int out_sample = 0;
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
spx_uint32_t ilen;
-
+
st->started = 1;
-
+
/* Call the right resampler through the function ptr */
out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len);
-
+
if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
*in_len = st->last_sample[channel_index];
*out_len = out_sample;
st->last_sample[channel_index] -= *in_len;
-
+
ilen = *in_len;
for(j=0;j<N-1;++j)
@@ -812,11 +812,11 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
const int N = st->filt_len;
-
+
speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len);
st->magic_samples[channel_index] -= tmp_in_len;
-
+
/* If we couldn't process all "magic" input samples, save the rest for next time */
if (st->magic_samples[channel_index])
{
@@ -842,13 +842,13 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
const int istride = st->in_stride;
- if (st->magic_samples[channel_index])
+ if (st->magic_samples[channel_index])
olen -= speex_resampler_magic(st, channel_index, &out, olen);
if (! st->magic_samples[channel_index]) {
while (ilen && olen) {
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
spx_uint32_t ochunk = olen;
-
+
if (in) {
for(j=0;j<ichunk;++j)
x[j+filt_offs]=in[j*istride];
@@ -892,7 +892,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
#endif
st->out_stride = 1;
-
+
while (ilen && olen) {
spx_word16_t *y = ystack;
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
@@ -929,7 +929,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
#else
out[j*ostride_save] = WORD2INT(ystack[j]);
#endif
-
+
ilen -= ichunk;
olen -= ochunk;
out += (ochunk+omagic) * ostride_save;
@@ -963,7 +963,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
st->out_stride = ostride_save;
return RESAMPLER_ERR_SUCCESS;
}
-
+
int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
{
spx_uint32_t i;
@@ -1003,7 +1003,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
spx_uint32_t i;
if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den)
return RESAMPLER_ERR_SUCCESS;
-
+
old_den = st->den_rate;
st->in_rate = in_rate;
st->out_rate = out_rate;
@@ -1018,7 +1018,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
st->den_rate /= fact;
}
}
-
+
if (old_den > 0)
{
for (i=0;i<st->nb_channels;i++)
@@ -1029,7 +1029,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
st->samp_frac_num[i] = st->den_rate-1;
}
}
-
+
if (st->initialised)
update_filter(st);
return RESAMPLER_ERR_SUCCESS;
diff --git a/codecs/speex/resample_sse.h b/codecs/speex/resample_sse.h
index 4bd35a2d0..d85898067 100644
--- a/codecs/speex/resample_sse.h
+++ b/codecs/speex/resample_sse.h
@@ -9,18 +9,18 @@
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
-
+
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
-
+
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
-
+
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
-
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
diff --git a/codecs/speex/speex_resampler.h b/codecs/speex/speex_resampler.h
index 5dead0e79..d02022d2e 100644
--- a/codecs/speex/speex_resampler.h
+++ b/codecs/speex/speex_resampler.h
@@ -1,8 +1,8 @@
/* Copyright (C) 2007 Jean-Marc Valin
-
+
File: speex_resampler.h
Resampling code
-
+
The design goals of this code are:
- Very fast algorithm
- Low memory requirement
@@ -45,7 +45,7 @@
/********* WARNING: MENTAL SANITY ENDS HERE *************/
-/* If the resampler is defined outside of Speex, we change the symbol names so that
+/* If the resampler is defined outside of Speex, we change the symbol names so that
there won't be any clash if linking with Speex later on. */
#define RANDOM_PREFIX ast
@@ -55,7 +55,7 @@
#define CAT_PREFIX2(a,b) a ## b
#define CAT_PREFIX(a,b) CAT_PREFIX2(a, b)
-
+
#define speex_resampler_init CAT_PREFIX(RANDOM_PREFIX,_resampler_init)
#define speex_resampler_init_frac CAT_PREFIX(RANDOM_PREFIX,_resampler_init_frac)
#define speex_resampler_destroy CAT_PREFIX(RANDOM_PREFIX,_resampler_destroy)
@@ -83,7 +83,7 @@
#define spx_int32_t int
#define spx_uint16_t unsigned short
#define spx_uint32_t unsigned int
-
+
#else /* OUTSIDE_SPEEX */
#include "speex/speex_types.h"
@@ -106,7 +106,7 @@ enum {
RESAMPLER_ERR_BAD_STATE = 2,
RESAMPLER_ERR_INVALID_ARG = 3,
RESAMPLER_ERR_PTR_OVERLAP = 4,
-
+
RESAMPLER_ERR_MAX_ERROR
};
@@ -123,14 +123,14 @@ typedef struct SpeexResamplerState_ SpeexResamplerState;
* \return Newly created resampler state
* \retval NULL Error: not enough memory
*/
-SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
- spx_uint32_t in_rate,
- spx_uint32_t out_rate,
+SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
+ spx_uint32_t in_rate,
+ spx_uint32_t out_rate,
int quality,
int *err);
-/** Create a new resampler with fractional input/output rates. The sampling
- * rate ratio is an arbitrary rational number with both the numerator and
+/** Create a new resampler with fractional input/output rates. The sampling
+ * rate ratio is an arbitrary rational number with both the numerator and
* denominator being 32-bit integers.
