summaryrefslogtreecommitdiff
path: root/fxotune.c
blob: 08a9e9b1da8126a285f41a1f17076b1503ee4c45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
/* 
 * fxotune.c -- A utility for tuning the various settings on the fxo
 * 		modules for the TDM400 cards.
 *
 * by Matthew Fredrickson <creslin@digium.com>
 * 
 * (C) 2004-2008 Digium, Inc.
 */

/*
 * See http://www.asterisk.org for more information about
 * the Asterisk project. Please do not directly contact
 * any of the maintainers of this project for assistance;
 * the project provides a web site, mailing lists and IRC
 * channels for your use.
 *
 * This program is free software, distributed under the terms of
 * the GNU General Public License Version 2 as published by the
 * Free Software Foundation. See the LICENSE file included with
 * this program for more details.
 */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <math.h>
#include <sys/time.h>

#include <dahdi/user.h>
#include <dahdi/wctdm_user.h>

#include "dahdi_tools_version.h"
#include "fxotune.h"

#define TEST_DURATION 2000
#define BUFFER_LENGTH (2 * TEST_DURATION)
#define SKIP_SAMPLES 800
#define SINE_SAMPLES 8000

static float sintable[SINE_SAMPLES];

static const float amplitude = 16384.0;

static char *dahdipath = "/dev/dahdi";
static char *configfile = "/etc/fxotune.conf";

static int audio_dump_fd = -1;

static int printbest = 0;

#define MAX_RESULTS 	(5)
struct result_catalog {
	int 	idx;
	float 	echo;
	float 	freqres;
	struct wctdm_echo_coefs settings;
};

struct {
	struct result_catalog results[MAX_RESULTS];
	int numactive;
}	topresults;

static char *usage =
"Usage: fxotune [-v[vv] (-s | -i <options> | -d <options>)\n"
"\n"
"	-s : set previously calibrated echo settings\n"
"	-i : calibrate echo settings\n"
"		options : [<dialstring>] [-t <calibtype>]\n"
"		[-b <startdev>][-e <stopdev>]\n"
"		[-n <dialstring>][-l <delaytosilence>][-m <silencegoodfor>]\n"
" 	-d : dump input and output waveforms to ./fxotune_dump.vals\n"
"		options : [-b <device>][-w <waveform>]\n"
"		   [-n <dialstring>][-l <delaytosilence>][-m <silencegoodfor>]\n"
"	-v : more output (-vv, -vvv also)\n"
"	-p : print the 5 best candidates for acim and coefficients settings\n"
"	-x : Perform sin/cos functions using table lookup\n"
"	-o <path> : Write the received raw 16-bit signed linear audio that is\n"
"	            used in processing to the file specified by <path>\n"
"	-c <config_file>\n"
"\n"
"		<calibtype>      - type of calibration\n"
"		                   (default 2, old method 1)\n"
"		<startdev>\n"
"		<stopdev>        - defines a range of devices to test\n"
"		                   (default: 1-252)\n"
"		<dialstring>     - string to dial to clear the line\n"
"		                   (default 5)\n"
"		<delaytosilence> - seconds to wait for line to clear (default 0)\n"
"		<silencegoodfor> - seconds before line will no longer be clear\n"
"		                   (default 18)\n"
"		<device>         - the device to perform waveform dump on\n"
"		                   (default 1)\n"
"		<waveform>       - -1 for multitone waveform, or frequency of\n"
"		                   single tone (default -1)\n"
"		<config_file>    - Alternative file to set from / calibrate to.\n"
"				   (Default: /etc/fxotune.conf)\n"
;


#define OUT_OF_BOUNDS(x) ((x) < 0 || (x) > 255)

struct silence_info{
	char *dialstr;
	/** fd of device we are working with */
	int device; 
	/** seconds we should wait after dialing the dialstring before we know for sure we'll have silence */
	int initial_delay;
	/** seconds after which a reset should occur */
	int reset_after;
	/** time of last reset */
	struct timeval last_reset; 
};

static short outbuf[TEST_DURATION];
static int debug = 0;

static FILE *debugoutfile = NULL;

static int use_table = 0;

static int fxotune_read(int fd, void *buffer, int len)
{
	int res;

	res = read(fd, buffer, len);

	if ((res > 0) && (audio_dump_fd != -1)) {
		res = write(audio_dump_fd, buffer, len);
	}

	return res;
}

/**
 * Makes sure that the line is clear.
 * Right now, we do this by relying on the user to specify how long after dialing the
 * dialstring we can rely on the line being silent (before the telco complains about
 * the user not hitting the next digit).
 * 
 * A more robust way to do this would be to actually measure the sound levels on the line,
 * but that's a lot more complicated, and this should work.
 * 
 * @return 0 if succesful (no errors), 1 if unsuccesful
 */
static int ensure_silence(struct silence_info *info)
{
	struct timeval tv;
	long int elapsedms;
	int x = DAHDI_ONHOOK;
	struct dahdi_dialoperation dop;

	gettimeofday(&tv, NULL);
	
	if (info->last_reset.tv_sec == 0) {
		/* this is the first request, we will force it to run */
		elapsedms = -1;
	} else {
		/* this is not the first request, we will compute elapsed time */
		elapsedms = ((tv.tv_sec - info->last_reset.tv_sec) * 1000L + (tv.tv_usec - info->last_reset.tv_usec) / 1000L);
	}
	if (debug > 4) {
		fprintf(stdout, "Reset line request received - elapsed ms = %li / reset after = %ld\n", elapsedms, info->reset_after * 1000L);
	}

	if (elapsedms > 0 && elapsedms < info->reset_after * 1000L)
		return 0;
	
