summaryrefslogtreecommitdiff
path: root/third_party/milenage/milenage.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/milenage/milenage.c')
-rw-r--r--third_party/milenage/milenage.c284
1 files changed, 284 insertions, 0 deletions
diff --git a/third_party/milenage/milenage.c b/third_party/milenage/milenage.c
new file mode 100644
index 00000000..66dae9bb
--- /dev/null
+++ b/third_party/milenage/milenage.c
@@ -0,0 +1,284 @@
+/*-------------------------------------------------------------------
+ * Example algorithms f1, f1*, f2, f3, f4, f5, f5*
+ *-------------------------------------------------------------------
+ *
+ * A sample implementation of the example 3GPP authentication and
+ * key agreement functions f1, f1*, f2, f3, f4, f5 and f5*. This is
+ * a byte-oriented implementation of the functions, and of the block
+ * cipher kernel function Rijndael.
+ *
+ * This has been coded for clarity, not necessarily for efficiency.
+ *
+ * The functions f2, f3, f4 and f5 share the same inputs and have
+ * been coded together as a single function. f1, f1* and f5* are
+ * all coded separately.
+ *
+ *-----------------------------------------------------------------*/
+
+#include "milenage.h"
+#include "rijndael.h"
+
+/*--------------------------- prototypes --------------------------*/
+
+
+
+/*-------------------------------------------------------------------
+ * Algorithm f1
+ *-------------------------------------------------------------------
+ *
+ * Computes network authentication code MAC-A from key K, random
+ * challenge RAND, sequence number SQN and authentication management
+ * field AMF.
+ *
+ *-----------------------------------------------------------------*/
+
+void f1 ( u8 k[16], u8 rand[16], u8 sqn[6], u8 amf[2],
+ u8 mac_a[8], u8 op[16] )
+{
+ u8 op_c[16];
+ u8 temp[16];
+ u8 in1[16];
+ u8 out1[16];
+ u8 rijndaelInput[16];
+ u8 i;
+
+ RijndaelKeySchedule( k );
+
+ ComputeOPc( op_c, op );
+
+ for (i=0; i<16; i++)
+ rijndaelInput[i] = rand[i] ^ op_c[i];
+ RijndaelEncrypt( rijndaelInput, temp );
+
+ for (i=0; i<6; i++)
+ {
+ in1[i] = sqn[i];
+ in1[i+8] = sqn[i];
+ }
+ for (i=0; i<2; i++)
+ {
+ in1[i+6] = amf[i];
+ in1[i+14] = amf[i];
+ }
+
+ /* XOR op_c and in1, rotate by r1=64, and XOR *
+ * on the constant c1 (which is all zeroes) */
+
+ for (i=0; i<16; i++)
+ rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i];
+
+ /* XOR on the value temp computed before */
+
+ for (i=0; i<16; i++)
+ rijndaelInput[i] ^= temp[i];
+
+ RijndaelEncrypt( rijndaelInput, out1 );
+ for (i=0; i<16; i++)
+ out1[i] ^= op_c[i];
+
+ for (i=0; i<8; i++)
+ mac_a[i] = out1[i];
+
+ return;
+} /* end of function f1 */
+
+
+
+/*-------------------------------------------------------------------
+ * Algorithms f2-f5
+ *-------------------------------------------------------------------
+ *
+ * Takes key K and random challenge RAND, and returns response RES,
+ * confidentiality key CK, integrity key IK and anonymity key AK.
+ *
+ *-----------------------------------------------------------------*/
+
+void f2345 ( u8 k[16], u8 rand[16],
+ u8 res[8], u8 ck[16], u8 ik[16], u8 ak[6], u8 op[16] )
+{
+ u8 op_c[16];
+ u8 temp[16];
+ u8 out[16];
+ u8 rijndaelInput[16];
+ u8 i;
+
+ RijndaelKeySchedule( k );
+
+ ComputeOPc( op_c, op );
+
+ for (i=0; i<16; i++)
+ rijndaelInput[i] = rand[i] ^ op_c[i];
+ RijndaelEncrypt( rijndaelInput, temp );
+
+ /* To obtain output block OUT2: XOR OPc and TEMP, *
+ * rotate by r2=0, and XOR on the constant c2 (which *
+ * is all zeroes except that the last bit is 1). */
+
+ for (i=0; i<16; i++)
+ rijndaelInput[i] = temp[i] ^ op_c[i];
+ rijndaelInput[15] ^= 1;
+
+ RijndaelEncrypt( rijndaelInput, out );
+ for (i=0; i<16; i++)
+ out[i] ^= op_c[i];
+
+ for (i=0; i<8; i++)
+ res[i] = out[i+8];
+ for (i=0; i<6; i++)
+ ak[i] = out[i];
+
+ /* To obtain output block OUT3: XOR OPc and TEMP, *
+ * rotate by r3=32, and XOR on the constant c3 (which *
+ * is all zeroes except that the next to last bit is 1). */
+
+ for (i=0; i<16; i++)
+ rijndaelInput[(i+12) % 16] = temp[i] ^ op_c[i];
+ rijndaelInput[15] ^= 2;
+
+ RijndaelEncrypt( rijndaelInput, out );
+ for (i=0; i<16; i++)
+ out[i] ^= op_c[i];
+
+ for (i=0; i<16; i++)
+ ck[i] = out[i];
+
+ /* To obtain output block OUT4: XOR OPc and TEMP, *
+ * rotate by r4=64, and XOR on the constant c4 (which *
+ * is all zeroes except that the 2nd from last bit is 1). */
+
+ for (i=0; i<16; i++)
+ rijndaelInput[(i+8) % 16] = temp[i] ^ op_c[i];
+ rijndaelInput[15] ^= 4;
+
+ RijndaelEncrypt( rijndaelInput, out );
+ for (i=0; i<16; i++)
+ out[i] ^= op_c[i];
+
+ for (i=0; i<16; i++)
+ ik[i] = out[i];
+
+ return;
+} /* end of function f2345 */
+
+
+/*-------------------------------------------------------------------
+ * Algorithm f1*
+ *-------------------------------------------------------------------
+ *
+ * Computes resynch authentication code MAC-S from key K, random
+ * challenge RAND, sequence number SQN and authentication management
+ * field AMF.
