summaryrefslogtreecommitdiff
path: root/codecs/ilbc/enhancer.c
diff options
context:
space:
mode:
Diffstat (limited to 'codecs/ilbc/enhancer.c')
-rwxr-xr-xcodecs/ilbc/enhancer.c1265
1 files changed, 664 insertions, 601 deletions
diff --git a/codecs/ilbc/enhancer.c b/codecs/ilbc/enhancer.c
index 86c4a85c0..3e381ec31 100755
--- a/codecs/ilbc/enhancer.c
+++ b/codecs/ilbc/enhancer.c
@@ -1,601 +1,664 @@
-
-/******************************************************************
-
- iLBC Speech Coder ANSI-C Source Code
-
- enhancer.c
-
- Copyright (c) 2001,
- Global IP Sound AB.
- All rights reserved.
-
-******************************************************************/
-
-#include <math.h>
-#include <string.h>
-#include "iLBC_define.h"
-#include "constants.h"
-#include "filter.h"
-#include "enhancer.h"
-
-/*----------------------------------------------------------------*
- * Find index in array such that the array element with said
- * index is the element of said array closest to "value"
- * according to the squared-error criterion
- *---------------------------------------------------------------*/
-
-static void NearestNeighbor(
- int *index, /* (o) index of array element closest to value */
- float *array, /* (i) data array */
- float value,/* (i) value */
- int arlength/* (i) dimension of data array */
-){
- int i;
- float bestcrit,crit;
-
- crit=array[0]-value;
- bestcrit=crit*crit;
- *index=0;
- for(i=1;i<arlength;i++){
- crit=array[i]-value;
- crit=crit*crit;
-
- if(crit<bestcrit){
- bestcrit=crit;
- *index=i;
- }
- }
-}
-
-/*----------------------------------------------------------------*
- * compute cross correlation between sequences
- *---------------------------------------------------------------*/
-
-static void mycorr1(
- float* corr, /* (o) correlation of seq1 and seq2 */
- float* seq1, /* (i) first sequence */
- int dim1, /* (i) dimension first seq1 */
- const float *seq2, /* (i) second sequence */
- int dim2 /* (i) dimension seq2 */
-){
- int i,j;
-
- for(i=0;i<=dim1-dim2; i++){
- corr[i]=0.0;
- for(j=0;j<dim2; j++){
- corr[i] += seq1[i+j] * seq2[j];
- }
- }
-}
-
-/*----------------------------------------------------------------*
- * upsample finite array assuming zeros outside bounds
- *---------------------------------------------------------------*/
-
-static void enh_upsample(
- float* useq1, /* (o) upsampled output sequence */
- float* seq1,/* (i) unupsampled sequence */
- int dim1, /* (i) dimension seq1 */
- int hfl /* (i) polyphase filter length=2*hfl+1 */
-){
- float *pu,*ps;
- int i,j,k,q,filterlength,hfl2;
- const float *polyp[ENH_UPS0]; /* pointers to polyphase columns */
- const float *pp;
-
- /* define pointers for filter */
-
- filterlength=2*hfl+1;
-
- if( filterlength > dim1){
- hfl2=(int) (dim1/2);
- for(j=0;j<ENH_UPS0; j++) {
- polyp[j]=polyphaserTbl+j*filterlength+hfl-hfl2;
- }
- hfl=hfl2;
- filterlength=2*hfl+1;
- }
- else {
- for(j=0;j<ENH_UPS0; j++) {
- polyp[j]=polyphaserTbl+j*filterlength;
- }
- }
-
- /* filtering: filter overhangs left side of sequence */
-
- pu=useq1;
- for(i=hfl;i<filterlength; i++){
- for(j=0;j<ENH_UPS0; j++){
- *pu=0.0;
- pp = polyp[j];
- ps = seq1+i;
- for(k=0;k<=i;k++) {
- *pu += *ps-- * *pp++;
- }
- pu++;
- }
- }
-
- /* filtering: simple convolution=inner products */
-
- for(i=filterlength; i<dim1; i++){
- for(j=0;j<ENH_UPS0; j++){
- *pu=0.0;
- pp = polyp[j];
- ps = seq1+i;
- for(k=0;k<filterlength;k++) {
- *pu += *ps-- * *pp++;
- }
- pu++;
- }
- }
-
- /* filtering: filter overhangs right side of sequence */
-
- for(q=1; q<=hfl;q++){
- for(j=0;j<ENH_UPS0; j++){
- *pu=0.0;
- pp = polyp[j]+q;
- ps = seq1+dim1-1;
- for(k=0;k<filterlength-q;k++) {
- *pu += *ps-- * *pp++;
- }
- pu++;
- }
- }
-}
-
-
-/*----------------------------------------------------------------*
- * find segment starting near idata+estSegPos that has highest