	if (debug > 1){
		fprintf(stdout, "Resetting line\n");
	}
	
	/* do a line reset */
	/* prepare line for silence */
	/* Do line hookstate reset */

	if (ioctl(info->device, DAHDI_HOOK, &x)) {
		fprintf(stderr, "Unable to hang up fd %d\n", info->device);
		return -1;
	}

	sleep(2);
	x = DAHDI_OFFHOOK;
	if (ioctl(info->device, DAHDI_HOOK, &x)) {
		fprintf(stderr, "Cannot bring fd %d off hook\n", info->device);
		return -1;
	}
	sleep(2); /* Added to ensure that dial can actually takes place */

	memset(&dop, 0, sizeof(dop));
	dop.op = DAHDI_DIAL_OP_REPLACE;
	dop.dialstr[0] = 'T';
	dahdi_copy_string(dop.dialstr + 1, info->dialstr, sizeof(dop.dialstr));


	if (ioctl(info->device, DAHDI_DIAL, &dop)) {
		fprintf(stderr, "Unable to dial!\n");
		return -1;
	}
	sleep(1); 
	sleep(info->initial_delay);  
	
	
	gettimeofday(&info->last_reset, NULL);
	
	
	return 0;
}

/**
 * Generates a tone of specified frequency.
 * 
 * @param hz the frequency of the tone to be generated
 * @param idx the current sample
 * 		to begenerated.  For a normal waveform you need to increment
 * 		this every time you execute the function.
 *
 * @return 16bit slinear sample for the specified index
 */
static short inline gentone(int hz, int idx)
{
	return amplitude * sin((idx * 2.0 * M_PI * hz)/8000);
}

/* Using DTMF tones for now since they provide good mid band testing 
 * while not being harmonics of each other */
static int freqs[] = {697, 770, 941, 1209, 1336, 1633};
static int freqcount = 6;

/**
 * Generates a waveform of several frequencies.
 * 
 * @param idx the current sample
 * 		to begenerated.  For a normal waveform you need to increment
 * 		this every time you execute the function.
 *
 * @return 16bit slinear sample for the specified index
 */
static short inline genwaveform(int idx)
{
	int i = 0;
	float response = (float)0;
	for (i = 0; i < freqcount; i++){
		response += sin((idx * 2.0 * M_PI * freqs[i])/8000);
	}
	

	return amplitude * response / freqcount;
}


/**
 *  Calculates the RMS of the waveform buffer of samples in 16bit slinear format.
 *  prebuf the buffer of either shorts or floats
 *  bufsize the number of elements in the prebuf buffer (not the number of bytes!)
 *  short_format 1 if prebuf points to an array of shorts, 0 if it points to an array of floats
 *  
 *  Formula for RMS (http://en.wikipedia.org/wiki/Root_mean_square): 
 *  
 *  Xrms = sqrt(1/N Sum(x1^2, x2^2, ..., xn^2))
 *  
 *  Note:  this isn't really a power calculation - but it gives a good measure of the level of the response
 *  
 *  @param prebuf the buffer containing the values to compute
 *  @param bufsize the size of the buffer
 *  @param short_format 1 if prebuf contains short values, 0 if it contains float values
 */
static float power_of(void *prebuf, int bufsize, int short_format)
{
	float sum_of_squares = 0;
	int numsamples = 0;
	float finalanswer = 0;
	short *sbuf = (short*)prebuf;
	float *fbuf = (float*)prebuf;
	int i = 0;

	if (short_format) {
		/* idiot proof checks */
		if (bufsize <= 0)
			return -1;

		numsamples = bufsize; /* Got rid of divide by 2 - the bufsize parameter should give the number of samples (that's what it does for the float computation, and it should do it here as well) */

		for (i = 0; i < numsamples; i++) {
			sum_of_squares += ((float)sbuf[i] * (float)sbuf[i]);
		}
	} else {
		/* Version for float inputs */
		for (i = 0; i < bufsize; i++) {
			sum_of_squares += (fbuf[i] * fbuf[i]);
		}
	}

	finalanswer = sum_of_squares/(float)bufsize; /* need to divide by the number of elements in the sample for RMS calc */

	if (finalanswer < 0) {
		fprintf(stderr, "Error: Final answer negative number %f\n", finalanswer);
		return -3;
	}

	return sqrtf(finalanswer);
}

/* 
 * In an effort to eliminate as much as possible the effect of outside noise, we use principles
 * from the Fourier Transform to attempt to calculate the return loss of our signal for each setting.
 *
 * To begin, we send our output signal out on the line.  We then receive back the reflected
 * response.  In the Fourier Transform, each evenly distributed frequency within the window
 * is correlated (multiplied against, then the resulting samples are added together) with
 * the real (cos) and imaginary (sin) portions of that frequency base to detect that frequency.
 * 
 * Instead of doing a complete Fourier Transform, we solve the transform for only our signal
 * by multiplying the received signal by the real and imaginary portions of our reference
 * signal.  This then gives us the real and imaginary values that we can use to calculate
 * the return loss of the sinusoids that we sent out on the line.  This is done by finding
 * the magnitude (think polar form) of the vector resulting from the real and imaginary
 * portions calculated above.
 *
 * This essentially filters out any other noise which maybe present on the line which is outside
 * the frequencies used in our test multi-tone.
 */

void init_sinetable(void)
{
	int i;
	if (debug) {
		fprintf(stdout, "Using sine tables with %d samples\n", SINE_SAMPLES);
	}
	for (i = 0; i < SINE_SAMPLES; i++) {
		sintable[i] = sin(((float)i * 2.0 * M_PI )/(float)(SINE_SAMPLES));
	}
}