+ *
+ *-----------------------------------------------------------------*/
+
+void f1star( u8 k[16], u8 rand[16], u8 sqn[6], u8 amf[2],
+ u8 mac_s[8], u8 op[16] )
+{
+ u8 op_c[16];
+ u8 temp[16];
+ u8 in1[16];
+ u8 out1[16];
+ u8 rijndaelInput[16];
+ u8 i;
+
+ RijndaelKeySchedule( k );
+
+ ComputeOPc( op_c, op );
+
+ for (i=0; i<16; i++)
+ rijndaelInput[i] = rand[i] ^ op_c[i];
+ RijndaelEncrypt( rijndaelInput, temp );
+
+ for (i=0; i<6; i++)
+ {
+ in1[i] = sqn[i];
+ in1[i+8] = sqn[i];
+ }
+ for (i=0; i<2; i++)
+ {
+ in1[i+6] = amf[i];
+ in1[i+14] = amf[i];
+ }
+
+ /* XOR op_c and in1, rotate by r1=64, and XOR *
+ * on the constant c1 (which is all zeroes) */
+
+ for (i=0; i<16; i++)
+ rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i];
+
+ /* XOR on the value temp computed before */
+
+ for (i=0; i<16; i++)
+ rijndaelInput[i] ^= temp[i];
+
+ RijndaelEncrypt( rijndaelInput, out1 );
+ for (i=0; i<16; i++)
+ out1[i] ^= op_c[i];
+
+ for (i=0; i<8; i++)
+ mac_s[i] = out1[i+8];
+
+ return;
+} /* end of function f1star */
+
+
+/*-------------------------------------------------------------------
+ * Algorithm f5*
+ *-------------------------------------------------------------------
+ *
+ * Takes key K and random challenge RAND, and returns resynch
+ * anonymity key AK.
+ *
+ *-----------------------------------------------------------------*/
+
+void f5star( u8 k[16], u8 rand[16],
+ u8 ak[6], u8 op[16] )
+{
+ u8 op_c[16];
+ u8 temp[16];
+ u8 out[16];
+ u8 rijndaelInput[16];
+ u8 i;
+
+ RijndaelKeySchedule( k );
+
+ ComputeOPc( op_c, op );
+
+ for (i=0; i<16; i++)
+ rijndaelInput[i] = rand[i] ^ op_c[i];
+ RijndaelEncrypt( rijndaelInput, temp );
+
+ /* To obtain output block OUT5: XOR OPc and TEMP, *
+ * rotate by r5=96, and XOR on the constant c5 (which *
+ * is all zeroes except that the 3rd from last bit is 1). */
+
+ for (i=0; i<16; i++)
+ rijndaelInput[(i+4) % 16] = temp[i] ^ op_c[i];
+ rijndaelInput[15] ^= 8;
+
+ RijndaelEncrypt( rijndaelInput, out );
+ for (i=0; i<16; i++)
+ out[i] ^= op_c[i];
+
+ for (i=0; i<6; i++)
+ ak[i] = out[i];
+
+ return;
+} /* end of function f5star */
+
+
+/*-------------------------------------------------------------------
+ * Function to compute OPc from OP and K. Assumes key schedule has
+ already been performed.
+ *-----------------------------------------------------------------*/
+
+void ComputeOPc( u8 op_c[16], u8 op[16] )
+{
+ u8 i;
+
+ RijndaelEncrypt( op, op_c );
+ for (i=0; i<16; i++)
+ op_c[i] ^= op[i];
+
+ return;
+} /* end of function ComputeOPc */