- * correlation with idata+centerStartPos through
- * idata+centerStartPos+ENH_BLOCKL-1 segment is found at a
- * resolution of ENH_UPSO times the original of the original
- * sampling rate
- *---------------------------------------------------------------*/
-
-static void refiner(
- float *seg, /* (o) segment array */
- float *updStartPos, /* (o) updated start point */
- float* idata, /* (i) original data buffer */
- int idatal, /* (i) dimension of idata */
- int centerStartPos, /* (i) beginning center segment */
- float estSegPos,/* (i) estimated beginning other segment */
- float period /* (i) estimated pitch period */
-){
- int estSegPosRounded,searchSegStartPos,searchSegEndPos,corrdim;
- int tloc,tloc2,i,st,en,fraction;
- float vect[ENH_VECTL],corrVec[ENH_CORRDIM],maxv;
- float corrVecUps[ENH_CORRDIM*ENH_UPS0];
- (void)period;
-
- /* defining array bounds */
-
- estSegPosRounded=(int)(estSegPos - 0.5);
-
- searchSegStartPos=estSegPosRounded-ENH_SLOP;
-
- if (searchSegStartPos<0) {
- searchSegStartPos=0;
- }
- searchSegEndPos=estSegPosRounded+ENH_SLOP;
-
- if(searchSegEndPos+ENH_BLOCKL >= idatal) {
- searchSegEndPos=idatal-ENH_BLOCKL-1;
- }
- corrdim=searchSegEndPos-searchSegStartPos+1;
-
- /* compute upsampled correlation (corr33) and find
- location of max */
-
- mycorr1(corrVec,idata+searchSegStartPos,
- corrdim+ENH_BLOCKL-1,idata+centerStartPos,ENH_BLOCKL);
- enh_upsample(corrVecUps,corrVec,corrdim,ENH_FL0);
- tloc=0; maxv=corrVecUps[0];
- for(i=1;i<ENH_UPS0*corrdim; i++){
-
- if(corrVecUps[i]>maxv){
- tloc=i;
- maxv=corrVecUps[i];
- }
- }
-
- /* make vector can be upsampled without ever running outside
- bounds */
-
- *updStartPos= (float)searchSegStartPos +
- (float)tloc/(float)ENH_UPS0+(float)1.0;
- tloc2=(int)(tloc/ENH_UPS0);
-
- if (tloc>tloc2*ENH_UPS0) {
- tloc2++;
- }
- st=searchSegStartPos+tloc2-ENH_FL0;
-
- if(st<0){
- memset(vect,0,-st*sizeof(float));
- memcpy(&vect[-st],idata, (ENH_VECTL+st)*sizeof(float));
- }
- else{
- en=st+ENH_VECTL;
-
- if(en>idatal){
- memcpy(vect, &idata[st],
- (ENH_VECTL-(en-idatal))*sizeof(float));
- memset(&vect[ENH_VECTL-(en-idatal)], 0,
- (en-idatal)*sizeof(float));
- }
- else {
- memcpy(vect, &idata[st], ENH_VECTL*sizeof(float));
- }
- }
- fraction=tloc2*ENH_UPS0-tloc;
-
- /* compute the segment (this is actually a convolution) */
-
- mycorr1(seg,vect,ENH_VECTL,polyphaserTbl+(2*ENH_FL0+1)*fraction,
- 2*ENH_FL0+1);
-}
-
-/*----------------------------------------------------------------*
- * find the smoothed output data
- *---------------------------------------------------------------*/
-
-static void smath(
- float *odata, /* (o) smoothed output */
- float *sseq,/* (i) said second sequence of waveforms */
- int hl, /* (i) 2*hl+1 is sseq dimension */
- float alpha0/* (i) max smoothing energy fraction */
-){
- int i,k;
- float w00,w10,w11,A,B,C,*psseq,err,errs;
- float surround[BLOCKL]; /* shape contributed by other than
- current */
- float wt[2*ENH_HL+1]; /* waveform weighting to get surround
- shape */
- float denom;
-
- /* create shape of contribution from all waveforms except the
- current one */
-
- for(i=1;i<=2*hl+1; i++) {
- wt[i-1] = (float)0.5*(1 - (float)cos(2*PI*i/(2*hl+2)));
- }
- wt[hl]=0.0; /* for clarity, not used */
- for(i=0;i<ENH_BLOCKL; i++) {
- surround[i]=sseq[i]*wt[0];
- }
- for(k=1;k<hl; k++){
- psseq=sseq+k*ENH_BLOCKL;
- for(i=0;i<ENH_BLOCKL; i++) {
- surround[i]+=psseq[i]*wt[k];
- }
- }
- for(k=hl+1;k<=2*hl; k++){
- psseq=sseq+k*ENH_BLOCKL;
- for(i=0;i<ENH_BLOCKL; i++) {
- surround[i]+=psseq[i]*wt[k];
- }
- }
-
- /* compute some inner products */
-
- w00 = w10 = w11 = 0.0;
- psseq=sseq+hl*ENH_BLOCKL; /* current block */
- for(i=0;i<ENH_BLOCKL;i++) {
- w00+=psseq[i]*psseq[i];
- w11+=surround[i]*surround[i];
- w10+=surround[i]*psseq[i];
- }
-
- if( fabs(w11) < 1.0) {
- w11=1.0;
- }
- C = (float)sqrt( w00/w11);
-