/* Sine and cosine table lookup to use periodicity of the calculations being done */
float sin_tbl(int arg, int num_per_period)
{
	arg = arg % num_per_period;

	arg = (arg * SINE_SAMPLES)/num_per_period;

	return sintable[arg];
}

float cos_tbl(int arg, int num_per_period)
{
	arg = arg  % num_per_period;

	arg = (arg * SINE_SAMPLES)/num_per_period;

	arg = (arg + SINE_SAMPLES/4) % SINE_SAMPLES;  /* Pi/2 adjustment */

	return sintable[arg];
}


static float db_loss(float measured, float reference)
{
	return 20 * (logf(measured/reference)/logf(10));
}

static void one_point_dft(const short *inbuf, int len, int frequency, float *real, float *imaginary)
{
	float myreal = 0, myimag = 0;
	int i;

	for (i = 0; i < len; i++) {
		if (use_table) {
			myreal += (float) inbuf[i] * cos_tbl(i*frequency, 8000);
			myimag += (float) inbuf[i] * sin_tbl(i*frequency, 8000);
		} else {
			myreal += (float) inbuf[i] * cos((i * 2.0 * M_PI * frequency)/8000);
			myimag += (float) inbuf[i] * sin((i * 2.0 * M_PI * frequency)/8000);
		}
	}

	myimag *= -1;

	*real = myreal / (float) len;
	*imaginary = myimag / (float) len;
}


static float calc_magnitude(short *inbuf, int insamps)
{
	float real, imaginary, magnitude;
	float totalmagnitude = 0;
	int i;

	for (i = 0; i < freqcount; i++) {
		one_point_dft(inbuf, insamps, freqs[i], &real, &imaginary);
		magnitude = sqrtf((real * real) + (imaginary * imaginary));
		totalmagnitude += magnitude;
	}

	return totalmagnitude;
}


/**
 *  dumps input and output buffer contents for the echo test - used to see exactly what's going on
 */
static int maptone(int whichdahdi, int freq, char *dialstr, int delayuntilsilence)
{
	int i = 0;
	int res = 0, x = 0;
	struct dahdi_bufferinfo bi;
	short inbuf[TEST_DURATION]; /* changed from BUFFER_LENGTH - this buffer is for short values, so it should be allocated using the length of the test */
	FILE *outfile = NULL;
	int leadin = 50;
	int trailout = 100;
	struct silence_info sinfo;
	float power_result;
	float power_waveform;
	float echo;

	outfile = fopen("fxotune_dump.vals", "w");
	if (!outfile) {
		fprintf(stdout, "Cannot create fxotune_dump.vals\n");
		return -1;
	}

	x = 1;
	if (ioctl(whichdahdi, DAHDI_SETLINEAR, &x)) {
		fprintf(stderr, "Unable to set channel to signed linear mode.\n");
		return -1;
	}

	memset(&bi, 0, sizeof(bi));
	if (ioctl(whichdahdi, DAHDI_GET_BUFINFO, &bi)) {
		fprintf(stderr, "Unable to get buffer information!\n");
		return -1;
	}
	bi.numbufs = 2;
	bi.bufsize = TEST_DURATION; /* KD - changed from BUFFER_LENGTH; */
	bi.txbufpolicy = DAHDI_POLICY_IMMEDIATE;
	bi.rxbufpolicy = DAHDI_POLICY_IMMEDIATE;
	if (ioctl(whichdahdi, DAHDI_SET_BUFINFO, &bi)) {
		fprintf(stderr, "Unable to set buffer information!\n");
		return -1;
	}

	/* Fill the output buffers */
	for (i = 0; i < leadin; i++)
		outbuf[i] = 0;
	for (; i < TEST_DURATION - trailout; i++){
		outbuf[i] = freq > 0 ? gentone(freq, i) : genwaveform(i); /* if frequency is negative, use a multi-part waveform instead of a single frequency */
	}
	for (; i < TEST_DURATION; i++)
		outbuf[i] = 0;

	/* Make sure the line is clear */
	memset(&sinfo, 0, sizeof(sinfo));
	sinfo.device = whichdahdi;
	sinfo.dialstr = dialstr;
	sinfo.initial_delay = delayuntilsilence;
	sinfo.reset_after = 4; /* doesn't matter - we are only running one test */
	
	if (ensure_silence(&sinfo)){
		fprintf(stderr, "Unable to get a clear outside line\n");
		return -1;
	}

	/* Flush buffers */
	x = DAHDI_FLUSH_READ | DAHDI_FLUSH_WRITE | DAHDI_FLUSH_EVENT;
	if (ioctl(whichdahdi, DAHDI_FLUSH, &x)) {
		fprintf(stderr, "Unable to flush I/O: %s\n", strerror(errno));
		return -1;
	}

	/* send data out on line */
	res = write(whichdahdi, outbuf, BUFFER_LENGTH); /* we are sending a TEST_DURATION length array of shorts (which are 2 bytes each) */
	if (res != BUFFER_LENGTH) { 
		fprintf(stderr, "Could not write all data to line\n");
		return -1;
	}

retry:
		/* read return response */
	res = fxotune_read(whichdahdi, inbuf, BUFFER_LENGTH);
	if (res != BUFFER_LENGTH) {
		int dummy;

		ioctl(whichdahdi, DAHDI_GETEVENT, &dummy);
		goto retry;
	}

	/* write content of output buffer to debug file */
	power_result = power_of(inbuf, TEST_DURATION, 1);
	power_waveform = power_of(outbuf, TEST_DURATION, 1);
	echo = power_result/power_waveform;
	
	fprintf(outfile, "Buffers, freq=%d, outpower=%0.0f, echo=%0.4f\n", freq, power_result, echo);
	fprintf(outfile, "Sample, Input (received from the line), Output (sent to the line)\n");
	for (i = 0; i < TEST_DURATION; i++){
		fprintf(outfile, "%d, %d, %d\n", 
			i,
			inbuf[i],
			outbuf[i]
		);
	}

	fclose(outfile);
	
	fprintf(stdout, "echo ratio = %0.4f (%0.1f / %0.1f)\n", echo, power_result, power_waveform);
	
	return 0;
}


/**
 *  Initialize the data store for storing off best calculated results
 */
static void init_topresults(void)
{
	topresults.numactive = 0;
}