* @param nb_channels Number of channels to be processed
* @param ratio_num Numerator of the sampling rate ratio
@@ -143,11 +143,11 @@ SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
* @return Newly created resampler state
* @retval NULL Error: not enough memory
*/
-SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
- spx_uint32_t ratio_num,
- spx_uint32_t ratio_den,
- spx_uint32_t in_rate,
- spx_uint32_t out_rate,
+SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
+ spx_uint32_t ratio_num,
+ spx_uint32_t ratio_den,
+ spx_uint32_t in_rate,
+ spx_uint32_t out_rate,
int quality,
int *err);
@@ -158,24 +158,24 @@ void speex_resampler_destroy(SpeexResamplerState *st);
/** Resample a float array. The input and output buffers must *not* overlap.
* @param st Resampler state
- * @param channel_index Index of the channel to process for the multi-channel
+ * @param channel_index Index of the channel to process for the multi-channel
* base (0 otherwise)
* @param in Input buffer
- * @param in_len Number of input samples in the input buffer. Returns the
+ * @param in_len Number of input samples in the input buffer. Returns the
* number of samples processed
* @param out Output buffer
* @param out_len Size of the output buffer. Returns the number of samples written
*/
-int speex_resampler_process_float(SpeexResamplerState *st,
- spx_uint32_t channel_index,
- const float *in,
- spx_uint32_t *in_len,
- float *out,
+int speex_resampler_process_float(SpeexResamplerState *st,
+ spx_uint32_t channel_index,
+ const float *in,
+ spx_uint32_t *in_len,
+ float *out,
spx_uint32_t *out_len);
/** Resample an int array. The input and output buffers must *not* overlap.
* @param st Resampler state
- * @param channel_index Index of the channel to process for the multi-channel
+ * @param channel_index Index of the channel to process for the multi-channel
* base (0 otherwise)
* @param in Input buffer
* @param in_len Number of input samples in the input buffer. Returns the number
@@ -183,11 +183,11 @@ int speex_resampler_process_float(SpeexResamplerState *st,
* @param out Output buffer
* @param out_len Size of the output buffer. Returns the number of samples written
*/
-int speex_resampler_process_int(SpeexResamplerState *st,
- spx_uint32_t channel_index,
- const spx_int16_t *in,
- spx_uint32_t *in_len,
- spx_int16_t *out,
+int speex_resampler_process_int(SpeexResamplerState *st,
+ spx_uint32_t channel_index,
+ const spx_int16_t *in,
+ spx_uint32_t *in_len,
+ spx_int16_t *out,
spx_uint32_t *out_len);
/** Resample an interleaved float array. The input and output buffers must *not* overlap.
@@ -199,10 +199,10 @@ int speex_resampler_process_int(SpeexResamplerState *st,
* @param out_len Size of the output buffer. Returns the number of samples written.
* This is all per-channel.
*/
-int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
- const float *in,
- spx_uint32_t *in_len,
- float *out,
+int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
+ const float *in,
+ spx_uint32_t *in_len,
+ float *out,
spx_uint32_t *out_len);
/** Resample an interleaved int array. The input and output buffers must *not* overlap.
@@ -214,10 +214,10 @@ int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
* @param out_len Size of the output buffer. Returns the number of samples written.
* This is all per-channel.
*/
-int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
- const spx_int16_t *in,
- spx_uint32_t *in_len,
- spx_int16_t *out,
+int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
+ const spx_int16_t *in,
+ spx_uint32_t *in_len,
+ spx_int16_t *out,
spx_uint32_t *out_len);
/** Set (change) the input/output sampling rates (integer value).
@@ -225,8 +225,8 @@ int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
* @param in_rate Input sampling rate (integer number of Hz).
* @param out_rate Output sampling rate (integer number of Hz).
*/
-int speex_resampler_set_rate(SpeexResamplerState *st,
- spx_uint32_t in_rate,
+int speex_resampler_set_rate(SpeexResamplerState *st,
+ spx_uint32_t in_rate,
spx_uint32_t out_rate);
/** Get the current input/output sampling rates (integer value).
@@ -234,11 +234,11 @@ int speex_resampler_set_rate(SpeexResamplerState *st,
* @param in_rate Input sampling rate (integer number of Hz) copied.
* @param out_rate Output sampling rate (integer number of Hz) copied.