- /* first try enhancement without power-constraint */
-
- errs=0.0;
- psseq=sseq+hl*ENH_BLOCKL;
- for(i=0;i<ENH_BLOCKL;i++) {
- odata[i]=C*surround[i];
- err=psseq[i]-odata[i];
- errs+=err*err;
- }
-
- /* if constraint violated by first try, add constraint */
-
- if( errs > alpha0 * w00){
- if( w00 < 1) {
- w00=1;
- }
- denom = (w11*w00-w10*w10)/(w00*w00);
-
- if( denom > 0.0001){ /* eliminates numerical problems
- for if smooth */
- A = (float)sqrt( (alpha0- alpha0*alpha0/4)/denom);
- B = -alpha0/2 - A * w10/w00;
- B = B+1;
- }
- else{ /* essentially no difference between cycles;
- smoothing not needed */
- A= 0.0;
- B= 1.0;
- }
-
- /* create smoothed sequence */
-
- psseq=sseq+hl*ENH_BLOCKL;
- for(i=0;i<ENH_BLOCKL;i++) {
- odata[i]=A*surround[i]+B*psseq[i];
- }
- }
-}
-
-/*----------------------------------------------------------------*
- * get the pitch-synchronous sample sequence
- *---------------------------------------------------------------*/
-
-static void getsseq(
- float *sseq, /* (o) the pitch-synchronous sequence */
- float *idata, /* (i) original data */
- int idatal, /* (i) dimension of data */
- int centerStartPos, /* (i) where current block starts */
- float *period, /* (i) rough-pitch-period array */
- float *plocs, /* (i) where periods of period array
- are taken */
- int periodl, /* (i) dimension period array */
- int hl /* (i)( 2*hl+1 is the number of sequences */
-){
- int i,centerEndPos,q;
- float blockStartPos[2*ENH_HL+1];
- int lagBlock[2*ENH_HL+1];
- float plocs2[ENH_PLOCSL];
- float *psseq;
-
- centerEndPos=centerStartPos+ENH_BLOCKL-1;
-
- /* present */
-
- NearestNeighbor(lagBlock+hl,plocs,
- (float)0.5*(centerStartPos+centerEndPos),periodl);
-
- blockStartPos[hl]=(float)centerStartPos;
- psseq=sseq+ENH_BLOCKL*hl;
- memcpy(psseq, idata+centerStartPos, ENH_BLOCKL*sizeof(float));
-
- /* past */
-
- for(q=hl-1;q>=0;q--) {
- blockStartPos[q]=blockStartPos[q+1]-period[lagBlock[q+1]];
- NearestNeighbor(lagBlock+q,plocs,
- blockStartPos[q]+ENH_BLOCKL_HALF-period[lagBlock[q+1]],
- periodl);
-
-
- if(blockStartPos[q]-ENH_OVERHANG>=0) {
- refiner(sseq+q*ENH_BLOCKL,blockStartPos+q,idata,idatal,
- centerStartPos,blockStartPos[q],
- period[lagBlock[q+1]]);
- } else {
-
- psseq=sseq+q*ENH_BLOCKL;
- memset(psseq, 0, ENH_BLOCKL*sizeof(float));
- }
- }
-
- /* future */
-
- for(i=0;i<periodl;i++) {
- plocs2[i]=plocs[i]-period[i];
- }
- for(q=hl+1;q<=2*hl;q++) {
- NearestNeighbor(lagBlock+q,plocs2,
- blockStartPos[q-1]+ENH_BLOCKL_HALF,periodl);
-
- blockStartPos[q]=blockStartPos[q-1]+period[lagBlock[q]];
- if( blockStartPos[q]+ENH_BLOCKL+ENH_OVERHANG<idatal) {
-
- refiner(sseq+ENH_BLOCKL*q,blockStartPos+q,idata,idatal,
- centerStartPos,blockStartPos[q],period[lagBlock[q]]);
-
- }
- else {
- psseq=sseq+q*ENH_BLOCKL;
- memset(psseq, 0, ENH_BLOCKL*sizeof(float));
- }
- }
-}
-
-/*----------------------------------------------------------------*
- * perform enhancement on idata+centerStartPos through
- * idata+centerStartPos+ENH_BLOCKL-1
- *---------------------------------------------------------------*/
-
-static void enhancer(
- float *odata, /* (o) smoothed block, dimension blockl */
- float *idata, /* (i) data buffer used for enhancing */
- int idatal, /* (i) dimension idata */
- int centerStartPos, /* (i) first sample current block
- within idata */
- float alpha0, /* (i) max correction-energy-fraction
- (in [0,1]) */
- float *period, /* (i) pitch period array */
- float *plocs, /* (i) locations where period array
- values valid */
- int periodl /* (i) dimension of period and plocs */
-){
- float sseq[(2*ENH_HL+1)*ENH_BLOCKL];
-
- /* get said second sequence of segments */
-
- getsseq(sseq,idata,idatal,centerStartPos,period,
- plocs,periodl,ENH_HL);
-
- /* compute the smoothed output from said second sequence */
-
- smath(odata,sseq,ENH_HL,alpha0);
-
-}
-