/**
 *  If this is a best result candidate, store in the top results data store
 * 		This is dependent on being the lowest echo value
 *
 *  @param tbleoffset - The offset into the echo_trys table used
 *  @param setting - Pointer to the settings used to achieve the fgiven value
 *  @param echo - The calculated echo return value (in dB)
 *  @param echo - The calculated magnitude of the response
 */
static void set_topresults(int tbloffset, struct wctdm_echo_coefs *setting, float echo, float freqres)
{
	int place;
	int idx;

	for ( place = 0; place < MAX_RESULTS && place < topresults.numactive; place++) {
		if (echo < topresults.results[place].echo) {
			break;
		}
	}

	if (place < MAX_RESULTS) {
		/*  move results to the bottom */
		for (idx = topresults.numactive-2; idx >= place; idx--) {
			topresults.results[idx+1] = topresults.results[idx];
		}
		topresults.results[place].idx = tbloffset;
		topresults.results[place].settings = *setting;
		topresults.results[place].echo = echo;
		topresults.results[place].freqres = freqres;
		if (MAX_RESULTS > topresults.numactive) {
			topresults.numactive++;
		}
	}
}


/**
 *  Prints the top results stored to stdout
 *
 *  @param header - Text that goes in the header of the response
 */
static void print_topresults(char * header)
{
	int item;

	fprintf(stdout, "Top %d results for %s\n", topresults.numactive, header);
	for (item = 0; item < topresults.numactive; item++) {
		fprintf(stdout, "Res #%d: index=%d, %3d,%3d,%3d,%3d,%3d,%3d,%3d,%3d,%3d: magnitude = %0.0f, echo = %0.4f dB\n",
				item+1, topresults.results[item].idx, topresults.results[item].settings.acim,
				topresults.results[item].settings.coef1, topresults.results[item].settings.coef2,
				topresults.results[item].settings.coef3, topresults.results[item].settings.coef4,
				topresults.results[item].settings.coef5, topresults.results[item].settings.coef6,
				topresults.results[item].settings.coef7, topresults.results[item].settings.coef8,
				topresults.results[item].freqres, topresults.results[item].echo);
		
	}
}


/**
 * Perform calibration type 2 on the specified device
 * 
 * Determine optimum echo coefficients for the specified device
 * 
 * New tuning strategy.  If we have a number that we can dial that will result in silence from the
 * switch, the tune will be *much* faster (we don't have to keep hanging up and dialing a digit, etc...)
 * The downside is that the user needs to actually find a 'no tone' phone number at their CO's switch - but for
 * really fixing echo problems, this is what it takes.
 *
 * Also, for the purposes of optimizing settings, if we pick a single frequency and test with that,
 * we can try a whole bunch of impedence/echo coefficients.  This should give better results than trying
 * a bunch of frequencies, and we can always do a a frequency sweep to pick between the best 3 or 4
 * impedence/coefficients configurations.
 *   
 * Note:  It may be possible to take this even further and do some pertubation analysis on the echo coefficients
 * 		 themselves (maybe use the 72 entry sweep to find some settings that are close to working well, then
 * 		 deviate the coefficients a bit to see if we can improve things).  A better way to do this would be to
 * 		 use the optimization strategy from silabs.  For reference, here is an application note that describes
 * 		 the echo coefficients (and acim values):
 * 		 
 * 		 http://www.silabs.com/Support%20Documents/TechnicalDocs/an84.pdf
 *
 * 		 See Table 13 in this document for a breakdown of acim values by region.
 *
 * 		 http://www.silabs.com/Support%20Documents/TechnicalDocs/si3050-18-19.pdf
 * 		 
 */
static int acim_tune2(int whichdahdi, int freq, char *dialstr, int delayuntilsilence, int silencegoodfor, struct wctdm_echo_coefs *coefs_out)
{
	int i = 0;
	int res = 0, x = 0;
	int lowesttry = -1;
	float lowesttryresult = 999999999999.0;
	float lowestecho = 999999999999.0;
	struct dahdi_bufferinfo bi;
	short inbuf[TEST_DURATION * 2];
	struct silence_info sinfo;
	int echo_trys_size = 72;
	int trys = 0;
	float waveform_power;
	float freq_result;
	float echo;

	init_topresults();

	if (debug && !debugoutfile) {
		if (!(debugoutfile = fopen("fxotune.vals", "w"))) {
			fprintf(stdout, "Cannot create fxotune.vals\n");
			return -1;
		}
	}

	/* Set echo settings */
	if (ioctl(whichdahdi, WCTDM_SET_ECHOTUNE, &echo_trys[0])) {
		fprintf(stderr, "Unable to set impedance on fd %d\n", whichdahdi);
		return -1;
	}

	x = 1;
	if (ioctl(whichdahdi, DAHDI_SETLINEAR, &x)) {
		fprintf(stderr, "Unable to set channel to signed linear mode.\n");
		return -1;
	}

	memset(&bi, 0, sizeof(bi));
	if (ioctl(whichdahdi, DAHDI_GET_BUFINFO, &bi)) {
		fprintf(stderr, "Unable to get buffer information!\n");
		return -1;
	}
	bi.numbufs = 2;
	bi.bufsize = BUFFER_LENGTH;
	bi.txbufpolicy = DAHDI_POLICY_IMMEDIATE;
	bi.rxbufpolicy = DAHDI_POLICY_IMMEDIATE;
	if (ioctl(whichdahdi, DAHDI_SET_BUFINFO, &bi)) {
		fprintf(stderr, "Unable to set buffer information!\n");
		return -1;
	}
	x = DAHDI_OFFHOOK;
	if (ioctl(whichdahdi, DAHDI_HOOK, &x)) {
		fprintf(stderr, "Cannot bring fd %d off hook", whichdahdi);
		return -1;
	}