*/
-void speex_resampler_get_rate(SpeexResamplerState *st,
- spx_uint32_t *in_rate,
+void speex_resampler_get_rate(SpeexResamplerState *st,
+ spx_uint32_t *in_rate,
spx_uint32_t *out_rate);
-/** Set (change) the input/output sampling rates and resampling ratio
+/** Set (change) the input/output sampling rates and resampling ratio
* (fractional values in Hz supported).
* @param st Resampler state
* @param ratio_num Numerator of the sampling rate ratio
@@ -246,10 +246,10 @@ void speex_resampler_get_rate(SpeexResamplerState *st,
* @param in_rate Input sampling rate rounded to the nearest integer (in Hz).
* @param out_rate Output sampling rate rounded to the nearest integer (in Hz).
*/
-int speex_resampler_set_rate_frac(SpeexResamplerState *st,
- spx_uint32_t ratio_num,
- spx_uint32_t ratio_den,
- spx_uint32_t in_rate,
+int speex_resampler_set_rate_frac(SpeexResamplerState *st,
+ spx_uint32_t ratio_num,
+ spx_uint32_t ratio_den,
+ spx_uint32_t in_rate,
spx_uint32_t out_rate);
/** Get the current resampling ratio. This will be reduced to the least
@@ -258,52 +258,52 @@ int speex_resampler_set_rate_frac(SpeexResamplerState *st,
* @param ratio_num Numerator of the sampling rate ratio copied
* @param ratio_den Denominator of the sampling rate ratio copied
*/
-void speex_resampler_get_ratio(SpeexResamplerState *st,
- spx_uint32_t *ratio_num,
+void speex_resampler_get_ratio(SpeexResamplerState *st,
+ spx_uint32_t *ratio_num,
spx_uint32_t *ratio_den);
/** Set (change) the conversion quality.
* @param st Resampler state
- * @param quality Resampling quality between 0 and 10, where 0 has poor
+ * @param quality Resampling quality between 0 and 10, where 0 has poor
* quality and 10 has very high quality.
*/
-int speex_resampler_set_quality(SpeexResamplerState *st,
+int speex_resampler_set_quality(SpeexResamplerState *st,
int quality);
/** Get the conversion quality.
* @param st Resampler state
- * @param quality Resampling quality between 0 and 10, where 0 has poor
+ * @param quality Resampling quality between 0 and 10, where 0 has poor
* quality and 10 has very high quality.
*/
-void speex_resampler_get_quality(SpeexResamplerState *st,
+void speex_resampler_get_quality(SpeexResamplerState *st,
int *quality);
/** Set (change) the input stride.
* @param st Resampler state
* @param stride Input stride
*/
-void speex_resampler_set_input_stride(SpeexResamplerState *st,
+void speex_resampler_set_input_stride(SpeexResamplerState *st,
spx_uint32_t stride);
/** Get the input stride.
* @param st Resampler state
* @param stride Input stride copied
*/
-void speex_resampler_get_input_stride(SpeexResamplerState *st,
+void speex_resampler_get_input_stride(SpeexResamplerState *st,
spx_uint32_t *stride);
/** Set (change) the output stride.
* @param st Resampler state
* @param stride Output stride
*/
-void speex_resampler_set_output_stride(SpeexResamplerState *st,
+void speex_resampler_set_output_stride(SpeexResamplerState *st,
spx_uint32_t stride);
/** Get the output stride.
* @param st Resampler state copied
* @param stride Output stride
*/
-void speex_resampler_get_output_stride(SpeexResamplerState *st,
+void speex_resampler_get_output_stride(SpeexResamplerState *st,
spx_uint32_t *stride);
/** Get the latency in input samples introduced by the resampler.
@@ -316,8 +316,8 @@ int speex_resampler_get_input_latency(SpeexResamplerState *st);
*/
int speex_resampler_get_output_latency(SpeexResamplerState *st);
-/** Make sure that the first samples to go out of the resamplers don't have
- * leading zeros. This is only useful before starting to use a newly created
+/** Make sure that the first samples to go out of the resamplers don't have
+ * leading zeros. This is only useful before starting to use a newly created
* resampler. It is recommended to use that when resampling an audio file, as
* it will generate a file with the same length. For real-time processing,
* it is probably easier not to use this call (so that the output duration
diff --git a/codecs/speex/stack_alloc.h b/codecs/speex/stack_alloc.h
index 5264e666b..6c56334f8 100644
--- a/codecs/speex/stack_alloc.h
+++ b/codecs/speex/stack_alloc.h
@@ -7,18 +7,18 @@
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
-
+
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
-
+
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
-
+
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
-
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -101,7 +101,7 @@
#endif
#if defined(VAR_ARRAYS)
-#define VARDECL(var)
+#define VARDECL(var)
#define ALLOC(var, size, type) type var[size]
#elif defined(USE_ALLOCA)
#define VARDECL(var) var