-/*----------------------------------------------------------------*
- * cross correlation
- *---------------------------------------------------------------*/
-
-float xCorrCoef(
- float *target, /* (i) first array */
- float *regressor, /* (i) second array */
- int subl /* (i) dimension arrays */
-){
- int i;
- float ftmp1, ftmp2;
-
- ftmp1 = 0.0;
- ftmp2 = 0.0;
- for (i=0; i<subl; i++) {
- ftmp1 += target[i]*regressor[i];
- ftmp2 += regressor[i]*regressor[i];
- }
-
- if (ftmp1 > 0.0) {
- return (float)(ftmp1*ftmp1/ftmp2);
- }
- else {
- return (float)0.0;
- }
-}
-
-/*----------------------------------------------------------------*
- * interface for enhancer
- *---------------------------------------------------------------*/
-
-int enhancerInterface(
- float *out, /* (o) enhanced signal */
- float *in, /* (i) unenhanced signal */
- iLBC_Dec_Inst_t *iLBCdec_inst /* (i) buffers etc */
-){
- float *enh_buf, *enh_period;
- int iblock, isample;
- int lag, ilag, i;
- float cc, maxcc;
- float ftmp1, ftmp2, gain;
- float *inPtr, *enh_bufPtr1, *enh_bufPtr2;
-
- float lpState[6], downsampled[(ENH_NBLOCKS*ENH_BLOCKL+120)/2];
- int inLen=ENH_NBLOCKS*ENH_BLOCKL+120;
- int start;
-
- enh_buf=iLBCdec_inst->enh_buf;
- enh_period=iLBCdec_inst->enh_period;
-
-
- memmove(enh_buf, &enh_buf[ENH_NBLOCKS*ENH_BLOCKL],
- (ENH_NBLOCKS_EXTRA*ENH_BLOCKL)*sizeof(float));
-
- memcpy(&enh_buf[ENH_NBLOCKS_EXTRA*ENH_BLOCKL], in,
- (ENH_NBLOCKS*ENH_BLOCKL)*sizeof(float));
-
- if (iLBCdec_inst->prev_enh_pl==1) {
- /* PLC was performed on the previous packet */
-
- lag = 20;
- maxcc = xCorrCoef(in, in+lag, ENH_BLOCKL);
- for (ilag=21; ilag<120; ilag++) {
- cc = xCorrCoef(in, in+ilag, ENH_BLOCKL);
-
- if (cc > maxcc) {
- maxcc = cc;
- lag = ilag;
- }
- }
-
- ftmp1 = 0.0;
- ftmp2 = 0.0;
- for (i=0; i<ENH_BLOCKL; i++) {
- ftmp1 += in[i]*in[i+lag];
- ftmp2 += in[i+lag]*in[i+lag];
- }
-
- if (ftmp1 > 0.0) {
- gain=(float)(ftmp1/ftmp2);
- }
- else {
- gain=(float)0.0;
- }
- if (gain>1.0) {
- gain=1.0;
- } else if (gain<-1.0) {
- gain=-1.0;
- }
-
- inPtr=&in[lag-1];
-
- enh_bufPtr1=&enh_buf[ENH_NBLOCKS_EXTRA*ENH_BLOCKL-1];
-
- if (lag>ENH_BLOCKL) {
- start=ENH_BLOCKL;
- } else {
- start=lag;
- }
-
- for (isample = start; isample>0; isample--) {
- *enh_bufPtr1-- = gain*(*inPtr--);
- }
-
- enh_bufPtr2=&enh_buf[ENH_NBLOCKS_EXTRA*ENH_BLOCKL-1];
- for (isample = (ENH_BLOCKL-1-lag); isample>=0; isample--) {
- *enh_bufPtr1-- = gain*(*enh_bufPtr2--);
- }
-
- }
-
- memmove(enh_period, &enh_period[ENH_NBLOCKS],
- ENH_NBLOCKS_EXTRA*sizeof(float));
-
-
- /* Set state information to the 6 samples right before
- the samples to be downsampled. */
-
- memcpy(lpState, enh_buf+ENH_NBLOCKS_EXTRA*ENH_BLOCKL-126,
- 6*sizeof(float));
-
- /* Down sample a factor 2 to save computations */
-
- DownSample(enh_buf+ENH_NBLOCKS_EXTRA*ENH_BLOCKL-120,
- lpFilt_coefsTbl, inLen,
- lpState, downsampled);
-
- /* Estimate the pitch in the down sampled domain. */
- for(iblock = 0; iblock<ENH_NBLOCKS; iblock++){
-
- lag = 10;
- maxcc = xCorrCoef(downsampled+60+iblock*
- ENH_BLOCKL_HALF, downsampled+60+iblock*
- ENH_BLOCKL_HALF-lag, ENH_BLOCKL_HALF);
- for (ilag=11; ilag<60; ilag++) {
- cc = xCorrCoef(downsampled+60+iblock*
- ENH_BLOCKL_HALF, downsampled+60+iblock*
- ENH_BLOCKL_HALF-ilag, ENH_BLOCKL_HALF);
-
- if (cc > maxcc) {
- maxcc = cc;
- lag = ilag;
- }
- }
-
- /* Store the estimated lag in the non-downsampled domain */
- enh_period[iblock+ENH_NBLOCKS_EXTRA] = (float)lag*2;
- }
-
- for(iblock = 0; iblock<ENH_NBLOCKS; iblock++){
-
- enhancer(out+iblock*ENH_BLOCKL, enh_buf,
- ENH_BUFL, (4+iblock)*ENH_BLOCKL,
- ENH_ALPHA0, enh_period, enh_plocsTbl,
- ENH_NBLOCKS_TOT);
-
- }
- return (lag*2);
-}
-
-
+
+/******************************************************************
+
+ iLBC Speech Coder ANSI-C Source Code
+
+ enhancer.c
+
+ Copyright (C) The Internet Society (2004).
+ All Rights Reserved.