	/* Set up silence settings */
	memset(&sinfo, 0, sizeof(sinfo));
	sinfo.device = whichdahdi;
	sinfo.dialstr = dialstr;
	sinfo.initial_delay = delayuntilsilence;
	sinfo.reset_after = silencegoodfor;

	/* Fill the output buffers */
	for (i = 0; i < TEST_DURATION; i++)
		outbuf[i] = freq > 0 ? gentone(freq, i) : genwaveform(i); /* if freq is negative, use a multi-frequency waveform */
	
	/* compute power of input (so we can later compute echo levels relative to input) */
	waveform_power = calc_magnitude(outbuf, TEST_DURATION);

	/* sweep through the various coefficient settings and see how our responses look */

	for (trys = 0; trys < echo_trys_size; trys++){
		
		/* ensure silence on the line */
		if (ensure_silence(&sinfo)){
			fprintf(stderr, "Unable to get a clear outside line\n");
			return -1;
		}
		
		if (ioctl(whichdahdi, WCTDM_SET_ECHOTUNE, &echo_trys[trys])) {
			fprintf(stderr, "Unable to set echo coefficients on fd %d\n", whichdahdi);
			return -1;
		}

		/* Flush buffers */
		x = DAHDI_FLUSH_READ | DAHDI_FLUSH_WRITE | DAHDI_FLUSH_EVENT;
		if (ioctl(whichdahdi, DAHDI_FLUSH, &x)) {
			fprintf(stderr, "Unable to flush I/O: %s\n", strerror(errno));
			return -1;
		}

		/* send data out on line */
		res = write(whichdahdi, outbuf, BUFFER_LENGTH);
		if (res != BUFFER_LENGTH) {
			fprintf(stderr, "Could not write all data to line\n");
			return -1;
		}

retry:
		/* read return response */
		res = fxotune_read(whichdahdi, inbuf, BUFFER_LENGTH * 2);
		if (res != BUFFER_LENGTH * 2) {
			int dummy;

			ioctl(whichdahdi, DAHDI_GETEVENT, &dummy);
			goto retry;
		}

		freq_result = calc_magnitude(inbuf, TEST_DURATION * 2);
		echo = db_loss(freq_result, waveform_power);
		
#if 0
		if (debug > 0)
			fprintf(stdout, "%3d,%d,%d,%d,%d,%d,%d,%d,%d: magnitude = %0.0f, echo = %0.4f dB\n", 
					echo_trys[trys].acim, echo_trys[trys].coef1, echo_trys[trys].coef2,
					echo_trys[trys].coef3, echo_trys[trys].coef4, echo_trys[trys].coef5,
					echo_trys[trys].coef6, echo_trys[trys].coef7, echo_trys[trys].coef8,
					freq_result, echo);
#endif

		if (freq_result < lowesttryresult){
			lowesttry = trys;
			lowesttryresult = freq_result;
			lowestecho = echo;
		}
		if (debug) {
			char result[256];
			snprintf(result, sizeof(result), "%3d,%3d,%3d,%3d,%3d,%3d,%3d,%3d,%3d,%f,%f", 
						echo_trys[trys].acim, 
						echo_trys[trys].coef1, 
						echo_trys[trys].coef2, 
						echo_trys[trys].coef3, 
						echo_trys[trys].coef4, 
						echo_trys[trys].coef5, 
						echo_trys[trys].coef6, 
						echo_trys[trys].coef7, 
						echo_trys[trys].coef8, 
						freq_result,
						echo
					);
			
			fprintf(debugoutfile, "%s\n", result);
			fprintf(stdout, "%3d,%3d,%3d,%3d,%3d,%3d,%3d,%3d,%3d: magnitude = %0.0f, echo = %0.4f dB\n",
					echo_trys[trys].acim, echo_trys[trys].coef1, echo_trys[trys].coef2,
					echo_trys[trys].coef3, echo_trys[trys].coef4, echo_trys[trys].coef5,
					echo_trys[trys].coef6, echo_trys[trys].coef7, echo_trys[trys].coef8,
					freq_result, echo);
		}

		if (printbest) {
			set_topresults(trys, &echo_trys[trys], echo, freq_result);
		}
	}

	if (debug > 0)
		fprintf(stdout, "Config with lowest response = %d, magnitude = %0.0f, echo = %0.4f dB\n", lowesttry, lowesttryresult, lowestecho);

	memcpy(coefs_out, &echo_trys[lowesttry], sizeof(struct wctdm_echo_coefs));
	if (printbest) {
		print_topresults("Acim2_tune Test");
	}

	return 0;
}

/**
 *  Perform calibration type 1 on the specified device.  Only tunes the line impedance.  Look for best response range 
 */
static int acim_tune(int whichdahdi, char *dialstr, int delayuntilsilence, int silencegoodfor, struct wctdm_echo_coefs *coefs_out)
{
	int i = 0, freq = 0, acim = 0;
	int res = 0, x = 0;
	struct dahdi_bufferinfo bi;
	struct wctdm_echo_coefs coefs;
	short inbuf[TEST_DURATION]; /* changed from BUFFER_LENGTH - this buffer is for short values, so it should be allocated using the length of the test */
	int lowest = 0;
	FILE *outfile = NULL;
	float acim_results[16];
	struct silence_info sinfo;

	if (debug) {
		outfile = fopen("fxotune.vals", "w");
		if (!outfile) {
			fprintf(stdout, "Cannot create fxotune.vals\n");
			return -1;
		}
	}