+
+******************************************************************/
+
+#include <math.h>
+#include <string.h>
+#include "iLBC_define.h"
+#include "constants.h"
+#include "filter.h"
+
+/*----------------------------------------------------------------*
+
+
+ * Find index in array such that the array element with said
+ * index is the element of said array closest to "value"
+ * according to the squared-error criterion
+ *---------------------------------------------------------------*/
+
+void NearestNeighbor(
+ int *index, /* (o) index of array element closest
+ to value */
+ float *array, /* (i) data array */
+ float value,/* (i) value */
+ int arlength/* (i) dimension of data array */
+){
+ int i;
+ float bestcrit,crit;
+
+ crit=array[0]-value;
+ bestcrit=crit*crit;
+ *index=0;
+ for (i=1; i<arlength; i++) {
+ crit=array[i]-value;
+ crit=crit*crit;
+
+ if (crit<bestcrit) {
+ bestcrit=crit;
+ *index=i;
+ }
+ }
+}
+
+/*----------------------------------------------------------------*
+ * compute cross correlation between sequences
+ *---------------------------------------------------------------*/
+
+void mycorr1(
+ float* corr, /* (o) correlation of seq1 and seq2 */
+ float* seq1, /* (i) first sequence */
+ int dim1, /* (i) dimension first seq1 */
+ const float *seq2, /* (i) second sequence */
+ int dim2 /* (i) dimension seq2 */
+){
+ int i,j;
+
+ for (i=0; i<=dim1-dim2; i++) {
+ corr[i]=0.0;
+ for (j=0; j<dim2; j++) {
+ corr[i] += seq1[i+j] * seq2[j];
+ }
+ }
+}
+
+/*----------------------------------------------------------------*
+ * upsample finite array assuming zeros outside bounds
+ *---------------------------------------------------------------*/
+
+
+
+void enh_upsample(
+ float* useq1, /* (o) upsampled output sequence */
+ float* seq1,/* (i) unupsampled sequence */
+ int dim1, /* (i) dimension seq1 */
+ int hfl /* (i) polyphase filter length=2*hfl+1 */
+){
+ float *pu,*ps;
+ int i,j,k,q,filterlength,hfl2;
+ const float *polyp[ENH_UPS0]; /* pointers to
+ polyphase columns */
+ const float *pp;
+
+ /* define pointers for filter */
+
+ filterlength=2*hfl+1;
+
+ if ( filterlength > dim1 ) {
+ hfl2=(int) (dim1/2);
+ for (j=0; j<ENH_UPS0; j++) {
+ polyp[j]=polyphaserTbl+j*filterlength+hfl-hfl2;
+ }
+ hfl=hfl2;
+ filterlength=2*hfl+1;
+ }
+ else {
+ for (j=0; j<ENH_UPS0; j++) {
+ polyp[j]=polyphaserTbl+j*filterlength;
+ }
+ }
+
+ /* filtering: filter overhangs left side of sequence */
+
+ pu=useq1;
+ for (i=hfl; i<filterlength; i++) {
+ for (j=0; j<ENH_UPS0; j++) {
+ *pu=0.0;
+ pp = polyp[j];
+ ps = seq1+i;
+ for (k=0; k<=i; k++) {
+ *pu += *ps-- * *pp++;
+ }
+ pu++;
+ }
+ }
+
+ /* filtering: simple convolution=inner products */
+
+ for (i=filterlength; i<dim1; i++) {
+ for (j=0;j<ENH_UPS0; j++){
+ *pu=0.0;
+ pp = polyp[j];
+ ps = seq1+i;
+ for (k=0; k<filterlength; k++) {
+ *pu += *ps-- * *pp++;
+
+
+ }
+ pu++;
+ }
+ }
+
+ /* filtering: filter overhangs right side of sequence */
+
+ for (q=1; q<=hfl; q++) {
+ for (j=0; j<ENH_UPS0; j++) {
+ *pu=0.0;
+ pp = polyp[j]+q;
+ ps = seq1+dim1-1;
+ for (k=0; k<filterlength-q; k++) {
+ *pu += *ps-- * *pp++;
+ }
+ pu++;
+ }
+ }
+}
+
+
+/*----------------------------------------------------------------*
+ * find segment starting near idata+estSegPos that has highest
+ * correlation with idata+centerStartPos through
+ * idata+centerStartPos+ENH_BLOCKL-1 segment is found at a
+ * resolution of ENH_UPSO times the original of the original
+ * sampling rate
+ *---------------------------------------------------------------*/
+
+void refiner(
+ float *seg, /* (o) segment array */
+ float *updStartPos, /* (o) updated start point */
+ float* idata, /* (i) original data buffer */
+ int idatal, /* (i) dimension of idata */
+ int centerStartPos, /* (i) beginning center segment */
+ float estSegPos,/* (i) estimated beginning other segment */
+ float period /* (i) estimated pitch period */
+){
+ int estSegPosRounded,searchSegStartPos,searchSegEndPos,corrdim;
+ int tloc,tloc2,i,st,en,fraction;
+ float vect[ENH_VECTL],corrVec[ENH_CORRDIM],maxv;
+ float corrVecUps[ENH_CORRDIM*ENH_UPS0];
+
+ /* defining array bounds */
+
+ estSegPosRounded=(int)(estSegPos - 0.5);
+
+ searchSegStartPos=estSegPosRounded-ENH_SLOP;
+
+ if (searchSegStartPos<0) {
+ searchSegStartPos=0;
+ }
+ searchSegEndPos=estSegPosRounded+ENH_SLOP;
+
+
+
+ if (searchSegEndPos+ENH_BLOCKL >= idatal) {
+ searchSegEndPos=idatal-ENH_BLOCKL-1;
+ }
+ corrdim=searchSegEndPos-searchSegStartPos+1;
+
+ /* compute upsampled correlation (corr33) and find
+ location of max */
+
+ mycorr1(corrVec,idata+searchSegStartPos,
+ corrdim+ENH_BLOCKL-1,idata+centerStartPos,ENH_BLOCKL);
+ enh_upsample(corrVecUps,corrVec,corrdim,ENH_FL0);
+ tloc=0; maxv=corrVecUps[0];
+ for (i=1; i<ENH_UPS0*corrdim; i++) {
+
+ if (corrVecUps[i]>maxv) {
+ tloc=i;
+ maxv=corrVecUps[i];
+ }
+ }
+
+ /* make vector can be upsampled without ever running outside
+ bounds */
+
+ *updStartPos= (float)searchSegStartPos +
+ (float)tloc/(float)ENH_UPS0+(float)1.0;
+ tloc2=(int)(tloc/ENH_UPS0);
+
+ if (tloc>tloc2*ENH_UPS0) {
+ tloc2++;
+ }
+ st=searchSegStartPos+tloc2-ENH_FL0;
+
+ if (st<0) {
+ memset(vect,0,-st*sizeof(float));
+ memcpy(&vect[-st],idata, (ENH_VECTL+st)*sizeof(float));
+ }
+ else {
+ en=st+ENH_VECTL;
+
+ if (en>idatal) {
+ memcpy(vect, &idata[st],
+ (ENH_VECTL-(en-idatal))*sizeof(float));
+ memset(&vect[ENH_VECTL-(en-idatal)], 0,
+ (en-idatal)*sizeof(float));
+ }
+ else {
+ memcpy(vect, &idata[st], ENH_VECTL*sizeof(float));
+ }
+ }
+ fraction=tloc2*ENH_UPS0-tloc;
+
+ /* compute the segment (this is actually a convolution) */
+
+ mycorr1(seg,vect,ENH_VECTL,polyphaserTbl+(2*ENH_FL0+1)*fraction,
+
+
+ 2*ENH_FL0+1);
+}
+
+/*----------------------------------------------------------------*
+ * find the smoothed output data
+ *---------------------------------------------------------------*/
+
+void smath(
+ float *odata, /* (o) smoothed output */
+ float *sseq,/* (i) said second sequence of waveforms */
+ int hl, /* (i) 2*hl+1 is sseq dimension */
+ float alpha0/* (i) max smoothing energy fraction */
+){
+ int i,k;
+ float w00,w10,w11,A,B,C,*psseq,err,errs;
+ float surround[BLOCKL_MAX]; /* shape contributed by other than
+ current */
+ float wt[2*ENH_HL+1]; /* waveform weighting to get
+ surround shape */
+ float denom;
+
+ /* create shape of contribution from all waveforms except the
+ current one */
+
+ for (i=1; i<=2*hl+1; i++) {
+ wt[i-1] = (float)0.5*(1 - (float)cos(2*PI*i/(2*hl+2)));
+ }
+ wt[hl]=0.0; /* for clarity, not used */
+ for (i=0; i<ENH_BLOCKL; i++) {
+ surround[i]=sseq[i]*wt[0];
+ }
+ for (k=1; k<hl; k++) {
+ psseq=sseq+k*ENH_BLOCKL;
+ for(i=0;i<ENH_BLOCKL; i++) {
+ surround[i]+=psseq[i]*wt[k];
+ }
+ }
+ for (k=hl+1; k<=2*hl; k++) {
+ psseq=sseq+k*ENH_BLOCKL;
+ for(i=0;i<ENH_BLOCKL; i++) {
+ surround[i]+=psseq[i]*wt[k];
+ }
+ }
+
+ /* compute some inner products */
+
+ w00 = w10 = w11 = 0.0;
+ psseq=sseq+hl*ENH_BLOCKL; /* current block */
+ for (i=0; i<ENH_BLOCKL;i++) {
+ w00+=psseq[i]*psseq[i];
+ w11+=surround[i]*surround[i];
+ w10+=surround[i]*psseq[i];
+ }
+
+
+
+ if (fabs(w11) < 1.0) {
+ w11=1.0;
+ }
+ C = (float)sqrt( w00/w11);
+
+ /* first try enhancement without power-constraint */
+
+ errs=0.0;
+ psseq=sseq+hl*ENH_BLOCKL;
+ for (i=0; i<ENH_BLOCKL; i++) {
+ odata[i]=C*surround[i];
+ err=psseq[i]-odata[i];
+ errs+=err*err;
+ }
+
+ /* if constraint violated by first try, add constraint */
+
+ if (errs > alpha0 * w00) {
+ if ( w00 < 1) {
+ w00=1;
+ }
+ denom = (w11*w00-w10*w10)/(w00*w00);
+
+ if (denom > 0.0001) { /* eliminates numerical problems
+ for if smooth */
+ A = (float)sqrt( (alpha0- alpha0*alpha0/4)/denom);
+ B = -alpha0/2 - A * w10/w00;
+ B = B+1;
+ }
+ else { /* essentially no difference between cycles;
+ smoothing not needed */
+ A= 0.0;
+ B= 1.0;
+ }
+
+ /* create smoothed sequence */
+
+ psseq=sseq+hl*ENH_BLOCKL;
+ for (i=0; i<ENH_BLOCKL; i++) {
+ odata[i]=A*surround[i]+B*psseq[i];
+ }
+ }
+}
+
+/*----------------------------------------------------------------*
+ * get the pitch-synchronous sample sequence
+ *---------------------------------------------------------------*/