	/* Set up silence settings */
	memset(&sinfo, 0, sizeof(sinfo));
	sinfo.device = whichdahdi;
	sinfo.dialstr = dialstr;
	sinfo.initial_delay = delayuntilsilence;
	sinfo.reset_after = silencegoodfor;
	
	/* Set echo settings */
	memset(&coefs, 0, sizeof(coefs));
	if (ioctl(whichdahdi, WCTDM_SET_ECHOTUNE, &coefs)) {
		fprintf(stdout, "Skipping non-TDM / non-FXO\n");
		return -1;
	}

	x = 1;
	if (ioctl(whichdahdi, DAHDI_SETLINEAR, &x)) {
		fprintf(stderr, "Unable to set channel to signed linear mode.\n");
		return -1;
	}

	memset(&bi, 0, sizeof(bi));
	if (ioctl(whichdahdi, DAHDI_GET_BUFINFO, &bi)) {
		fprintf(stderr, "Unable to get buffer information!\n");
		return -1;
	}
	bi.numbufs = 2;
	bi.bufsize = BUFFER_LENGTH;
	bi.txbufpolicy = DAHDI_POLICY_IMMEDIATE;
	bi.rxbufpolicy = DAHDI_POLICY_IMMEDIATE;
	if (ioctl(whichdahdi, DAHDI_SET_BUFINFO, &bi)) {
		fprintf(stderr, "Unable to set buffer information!\n");
		return -1;
	}

	for (acim = 0; acim < 16; acim++) {
		float freq_results[15];

		coefs.acim = acim;
		if (ioctl(whichdahdi, WCTDM_SET_ECHOTUNE, &coefs)) {
			fprintf(stderr, "Unable to set impedance on fd %d\n", whichdahdi);
			return -1;
		}

		for (freq = 200; freq <=3000; freq+=200) {
			/* Fill the output buffers */
			for (i = 0; i < TEST_DURATION; i++)
				outbuf[i] = gentone(freq, i);

			/* Make sure line is ready for next test iteration */
			if (ensure_silence(&sinfo)){
				fprintf(stderr, "Unable to get a clear line\n");
				return -1;
			}
			

			/* Flush buffers */
			x = DAHDI_FLUSH_READ | DAHDI_FLUSH_WRITE | DAHDI_FLUSH_EVENT;
			if (ioctl(whichdahdi, DAHDI_FLUSH, &x)) {
				fprintf(stderr, "Unable to flush I/O: %s\n", strerror(errno));
				return -1;
			}
	
			/* send data out on line */
			res = write(whichdahdi, outbuf, BUFFER_LENGTH);
			if (res != BUFFER_LENGTH) {
				fprintf(stderr, "Could not write all data to line\n");
				return -1;
			}

			/* read return response */
retry:
			/* read return response */
			res = fxotune_read(whichdahdi, inbuf, BUFFER_LENGTH);
			if (res != BUFFER_LENGTH) {
				int dummy;
	
				ioctl(whichdahdi, DAHDI_GETEVENT, &dummy);
				goto retry;
			}

			/* calculate power of response */
			
			freq_results[(freq/200)-1] = power_of(inbuf+SKIP_SAMPLES, TEST_DURATION-SKIP_SAMPLES, 1); /* changed from inbuf+SKIP_BYTES, BUFFER_LENGTH-SKIP_BYTES, 1 */
			if (debug) fprintf(outfile, "%d,%d,%f\n", acim, freq, freq_results[(freq/200)-1]);
		}
		acim_results[acim] = power_of(freq_results, 15, 0);
	}

	if (debug) {
		for (i = 0; i < 16; i++)
			fprintf(outfile, "acim_results[%d] = %f\n", i, acim_results[i]);
	}
	/* Find out what the "best" impedance is for the line */
	lowest = 0;
	for (i = 0; i < 16; i++) {
		if (acim_results[i] < acim_results[lowest]) {
			lowest = i;
		}
	}

	coefs_out->acim = lowest;
	coefs_out->coef1 = 0;
	coefs_out->coef2 = 0;
	coefs_out->coef3 = 0;
	coefs_out->coef4 = 0;
	coefs_out->coef5 = 0;
	coefs_out->coef6 = 0;
	coefs_out->coef7 = 0;
	coefs_out->coef8 = 0;
	
	return 0;
}

/**
 * Reads echo register settings from the configuration file and pushes them into
 * the appropriate devices
 * 
 * @param configfilename the path of the file that the calibration results should be written to
 * 
 * @return 0 if successful, !0 otherwise
 */	
static int do_set(char *configfilename)
{
	FILE *fp = NULL;
	int res = 0;
	int fd = 0;
		
	fp = fopen(configfile, "r");
	
    if (!fp) {
            fprintf(stdout, "Cannot open %s!\n",configfile);
            return -1;
    }

	
	while (res != EOF) {
		struct wctdm_echo_coefs mycoefs;
		char completedahdipath[56] = "";
		int mydahdi,myacim,mycoef1,mycoef2,mycoef3,mycoef4,mycoef5,mycoef6,mycoef7,mycoef8;


		res = fscanf(fp, "%d=%d,%d,%d,%d,%d,%d,%d,%d,%d",&mydahdi,&myacim,&mycoef1,
				&mycoef2,&mycoef3,&mycoef4,&mycoef5,&mycoef6,&mycoef7,
				&mycoef8);