+
+void getsseq(
+ float *sseq, /* (o) the pitch-synchronous sequence */
+ float *idata, /* (i) original data */
+ int idatal, /* (i) dimension of data */
+ int centerStartPos, /* (i) where current block starts */
+ float *period, /* (i) rough-pitch-period array */
+
+
+ float *plocs, /* (i) where periods of period array
+ are taken */
+ int periodl, /* (i) dimension period array */
+ int hl /* (i) 2*hl+1 is the number of sequences */
+){
+ int i,centerEndPos,q;
+ float blockStartPos[2*ENH_HL+1];
+ int lagBlock[2*ENH_HL+1];
+ float plocs2[ENH_PLOCSL];
+ float *psseq;
+
+ centerEndPos=centerStartPos+ENH_BLOCKL-1;
+
+ /* present */
+
+ NearestNeighbor(lagBlock+hl,plocs,
+ (float)0.5*(centerStartPos+centerEndPos),periodl);
+
+ blockStartPos[hl]=(float)centerStartPos;
+ psseq=sseq+ENH_BLOCKL*hl;
+ memcpy(psseq, idata+centerStartPos, ENH_BLOCKL*sizeof(float));
+
+ /* past */
+
+ for (q=hl-1; q>=0; q--) {
+ blockStartPos[q]=blockStartPos[q+1]-period[lagBlock[q+1]];
+ NearestNeighbor(lagBlock+q,plocs,
+ blockStartPos[q]+
+ ENH_BLOCKL_HALF-period[lagBlock[q+1]], periodl);
+
+
+ if (blockStartPos[q]-ENH_OVERHANG>=0) {
+ refiner(sseq+q*ENH_BLOCKL, blockStartPos+q, idata,
+ idatal, centerStartPos, blockStartPos[q],
+ period[lagBlock[q+1]]);
+ } else {
+ psseq=sseq+q*ENH_BLOCKL;
+ memset(psseq, 0, ENH_BLOCKL*sizeof(float));
+ }
+ }
+
+ /* future */
+
+ for (i=0; i<periodl; i++) {
+ plocs2[i]=plocs[i]-period[i];
+ }
+ for (q=hl+1; q<=2*hl; q++) {
+ NearestNeighbor(lagBlock+q,plocs2,
+ blockStartPos[q-1]+ENH_BLOCKL_HALF,periodl);
+
+ blockStartPos[q]=blockStartPos[q-1]+period[lagBlock[q]];
+ if (blockStartPos[q]+ENH_BLOCKL+ENH_OVERHANG<idatal) {
+ refiner(sseq+ENH_BLOCKL*q, blockStartPos+q, idata,
+ idatal, centerStartPos, blockStartPos[q],
+
+
+ period[lagBlock[q]]);
+ }
+ else {
+ psseq=sseq+q*ENH_BLOCKL;
+ memset(psseq, 0, ENH_BLOCKL*sizeof(float));
+ }
+ }
+}
+
+/*----------------------------------------------------------------*
+ * perform enhancement on idata+centerStartPos through
+ * idata+centerStartPos+ENH_BLOCKL-1
+ *---------------------------------------------------------------*/
+
+void enhancer(
+ float *odata, /* (o) smoothed block, dimension blockl */
+ float *idata, /* (i) data buffer used for enhancing */
+ int idatal, /* (i) dimension idata */
+ int centerStartPos, /* (i) first sample current block
+ within idata */
+ float alpha0, /* (i) max correction-energy-fraction
+ (in [0,1]) */
+ float *period, /* (i) pitch period array */
+ float *plocs, /* (i) locations where period array
+ values valid */
+ int periodl /* (i) dimension of period and plocs */
+){
+ float sseq[(2*ENH_HL+1)*ENH_BLOCKL];
+
+ /* get said second sequence of segments */
+
+ getsseq(sseq,idata,idatal,centerStartPos,period,
+ plocs,periodl,ENH_HL);
+
+ /* compute the smoothed output from said second sequence */
+
+ smath(odata,sseq,ENH_HL,alpha0);
+
+}
+
+/*----------------------------------------------------------------*
+ * cross correlation
+ *---------------------------------------------------------------*/
+
+float xCorrCoef(
+ float *target, /* (i) first array */
+ float *regressor, /* (i) second array */
+ int subl /* (i) dimension arrays */
+){
+ int i;
+ float ftmp1, ftmp2;
+
+ ftmp1 = 0.0;
+ ftmp2 = 0.0;
+
+
+ for (i=0; i<subl; i++) {
+ ftmp1 += target[i]*regressor[i];
+ ftmp2 += regressor[i]*regressor[i];
+ }
+
+ if (ftmp1 > 0.0) {
+ return (float)(ftmp1*ftmp1/ftmp2);
+ }
+ else {
+ return (float)0.0;
+ }
+}
+
+/*----------------------------------------------------------------*
+ * interface for enhancer
+ *---------------------------------------------------------------*/
+
+int enhancerInterface(
+ float *out, /* (o) enhanced signal */
+ float *in, /* (i) unenhanced signal */
+ iLBC_Dec_Inst_t *iLBCdec_inst /* (i) buffers etc */
+){
+ float *enh_buf, *enh_period;
+ int iblock, isample;
+ int lag=0, ilag, i, ioffset;
+ float cc, maxcc;
+ float ftmp1, ftmp2;
+ float *inPtr, *enh_bufPtr1, *enh_bufPtr2;
+ float plc_pred[ENH_BLOCKL];
+
+ float lpState[6], downsampled[(ENH_NBLOCKS*ENH_BLOCKL+120)/2];
+ int inLen=ENH_NBLOCKS*ENH_BLOCKL+120;
+ int start, plc_blockl, inlag;
+
+ enh_buf=iLBCdec_inst->enh_buf;
+ enh_period=iLBCdec_inst->enh_period;
+
+ memmove(enh_buf, &enh_buf[iLBCdec_inst->blockl],
+ (ENH_BUFL-iLBCdec_inst->blockl)*sizeof(float));
+
+ memcpy(&enh_buf[ENH_BUFL-iLBCdec_inst->blockl], in,
+ iLBCdec_inst->blockl*sizeof(float));
+
+ if (iLBCdec_inst->mode==30)
+ plc_blockl=ENH_BLOCKL;
+ else
+ plc_blockl=40;
+
+ /* when 20 ms frame, move processing one block */
+ ioffset=0;
+ if (iLBCdec_inst->mode==20) ioffset=1;
+
+ i=3-ioffset;
+ memmove(enh_period, &enh_period[i],
+
+
+ (ENH_NBLOCKS_TOT-i)*sizeof(float));
+
+ /* Set state information to the 6 samples right before
+ the samples to be downsampled. */
+
+ memcpy(lpState,
+ enh_buf+(ENH_NBLOCKS_EXTRA+ioffset)*ENH_BLOCKL-126,
+ 6*sizeof(float));
+
+ /* Down sample a factor 2 to save computations */
+
+ DownSample(enh_buf+(ENH_NBLOCKS_EXTRA+ioffset)*ENH_BLOCKL-120,
+ lpFilt_coefsTbl, inLen-ioffset*ENH_BLOCKL,
+ lpState, downsampled);
+
+ /* Estimate the pitch in the down sampled domain. */
+ for (iblock = 0; iblock<ENH_NBLOCKS-ioffset; iblock++) {
+
+ lag = 10;
+ maxcc = xCorrCoef(downsampled+60+iblock*
+ ENH_BLOCKL_HALF, downsampled+60+iblock*
+ ENH_BLOCKL_HALF-lag, ENH_BLOCKL_HALF);
+ for (ilag=11; ilag<60; ilag++) {
+ cc = xCorrCoef(downsampled+60+iblock*
+ ENH_BLOCKL_HALF, downsampled+60+iblock*
+ ENH_BLOCKL_HALF-ilag, ENH_BLOCKL_HALF);
+
+ if (cc > maxcc) {
+ maxcc = cc;
+ lag = ilag;
+ }
+ }
+
+ /* Store the estimated lag in the non-downsampled domain */
+ enh_period[iblock+ENH_NBLOCKS_EXTRA+ioffset] = (float)lag*2;
+
+
+ }
+
+
+ /* PLC was performed on the previous packet */
+ if (iLBCdec_inst->prev_enh_pl==1) {
+
+ inlag=(int)enh_period[ENH_NBLOCKS_EXTRA+ioffset];
+
+ lag = inlag-1;
+ maxcc = xCorrCoef(in, in+lag, plc_blockl);
+ for (ilag=inlag; ilag<=inlag+1; ilag++) {
+ cc = xCorrCoef(in, in+ilag, plc_blockl);
+
+ if (cc > maxcc) {
+ maxcc = cc;
+ lag = ilag;
+ }
+ }
+
+
+
+ enh_period[ENH_NBLOCKS_EXTRA+ioffset-1]=(float)lag;
+
+ /* compute new concealed residual for the old lookahead,
+ mix the forward PLC with a backward PLC from
+ the new frame */
+
+ inPtr=&in[lag-1];
+
+ enh_bufPtr1=&plc_pred[plc_blockl-1];
+
+ if (lag>plc_blockl) {
+ start=plc_blockl;
+ } else {
+ start=lag;
+ }
+
+ for (isample = start; isample>0; isample--) {
+ *enh_bufPtr1-- = *inPtr--;
+ }
+
+ enh_bufPtr2=&enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl];
+ for (isample = (plc_blockl-1-lag); isample>=0; isample--)
+{
+ *enh_bufPtr1-- = *enh_bufPtr2--;
+ }
+
+ /* limit energy change */
+ ftmp2=0.0;
+ ftmp1=0.0;
+ for (i=0;i<plc_blockl;i++) {
+ ftmp2+=enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl-i]*
+ enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl-i];
+ ftmp1+=plc_pred[i]*plc_pred[i];
+ }
+ ftmp1=(float)sqrt(ftmp1/(float)plc_blockl);
+ ftmp2=(float)sqrt(ftmp2/(float)plc_blockl);
+ if (ftmp1>(float)2.0*ftmp2 && ftmp1>0.0) {
+ for (i=0;i<plc_blockl-10;i++) {
+ plc_pred[i]*=(float)2.0*ftmp2/ftmp1;
+ }
+ for (i=plc_blockl-10;i<plc_blockl;i++) {
+ plc_pred[i]*=(float)(i-plc_blockl+10)*
+ ((float)1.0-(float)2.0*ftmp2/ftmp1)/(float)(10)+
+ (float)2.0*ftmp2/ftmp1;
+ }
+ }
+
+ enh_bufPtr1=&enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl];
+ for (i=0; i<plc_blockl; i++) {
+ ftmp1 = (float) (i+1) / (float) (plc_blockl+1);
+ *enh_bufPtr1 *= ftmp1;
+ *enh_bufPtr1 += ((float)1.0-ftmp1)*
+ plc_pred[plc_blockl-1-i];
+ enh_bufPtr1--;
+ }
+
+
+ }
+
+ if (iLBCdec_inst->mode==20) {
+ /* Enhancer with 40 samples delay */
+ for (iblock = 0; iblock<2; iblock++) {
+ enhancer(out+iblock*ENH_BLOCKL, enh_buf,
+ ENH_BUFL, (5+iblock)*ENH_BLOCKL+40,
+ ENH_ALPHA0, enh_period, enh_plocsTbl,
+ ENH_NBLOCKS_TOT);
+ }
+ } else if (iLBCdec_inst->mode==30) {
+ /* Enhancer with 80 samples delay */
+ for (iblock = 0; iblock<3; iblock++) {
+ enhancer(out+iblock*ENH_BLOCKL, enh_buf,
+ ENH_BUFL, (4+iblock)*ENH_BLOCKL,
+ ENH_ALPHA0, enh_period, enh_plocsTbl,
+ ENH_NBLOCKS_TOT);
+ }
+ }
+
+ return (lag*2);
+}
+
+