		if (res == EOF) {
			break;
		}

		/* Check to be sure conversion is done correctly */
		if (OUT_OF_BOUNDS(myacim) || OUT_OF_BOUNDS(mycoef1)||
			OUT_OF_BOUNDS(mycoef2)|| OUT_OF_BOUNDS(mycoef3)||
			OUT_OF_BOUNDS(mycoef4)|| OUT_OF_BOUNDS(mycoef5)||
			OUT_OF_BOUNDS(mycoef6)|| OUT_OF_BOUNDS(mycoef7)|| OUT_OF_BOUNDS(mycoef8)) {

			fprintf(stdout, "Bounds check error on inputs from %s:%d\n", configfile, mydahdi);
			return -1;
		}

		mycoefs.acim = myacim;
		mycoefs.coef1 = mycoef1;
		mycoefs.coef2 = mycoef2;
		mycoefs.coef3 = mycoef3;
		mycoefs.coef4 = mycoef4;
		mycoefs.coef5 = mycoef5;
		mycoefs.coef6 = mycoef6;
		mycoefs.coef7 = mycoef7;
		mycoefs.coef8 = mycoef8;
	
		snprintf(completedahdipath, sizeof(completedahdipath), "%s/%d", dahdipath, mydahdi);
		fd = open(completedahdipath, O_RDWR);

		if (fd < 0) {
			fprintf(stdout, "open error on %s: %s\n", completedahdipath, strerror(errno));
			return -1;
		}

		if (ioctl(fd, WCTDM_SET_ECHOTUNE, &mycoefs)) {
			fprintf(stdout, "%s: %s\n", completedahdipath, strerror(errno));
			return -1;
		}

		close(fd);
	}

	fclose(fp);

	if (debug)
		fprintf(stdout, "fxotune: successfully set echo coeffecients on FXO modules\n");
	return 0;	
}

/**
 * Output waveform information from a single test
 * 
 * Clears the line, then sends a single waveform (multi-tone, or single tone), and listens
 * for the response on the line.  Output is written to fxotune_dump.vals
 * 
 * @param startdev the device to test
 * @param dialstr the string that should be dialed to clear the dialtone from the line
 * @param delayuntilsilence the number of seconds to wait after dialing dialstr before starting the test
 * @param silencegoodfor the number of seconds that the test can run before having to reset the line again
 * 			(this is basically the amount of time it takes before the 'if you'd like to make a call...' message
 * 			kicks in after you dial dialstr.  This test is so short that the value is pretty much ignored.
 * @param waveformtype the type of waveform to use - -1 = multi-tone waveform, otherwise the specified value
 * 			is used as the frequency of a single tone.  A value of 0 will output silence.
 */
static int do_dump(int startdev, char* dialstr, int delayuntilsilence, int silencegoodfor, int waveformtype)
{
	int res = 0;
	int fd;
	char dahdidev[80] = "";
	
	int dahdimodule = startdev;
	snprintf(dahdidev, sizeof(dahdidev), "%s/%d", dahdipath, dahdimodule);

	fd = open(dahdidev, O_RDWR);
	if (fd < 0) {
		fprintf(stdout, "%s absent: %s\n", dahdidev, strerror(errno));
		return -1;
	}

	fprintf(stdout, "Dumping module %s\n", dahdidev);
	res = maptone(fd, waveformtype, dialstr, delayuntilsilence); 

	close(fd);

	if (res) {
		fprintf(stdout, "Failure!\n");
		return res;
	} else {
		fprintf(stdout, "Done!\n");
		return 0;
	}

}	

/**
 * Performs calibration on all specified devices
 * 
 * @param startdev the first device to check
 * @param enddev the last device to check
 * @param calibtype the type of calibration to perform.  1=old style (loops through individual frequencies
 * 			doesn't optimize echo coefficients.  2=new style (uses multi-tone and optimizes echo coefficients
 * 			and acim setting)
 * @param configfilename the path of the file that the calibration results should be written to
 * @param dialstr the string that should be dialed to clear the dialtone from the line
 * @param delayuntilsilence the number of seconds to wait after dialing dialstr before starting the test
 * @param silencegoodfor the number of seconds that the test can run before having to reset the line again
 * 			(this is basically the amount of time it takes before the 'if you'd like to make a call...' message
 * 			kicks in after you dial dialstr
 * 
 * @return 0 if successful, -1 for serious error such as device not available , > 0 indicates the number of channels
 */	
static int do_calibrate(int startdev, int enddev, int calibtype, char* configfilename, char* dialstr, int delayuntilsilence, int silencegoodfor)
{
	int problems = 0;
	int res = 0;
	int configfd, fd;
	int devno = 0;
	char dahdidev[80] = "";
	struct wctdm_echo_coefs coefs;
	
	configfd = open(configfile, O_CREAT|O_TRUNC|O_WRONLY, 0666);

	if (configfd < 0) {
		fprintf(stderr, "Cannot generate config file %s: open: %s\n", configfile, strerror(errno));
		return -1;
	}

	for (devno = startdev; devno <= enddev; devno++) {
		snprintf(dahdidev, sizeof(dahdidev), "%s/%d", dahdipath, devno);

		fd = open(dahdidev, O_RDWR);
		if (fd < 0) {
			fprintf(stdout, "%s absent: %s\n", dahdidev, strerror(errno));
			continue;
		}

		fprintf(stdout, "Tuning module %s\n", dahdidev);
		
		if (1 == calibtype)
			res = acim_tune(fd, dialstr, delayuntilsilence, silencegoodfor, &coefs);
		else
			res = acim_tune2(fd, -1, dialstr, delayuntilsilence, silencegoodfor, &coefs);

		close(fd);
		
		if (res) {
			fprintf(stdout, "Failure!\n");
			problems++;
		} else {
			fprintf(stdout, "Done!\n");
		}

		if (res == 0) {
			
		/* Do output to file */
			int len = 0;
			static char output[255] = "";

			snprintf(output, sizeof(output), "%d=%d,%d,%d,%d,%d,%d,%d,%d,%d\n", 
				devno,
				coefs.acim, 
				coefs.coef1, 
				coefs.coef2, 
				coefs.coef3, 
				coefs.coef4, 
				coefs.coef5, 
				coefs.coef6, 
				coefs.coef7, 
				coefs.coef8
			);

			if (debug)
				fprintf(stdout, "Found best echo coefficients: %s\n", output);

			len = strlen(output);
			res = write(configfd, output, strlen(output));
			if (res != len) {
				fprintf(stdout, "Unable to write line \"%s\" to file.\n", output);
				return -1;
			}
		}
	}

	close(configfd);
	
	if (problems)
		fprintf(stdout, "Unable to tune %d devices, even though those devices are present\n", problems);
	
	return problems;
}	
	
int main(int argc , char **argv)
{
	int startdev = 1; /* -b */
	int stopdev = 252; /* -e */
	int calibtype = 2; /* -t */
	int waveformtype = -1; /* -w multi-tone by default.  If > 0, single tone of specified frequency */
	int delaytosilence = 0; /* -l */
	int silencegoodfor = 18; /* -m */
	char* dialstr = "5"; /* -n */
	int res = 0;
	int doset = 0; /* -s */
	int docalibrate = 0; /* -i <dialstr> */
	int dodump = 0; /* -d */
	int i = 0;
	int moreargs;
	
	for (i = 1; i < argc; i++){
		if (!(argv[i][0] == '-' || argv[i][0] == '/') || (strlen(argv[i]) <= 1)){
			fprintf(stdout, "Unknown option : %s\n", argv[i]);
			/* Show usage */
			fputs(usage, stdout);
			return -1;
		}

		moreargs = (i < argc - 1);
		
		switch(argv[i][1]){
			case 's':
				doset=1;
				continue;
			case 'i':
				docalibrate = 1;
				if (moreargs){ /* we need to check for a value after 'i' for backwards compatability with command line options of old fxotune */
					if (argv[i+1][0] != '-' && argv[i+1][0] != '/')
						dialstr = argv[++i];
				}
				continue;
			case 'c':
				configfile = moreargs ? argv[++i] : configfile;
				continue;
			case 'd':
				dodump = 1;
				continue;
			case 'b':
				startdev = moreargs ? atoi(argv[++i]) : startdev;
				break;
			case 'e':
				stopdev = moreargs ? atoi(argv[++i]) : stopdev;
				break;
			case 't':
				calibtype = moreargs ? atoi(argv[++i]) : calibtype;
				break;
			case 'w':
				waveformtype = moreargs ? atoi(argv[++i]) : waveformtype;
				break;
			case 'l':
				delaytosilence = moreargs ? atoi(argv[++i]) : delaytosilence;
				break;
			case 'm':
				silencegoodfor = moreargs ? atoi(argv[++i]) : silencegoodfor;
				break;
			case 'n':
				dialstr = moreargs ? argv[++i] : dialstr;
				break;
			case 'p':
				printbest++;
				break;
			case 'x':
				use_table = 1;
				break;
			case 'v':
				debug = strlen(argv[i])-1;
				break;
			case 'o':
				if (moreargs) {
					audio_dump_fd = open(argv[++i], O_WRONLY|O_CREAT|O_TRUNC, 0666);
					if (audio_dump_fd == -1) {
						fprintf(stdout, "Unable to open file %s: %s\n", argv[i], strerror(errno));
						return -1;
					}
					break;
				} else {
					fprintf(stdout, "No path supplied to -o option!\n");
					return -1;
				}
			default:
				fprintf(stdout, "Unknown option : %s\n", argv[i]);
				/* Show usage */
				fputs(usage, stdout);
				return -1;
				
		}
	}
	
	if (debug > 3){
		fprintf(stdout, "Running with parameters:\n");
		fprintf(stdout, "\tdoset=%d\n", doset);	
		fprintf(stdout, "\tdocalibrate=%d\n", docalibrate);	
		fprintf(stdout, "\tdodump=%d\n", dodump);	
		fprintf(stdout, "\tprint best settings=%d\n", printbest);
		fprintf(stdout, "\tstartdev=%d\n", startdev);
		fprintf(stdout, "\tstopdev=%d\n", stopdev);	
		fprintf(stdout, "\tcalibtype=%d\n", calibtype);	
		fprintf(stdout, "\twaveformtype=%d\n", waveformtype);	
		fprintf(stdout, "\tdelaytosilence=%d\n", delaytosilence);	
		fprintf(stdout, "\tsilencegoodfor=%d\n", silencegoodfor);	
		fprintf(stdout, "\tdialstr=%s\n", dialstr);	
		fprintf(stdout, "\tdebug=%d\n", debug);	
	}

	if(use_table) {
		init_sinetable();
	}
	
	if (docalibrate){
		res = do_calibrate(startdev, stopdev, calibtype, configfile, dialstr, delaytosilence, silencegoodfor);
		if (!res)
			return do_set(configfile);	
		else
			return -1;
	}

	if (doset)
		return do_set(configfile);
				
	if (dodump){
		res = do_dump(startdev, dialstr, delaytosilence, silencegoodfor, waveformtype);
		if (!res)
			return 0;
		else
			return -1;
	}

	fputs(usage, stdout);
	return -1;
}